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Abstract: The demand for bandwidth-intensive and delay-sensitive services is surging daily with
the development of 5G technology, resulting in fierce competition for scarce radio resources. Power
domain Nonorthogonal Multiple Access (NOMA) technologies can dramatically improve system
capacity and spectrum efficiency. Unlike existing NOMA scheduling that mainly focuses on fairness,
this paper proposes a power control solution for uplink hybrid OMA and PD-NOMA in dual dynamic
environments: dynamic and imperfect channel information together with the random user-specific
hierarchical quality of service (QoS). This paper models the power control problem as a nonconvex
stochastic, which aims to maximize system energy efficiency while guaranteeing hierarchical user
QoS requirements. Then, the problem is formulated as a partially observable Markov decision
process (POMDP). Owing to the difficulty of modeling time-varying scenes, the urgency of fast
convergency, the adaptability in a dynamic environment, and the continuity of the variables, a
Deep Reinforcement Learning (DRL)-based method is proposed. This paper also transforms the
hierarchical QoS constraint under the NOMA serial interference cancellation (SIC) scene to fit DRL.
The simulation results verify the effectiveness and robustness of the proposed algorithm under a
dual uncertain environment. As compared with the baseline Particle Swarm Optimization algorithm
(PSO), the proposed DRL-based method has demonstrated satisfying performance.

Keywords: deep deterministic policy gradient (DDPG); hierarchical QoS; nonorthogonal multiple
access (NOMA); power allocation; reinforcement learning (RL)

1. Introduction

Power domain Nonorthogonal Multiple Access (NOMA) has introduced power mul-
tiplexing into four standard dimensions of the wireless communications systems: time,
frequency, code, and space, thereby greatly improving spectrum efficiency and capacity [1].
As a trend of 6G network development, the performance of NOMA depends on user
pairing, power allocation, and detection-decoding, which are closely related to NOMA per-
formance [2]. For serious interference problems caused by the reuse of frequency resources,
advanced physical layer and multiuser detection techniques such as serial interference
cancellation (SIC) is applied at the receiver. In addition, hybrid OMA and NOMA can also
reduce interference between users. User groups follow OMA channel allocation, while
internal users perform NOMA.

At present, there are three methods commonly used to solve the NOMA power
allocation problem: Convex Optimization, Game Theory, and Reinforcement Learning.

The Convex Optimization method requires full knowledge of the environment and
problem convexity. The Game Theory method focuses on game behavior between users
but neglects the environment. However, due to the dual uncertainty in wireless network
environments: channel as well as QoS requirements change with users and time; these
conventional model-based approaches that require the complete knowledge of systems and
high computational complexity can be inefficient or even infeasible in practice. With the
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model-free method of Reinforcement Learning (RL) through continuous interaction with
the environment, the strategy can also be improved, eliminating the need for the modeling
process. Many researchers try to apply RL technology to network contexts, including
dynamic IoT networks routing [3], MEC offloading [4], security, and so on [5].

For the above three methods to solve the power distribution problem under NOMA,
as well as the deficiencies of the existing RL-based methods, please refer to Section 2.

Based on this, this research proposes an uplink power allocation algorithm under
hybrid NOMA. It considers the environment under dual uncertainty, which means imper-
fect time-varying channel information and random users’ hierarchical QoS requirements.
The problem is a nonconvex, stochastic, and NP-hard problem, which is then formulated as
a partially observable Markov decision process (POMDP). Therefore, this research uses the
DDPG algorithm to schedule uplink power under a dual uncertain environment without
manual derivation of the problem and environment modeling. Moreover, this research
transforms the hierarchical QoS to minimum power constraint under the SIC scene. Sim-
ulation results show that the proposed approach can achieve satisfying hierarchical QoS
with less energy consumption, faster convergence speed, as well as robustness under a
dual uncertain environment. Moreover, the proposed algorithm achieves comparable
performance close to the global optimum with low computational time complexity. Fur-
ther, the DDPG-based uplink NOMA is far better than the baseline algorithm. The main
contributions of this paper are as follows:

• This paper uses hierarchical QoS to characterize the different service requirements of
users, and expresses them with minimum rate requirements;

• This paper transforms the hierarchical QoS to minimum power constraint under
the SIC scene and adds a penalty term to the real-time return in the Reinforcement
Learning to represent the QoS requirement;

• Considering the dual dynamics of the channel and user requirements, nonconvex
optimization problem, this paper proposes a DDPG-based method;

• Simulation results show that compared with the global search algorithm PSO, the DDPG
method is more adaptable to dynamic environments and has a faster convergence speed.

