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Abstract: Eye tracking techniques based on deep learning are rapidly spreading in a wide variety of
application fields. With this study, we want to exploit the potentiality of eye tracking techniques in
ocular proton therapy (OPT) applications. We implemented a fully automatic approach based on two-
stage convolutional neural networks (CNNs): the first stage roughly identifies the eye position and
the second one performs a fine iris and pupil detection. We selected 707 video frames recorded during
clinical operations during OPT treatments performed at our institute. 650 frames were used for
training and 57 for a blind test. The estimations of iris and pupil were evaluated against the manual
labelled contours delineated by a clinical operator. For iris and pupil predictions, Dice coefficient
(median = 0.94 and 0.97), Szymkiewicz–Simpson coefficient (median = 0.97 and 0.98), Intersection over
Union coefficient (median = 0.88 and 0.94) and Hausdorff distance (median = 11.6 and 5.0 (pixels))
were quantified. Iris and pupil regions were found to be comparable to the manually labelled ground
truths. Our proposed framework could provide an automatic approach to quantitatively evaluating
pupil and iris misalignments, and it could be used as an additional support tool for clinical activity,
without impacting in any way with the consolidated routine.

Keywords: ocular proton therapy; convolutional neural networks; eye tracking; pupil segmentation;
iris segmentation

1. Introduction

Radiation therapy with accelerated proton beams represents a possible solution for
the treatment of ocular melanoma, and it is often considered as an alternative to surgical
enucleation, photon radiosurgery or brachytherapy [1–3].

Ocular proton therapy (OPT) foresees a peculiar clinical workflow and requires the
active participation of the patient. Prior to treatment planning, an adequate number of
tantalum clips are sutured by the ophthalmologist on the sclera [4]. These radio-opaque
references are used both during the planning phase (to delineate the target base contour
and estimate the optimal gaze angles), as well as the treatment delivery phase, for set-up
verification purposes. The gaze fixation angles are defined to optimize the dose distribution
to the target while sparing critical organs and healthy tissues as much as possible. The
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accuracy and repeatability of setup are guaranteed during irradiation, relying on different
solutions; patients’ head is firmly immobilized inside a thermoplastic mask and a fixa-
tion light is properly placed in front of the patient. By looking at this fixation light, the
displacement of the eye bulb reproduces the desired gaze angles.

Before and during the irradiation, radiographic imaging is used to verify the proper
alignment of the eye, by comparing the current tantalum clips configuration with the
planning reference. At the same time, gaze fixation is qualitatively monitored by dedicated
cameras focused on the involved eye. A clinical operator manually delineates the contours
of the pupil, and eventually other structures of interest, on the images as displayed on
screen. The outlined ocular features are used during real-time images acquisition as a
qualitative reference to evaluate eye misalignments or shifts during irradiation. In the
event of out-of-threshold misalignments, beam delivery is manually interrupted by the
radiation technologist [5]. The manual definition of the reference contours, the qualitative
recording surveillance, and consequently the manual gating-off, represent critical aspects
for the treatment outcome. Manual beam interruption is operator-dependent; since the
real-time misalignment is qualitatively evaluated, although supported by x-ray verification
images acquired during the irradiation itself, the gate-off is performed with a short but
inevitable delay (estimated around one second).

The National Centre of Oncological Hadrontherapy (Centro Nazionale di Adroterapia
Oncologica, CNAO, Pavia, Italy) has introduced a protocol for OPT in August 2016. An
accurate description of the clinical OPT treatment protocol, along with the hardware and
software systems installed at CNAO, can be found in [6,7]. In particular, the CNAO OPT
framework employs a custom eye-tracking system (ETS), which provides a visual reference
to the patient. This system aims at maintaining gaze stability along the planned direction,
and it incorporates two stereo-cameras for real-time motion monitoring.

Recent studies have investigated the introduction of new procedures in the OPT work-
flow for the automatic extraction of ocular features to enable quantitative monitoring of the
gaze stability during treatments [8–11]. Furthermore, enormous progress in eye-tracking
was made both in terms of features detection and motion analysis. The analysis of the
images acquired by means of eye tracking devices provides eye-gaze estimation that can be
used in several fields such as medicine, marketing, engineering and gaming [12]. For close-
up eye images analysis, convolutional neural networks (CNNs) have been demonstrated
to be the most suitable, as they ensure high accuracy and robustness [13].

The majority of deep-learning based eye trackers aim at performing well in different
setup and environment circumstances: CNNs are trained with datasets as large and
heterogeneous as possible in order to obtain a predictor as flexible as possible and able
to detect features in most situations, especially in unconstrained lighting conditions or
under low resolution constraints [14,15]. Furthermore, recent publications highlighted the
potentiality of CNNs for eye feature extraction [16–24].

As already mentioned, several CNN architectures have been implemented and pro-
posed in the field of medical image segmentation [25], but the one that has shown greater
adaptability