This paper is organized as follows: Section 2 gives a brief overview of the state of
the art. Section 3 gives the system model and constructs the power allocation problem.
In Section 4, this paper briefly introduces the DDPG algorithm and then explains the details
of the power control algorithm. In Section 5, the simulation results are shown and analyzed.
Section 6 summarizes the work of this paper.

2. Related Work

In [6], the authors applied successive convex approximation to solve the power
allocation problem. Pang et al. allocated downlink power to maximize energy efficiency.
The solution to it includes outer iteration and inner iteration, fractional programming, and
successive convex optimization [7]. Chen et al. considered the same problem under short
packet communication. It is modeled as a nonconvex mixed integer nonlinear problem
(MINLP), which is solved by a block coordinate descent algorithm [8]. The quality of
service (QoS) requirement is further considered in [9], which renders the power allocation
problem as stochastic and quasi-concave. The constrained problem is iteratively solved by
the bisection research algorithm. In [10], the power allocation problem was transformed
into the dual Lagrangian problem using the subgradient algorithm in MIMO and NOMA
downlink scenarios. JIAO et al. proposed a fairness-improved and QoS-guaranteed
resource allocation for the S-IoT NOMA downlink network, exploiting the Lyapunov
framework to break down the nonconvex joint optimization problem into a sequence
of individual subproblems. Further, they used the particle swarm optimization (PSO)
algorithm to solve the proposed subproblems [11].
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Li et al. proposed an energy-efficient resource allocation scheme with hybrid TDMA–
NOMA for cellular-enabled M2M networks. They formulate the problem as a noncooper-
ative game and transform the nonconvex optimization problem into the convex form by
using nonlinear fractional programming and solve the transformed problem by Dinkel-
bach’s method and Lagrangian duality theory [12]. Adjif et al. adopted a multiarmed
bandit-based method (MAB) in the uplink scenario with the goal of optimizing system
throughput [13]. Zheng et al. considered user selfishness, and modeled the NOMA uplink
power allocation problem as a Nash bargaining game, which is solved by KKT Condi-
tion [14]. Aldebes et al. aimed at maximizing the sum rate in the downlink NOMA cellular
system. Glicksberg game-based algorithm is used to allocate the power between different
numbers of users [15]. Omslandseter et al. considered the problem of power allocation as a
variation of the Knapsack Problem, and solved it through a greedy solution [16].

RL is built between the base station (BS) and the user based on Contract Theory in
heterogeneous uplink NOMA and imperfect CSI [17]. The actor–critic algorithm is used
to control downlink NOMA and maximizes the sum of the user’s rate [18]. Yet, the actor–
critic network has the problem of convergence. Zhang et al. used the deep reinforcement
learning (DRL) algorithm DDPG to maximize the sum of user energy efficiency [19].
In [20], hardware sensitivity and imperfect successive interference cancellation (SIC) are
considered. Additionally, a multiagent structure and a convolutional neural network
are adopted to reduce the complexity of the power allocation in NOMA. The authors
of [21] proposed asynchronous reinforcement learning-based schemes to solve joint relay
selection and power allocation, which is a complicated high-dimensional optimization
problem. In the above, the scheduling variable in some references is discrete, resulting
in quantization errors, and they only discuss single QoS for all users while ignoring the
multiple QoS requirements brought by differentiated services, i.e., hierarchical QoS, such
as delay-jitter-sensitive services and instant messaging services.

3. System Model and Problem Formulation

The issue of hybrid OMA and NOMA uplink power control is studied for the system
shown in Figure 1. A single-antenna base station (BS) is equipped with an SIC module. M
users are uniformly distributed in the coverage area of the BS, i.e., between two circles with
radius R1 and R3, where the inner radius R1 is used to simulate the minimum propagation
path loss, and the outer radius R3 represents the cell size [22]. In between, a ring with
width w2 splits near and far users. The scattered users are first clustered into K groups
by distance. Then, orthogonal time-frequency resources are allocated among the groups,
and users within the same group reuse the same time-frequency resource block (no mutual
interference among groups). The reinforcement learning agent at the BS side adjusts the
user’s uplink power by considering the dynamic imperfect uplink channel information.
The goal of the RL agent is to maximize the system energy efficiency while meeting the
use-specific QoS requirement in terms of throughput. For the convergence of the RL
agent, the multiple minimum rate thresholds are used to characterize the user’s QoS
requirements and can be transformed into a minimum power constraint under the SIC
scene for convergence of RL.

3.1. Network Framework and Objective Function

Suppose M users are clustered into K user groups, and each group supports up
to Npair = 2 users to reuse the same time-frequency resource block Rb [23]. The total
bandwidth of the BS is B, namely, the bandwidth of each group is B/K. For simplicity, this
research assumes M = Npair ∗ K. The Shannon Capacity formula is shown in (1), where
γi,t represents the Signal-to-Interference-plus-Noise Ratio (SINR) of the i-th user at time t,
and ri,t is the corresponding Shannon Capacity of the i-th user. Please note that the dual
dynamics mentioned in this article refer to the channel gain h, and user requirements rmin

will change over time t.

ri,t =
B
K

log2(1 + γi,t), i ∈ M. (1)
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Expansion of γi,t is in (2), where pi,t, di, gi,t are the uplink power of the i-th user,
the distance between the user and the BS, and the small-scale channel fading. n presents
additive white Gaussian noise, and α is the path loss exponent. The interference from the
other user sharing time-frequency resources denotes as Ii,t.

γi,t =
pi,td−α

i gi,t

n + Ii,t
, i ∈ M. (2)

Assume the i-th user is paired with the j-th user (the details of the user pairing
algorithm is given in Section 3), the interference experience by user i can be simplified to (3)
according to the power descending demodulation sequence of SIC.

Ii,t =

{
0 if pi,t ≤ pj,t,
pj,td−α

j gj,t if pi,t > pj,t.
(3)

System Energy efficient (EE) at time t is defined in (4), where U(·) is the step function,
p0 denotes base station circuit power consumption, and the j-th user pairs with the i-th user.

EE =
M

∑
i=1

ri,t

pi,t + p0

=
M

∑
i=1

B
K(pi,t + p0)

log2

(
1 +

pi,td−α
i gi,t

n + U
(

pi,t − pj,t
)

pj,td−α
j gj,t

)
. (4)
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Figure 1. Multiuser with hierarchical QoS in Uplink NOMA network and Reinforcement Learning
for power allocation.

3.2. Optimization Problem and QoS Constraint Transformation

Considering the user-specific throughput requirement and the uplink power con-
straints of users, the mathematical optimization model to maximize energy efficiency is
given as follows:

max
pi

EE (5)

s.t. 0 ≤ pi,t ≤ Pmax, ∀i ∈ M (6)

ri,t ≥ rmin
i,t , ∀i ∈ M. (7)
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Once the users are paired, the optimization variable is user’s uplink power pi,t, ∀i ∈ M.
This is a nonconvex continuous variable random optimization problem. Pmax represents the
user-common maximum uplink power of the user, and the value is the same for all users.
In this paper, the threshold rate rmin

i,t , varying with user and time, is used to characterize
the i-th user QoS requirements. In addition, the small-scale fading gi,t remains unchanged
within a period and changes with the user and the time slot.

Among them, (7) can be further simplified. Let rmin
i,t and rmin

j,t denote the minimum
rate requirements of the two users i, j in the same group, respectively. The channel gain
of the two users is hi,t = d−α

i gi,t, hj,t = d−α
j gj,t, assuming pi,t ≤ pj,t, B/K = 1. According

to (3), Ii,t = 0, Ij,t = pi,thi,t. Substituting into (1) and (2), we obtain

ri,t = log2

(
1 +

pi,thi,t

n

)
(8)

rj,t = log2

(
1 +

pj,thj,t

n + pi,thi,t

)
. (9)

Further simplification can be obtained by monotonicity.

pmin
i,t =

n
(

2rmin
i,t − 1

)
hi,t

, if pi,t ≥ pmin
i,t (10)

pmin
j,t =

2rmin
j,t − 1
hi,t

· (n + pi,thi,t) (11)

Substitute (10) into (11).

pmin
j,t ≥

2rmin
j,t − 1
hj,t

·
(

n + n
(

2rmin
i,t − 1

))
(12)

=
2rmin

j,t − 1
hj,t

· n · 2rmin
i,t . (13)

From (10) and (13), it can be seen that the minimum rate constraint can be trans-
formed into a minimum power limit. Then, the optimization problem after the constraint
transformation is given below.

max
pi,t ,pj,t ,pi,t≤pj,t

EE (14)

s.t.
n
(

2rmin
i,t − 1

)
hi,t

≤ Pi,t ≤ Pmax (15)

2rmin
j,t − 1
hj,t

· n · 2rmin
i,t ≤ Pj,t ≤ Pmax. (16)

This section establishes an optimization model, which will be solved below.

4. Algorithm
4.1. Pairing of Near and Far Users

The optimal pairing algorithm is used to traverse all the combinations, select the one
with the largest EE, distribute the power again, re-pair, and iterate until convergence. In this
paper, the control variable method is used to study the convergence performance and speed
of the DRL-based power allocation strategy given a specific pair under a dual uncertainty
environment. Therefore, the user pairing algorithm is simplified to the basic far and near
user pairing. First, sort the users according to distance, d1 ≤ · · · ≤ di · · · ≤ dm—that is,
the user numbered 1 is the closest to the BS. Then, match users at equal intervals.
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4.2. Deep Deterministic Policy Gradient (DDPG)

DDPG was developed to deal with continuous space problems enabled by neural
network approximation capability [24]. Since both the channel state and the power value
are continuous variables, this research chooses the DDPG algorithm. DDPG algorithm
based on Actor–Critic architecture has two networks to ensure stability, namely, Online
Network and Target Network. It also adds noise to the Actor Network output to tackle
the exploration problem. Among them, Online Actor and Critic network parameters are
denoted as θµ and θQ. The parameters of these two target networks are represented by θµt

and θQt
. The target networks use the Poylak average with a parameter of τ to soft update

in (17).

θQt ← τθQ + (1− τ)θQt
(17)

θµt ← τθµ + (1− τ)θµt
.

Actor Network determines the deterministic mapping from state st to action at,
i.e., S ⇒ A, at = µ(st|θµ), instead of outputting probability distributions in discrete
action spaces. The objective function of Actor Network is in (18).

J(µθ) =
∫

s
ρ(s)Vµ(s)ds =

∫
s

ρ(s)Qµ(s, µθ(s))ds. (18)

In between, ρ(s) represents the state probability distribution; further, on behalf of the
state-value, Vµ(s) is equal with action-value Qµ(s, µθ(s)) because of deterministic policy.
In the meantime, the Critic Network implements the mapping from state-action pair (st, at)
to value Q(st, at|θQ), S, A ⇒ Q. Value represents the prediction of future environment
total return using the Bellman equation, as given below. R is the experience pool for the
i.i.d example, and γ is the discount factor.

Qµ(st, at) = Ert ,st+1∼R[r(st, at) + γQµ(st+1, µ(st+1))]. (19)

4.3. Learning Agent Design: State, Action and Reward

According to the interaction between the agent and the environment, this paper
designs the incompletely observed environmental state s = {h1, ..., hK, r min

1 , ..., rmin
K }, en-

vironmental action a = {p1, p2, . . . , pK}, and instant return function r = EE − ∑M
i=1 β ·

(max(Pi − Pmin
i , 0))2. The second term of the return represents the power constraint. Due

to the sigmoid function of the action network, the output power will not exceed the max-
imum power constraint, but the minimum power constraint derived from QoS is not
guaranteed. The literature [17–19] adopt a stepwise return—that is, there is a return when
the constraint conditions are met, and the return is 0 or a constant if the constraint is not
met. However, through simulation verification, this setting is difficult to converge, so the
penalty function setting is used to make the reward function more continuous and easy
to converge.

Figure 2 introduces the process of the uplink NOMA power allocation procedure.
Based on random channel state and unequal user demand vector, this research aims to
obtain the best possible policy of user uplink transmit power. The detailed descriptions of
each step are as follows:

1. After the users are paired, users in the same group can adopt power multiplexing on
the same time-frequency resources;

2. Users periodically report their QoS requirements while transmitting data in the uplink
return under the previous action (report reward during training);

3. After the continuous interference cancellation on the base station side, according to
the previous derivation, the QoS is converted into the minimum power requirement;

4. The data is classified into user groups and then input into the DDPG module. Each
group of users uses a DDPG module, which not only guarantees user scalability but
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also uses the idea of parallel computing to speed up decision-making. It should
be noted that only one DDPG module is involved in model training. After conver-
gence, the model Actor Network can be directly copied to process multiple sets of
user scenarios;

5. The last step is to broadcast the strategy to each user (collect the current action return
and observe the state after the transfer during training).

Base Station

Data Sink


…

Data Sink


5) Policy Broadcasting

User M
Source M

Power Control

…

User 1
Source 1

Power Control

…

Reinforcement  Learning Agent

Hierarchal QoS Requirement Users’ Uplink Channel Gain

Power Allocation Policy

DDPG Model 1 DDPG Model 2 … DDPG Model K

Aggregation

Transfer

Data Split

Data Sink
SIC


User k
Source k

Power Control

…

3) Data Processing

4) DRL Solution

1) Paired Users Power-Domain Multiplexing

2) Uplink Transmission  and Report QoS

Figure 2. Flow chart of the Deep Deterministic Policy Gradient.

5. Simulation
5.1. Simulation Parameters

To verify the effectiveness of the proposed scheme, the transmission and convergence
performance of the proposed scheme is simulated. Table 1 summarizes important param-
eters in the simulation setup. The parameters in Table 1 are divided into two parts, one
part is communication-related parameters [12,22,23] and the other part is reinforcement-
learning-related parameters [24].

As the 4G subframe length is 20 ms [25] and reinforcement learning needs to obtain
enough samples in the current unchanged environment, the interaction cycle between the
RL agent and the environment is one-twentieth of Tf, which is 1 ms. The user’s minimum
rate requirement is customized based on the log2 3 ≈ 1.585 bit/s/Hz when the user’s
signal-to-noise ratio is 3 dB, so the minimum rate is set by itself to be an integer multiple
of 1.5.

In this paper, the minimum power requirement is derived from the minimum rate,
and then reflected in the penalty term in the calculation of the instant rewards of reinforce-
ment learning. Therefore, in the face of the actual minimum speed required by different
business scenarios, the solution in this paper is also effective.

To simplify the simulation and result analysis, this research makes the following
settings. (1) The channel gain consists of large-scale fading and small-scale fading, where
the latter obeys the exponential distribution g ∼ E(1) and changes every Tf . (2) The user
needs rmin change every Tf , and chooses one level with the same probability. There are
three types of rmin, which are represented by 1, 2, and 3. As the value increases, the rate
constraint becomes tighter and tighter. (3) The interaction cycle between the agent and
the environment is Ti =1 ms. After every Tf , the agent will resample the channel and user
demand. The four networks in DDPG contain two hidden layers with 400 and 300 neurons,
respectively, and use the ReLU activation function. Besides adding a sigmoid function to
the output layer of the Actor Network (and its target network), the range of environmental
actions is limited through reward penalty. The Power allocation algorithm is given in
Algorithm 1.
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Algorithm 1: Uplink Power Allocation Based on DDPG in NOMA

Data: M, T: maximum counter; β: penalty parameter;
Input: Rmin

i : minimum QoS rare requirement for the i-th UE;
1 Initialize:
2 Randomly initialize online critic network θQ, actor θµ;
3 Target network θQt

and θµt
with:

4 θQt ← θQ ; θθπt
← θθπ

;
5 Replay buffer R;
6 for episode = 1, · · ·M do
7 Initialize a random process G for action exploration;
8 Initialize state s(t) for all Users;
9 for step = 1, · · · T do

10 Choose action at = π(st|θπ) + Gt according to the current policy and
exploration noise ;

11 Take action at ;
12 if step mod 20 = 0 then
13 State transition ;
14 Observe new state st+1 ;
15 end
16 Sort received power in ascending order;
17 Calculate i-th and UE’ SINR and Shannon Capacity in (1) and (2);
18 Observe reward rt using (4) ;
19 Calculate i-th and j-th UEs’ minimum Power in (10) and (13);
20 if Pi ≤ Pmin

i for all UE i then
21 reward− = β · (max(Pi − Pmin

i , 0))2;
22 end
23 Store transition (st, at, rt, st+1) in R;
24 step← step + 1
25 end
26 Sample a random minibatch of N transitions (st, at, rt, st+1) from R;

27 Set yt = rt + γQt
(

si+1, πt
(

si+1 | θπt
)
| θQt

)
;

28 Update critic by minimizing the loss:

29 L = 1
N ∑i

(
yi −Q

(
si, ai | θQ))2;

30 Update the actor policy using the sampled policy gradient:

31 ∇θπ J ≈ 1
N ∑i∇aQ

(
s, a | θQ)∣∣∣

s=si ,a=π(si)

32 ·∇θπ π(s | θπ)|si
;

33 Update the target network:
34 θQt ← τθQ + (1− τ)θQt

;
35 θπt ← τθπ + (1− τ)θπt

36 end

The baseline power allocation scheme adopted for performance comparisons includes
the following: (1) the PSO algorithm, to compare the gap between the proposed algorithm
and the optimal global solution. When the PSO’s running time tends to infinity, due to
its randomness, it is bound to be the global optimal. It should be noted that the optimal
solution solved by PSO is obtained in a static environment, i.e., both the channel and
user’s QoS remain unchanged. To reflect the superiority of the artificial intelligence control
algorithm, this research considers the (2) greedy strategy, where each user transmits in the
maximum power to maximize self-interest; and (3) random strategy, where users select a
random power value to transmit.
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Table 1. Important parameters in the simulation setup.

Parameter Value

Discounted factor γ = 0.1
Large-scale fading exponent α = −3
Small-scale fading exponent 1

Channel bandwidth B = 10 MHz
The number of users M = 10

The user power P ∈ [0, 40] mW
Learning rate 5 × 10−4

Target smoothing coefficient τ = 0.005
Replay buffer capacity R = 1 × 106

Minibatch size 512
Interaction cycle Ti = 1 ms

State sample interval Tf = 20 ms
Noise factor of AWGN channel −174 dBm/Hz

Minimum rate threshold rmin = 1.5 ∗ {1, 2, 3} bit/s/Hz
Base station circuit power p0 = 40 mW

Penalty parameter β = 9 × 10−3

Two rings range {(100, 200), (400, 500)}, R1 = 100, R3 = 500, W2 = 200

5.2. Simulation Result

In the following analysis, we evaluated the scheme from the perspective of instanta-
neous reward. As judging the system’s performance only depends on the current return,
i.e., system energy efficiency and subsequent performance stability. this paper first simu-
lates a pair of users with various user requirement combinations to verify its effectiveness.
Then, this paper increases the number of users to test the proposed scheme.

Figure 3 shows the optimization process for a pair of users (user number M = 2,
group number K = 1). The simulation results show that DDPG can converge quickly
under a dual dynamic environment. Dynamic channel and user demand can be treated
as disturbances under the static optimal strategy. After about 90 episodes, the algorithm
can reach stability under different QoS combinations. There are 500 rounds in total,
and each episode contains 2000 steps. Each step corresponds to a real-time of 1 ms so
that the algorithm will converge within 180 s. The convergence time will be shortened if
we enhance the parameter update frequency—that is, each episode contains fewer steps
resulting in the surge of data utilization (Parameters are updated once every episode.).

Figure 3. Optimization process for a pair of users under dynamic channel and hierarchical requirements.
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Figure 4 shows the testing of the model under the dynamic channel and user demand.
The test runs 400 steps, and the vertical axis is the reward for each step. There are four
schemes (PSO, DDP, Random, and Greedy). The population size of the PSO algorithm is
10,000, and the number of iterations is 100. DDPG and PSO algorithms have similar and
far better performance than the other two schemes (Random and Greedy). A penalty value
in reward is nonzero if the user’s demand is not satisfied. However, the reward is always
greater than or equal to zero. Therefore, it can be seen that a random scheme often reaches
zero. From the above simulation, it can be seen that the DDPG algorithm can efficiently
solve the power allocation of 2 users with time-varying demands assembly. The following
scenario is simulated with the random demands of 10 users to analyze the user scalability
of the algorithm.

Figure 4. The system reward distance for each step for a pair of users.

Taking into account the characteristics of Hybrid NOMA, when the number of user
groups K is greater than 1, because the groups are independent of each other, the multiuser
group problem can be split into independent subproblems and solved in parallel. According
to the simulation above, the multiuser model based on DDPG likewise stabilizes with about
90 episodes—the same as the two-user model—at the cost of increasing the DDPG neural
networks. Figure 5 shows the model under the scenario of 10 users’ random demands
under a dynamic channel. As seen from the figure, the simulation phenomenon is very
similar to that of two users, dealing with five subproblems simultaneously (dividing ten
users into five pairs). When the number of users increases, the gap between the two
algorithms is slightly larger than when the number of users is two because the gap in each
subproblem is superimposed.

When the PSO’s running time tends to infinity, due to its randomness, it is bound to
be the global optimal. However, slow convergence is its main flaw, especially in a dynamic
and uncertain environment. According to the simulation, the time of the PSO algorithm is
at least ten times that of the DDPG algorithm and, as the number of users increases, the time
increases to more than 100 times. We assume that on a long-term scale, the environment
and user behavior are regular. Unlike the neural network parameters in DRL that can
retain a certain degree of memory, when the environment changes, the PSO needs to be
recalculated. Equivalent to each change, the previous results will be discarded, then the
PSO will be overturned and restarted. From the above simulation, it can be seen that the
power allocation based on the DDPG algorithm is capable for different user needs and
different user numbers with similar performance to PSO. Nevertheless, the time and space
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complexity are far less than the PSO algorithm, especially in the single-step computing
resource occupation.

Figure 5. The system reward distance for each step for 5 pairs of users, comprising 10 users in total.

6. Conclusions

This paper studies the uplink power allocation scheme to optimize the energy effi-
ciency for the NOMA system. To characterize diverse service requirements, this paper also
introduces the hierarchical QoS constraints and transforms them into the corresponding
transmission power thresholds. The proposed power allocation algorithm considers both
the time-varying channel and the random hierarchical QoS requirements. With the highly
dynamic and partially observed environment and the unbearable time complexity of the
traditional optimization algorithm, the proposed DDPG-algorithm-based power allocation
scheme can efficiently solve the energy efficiency optimization problem. Verified by the
simulation results, the DDPG-based method can adapt to the dual uncertain environment
within a low time complexity and obtain a result second only to the global optimal solution.
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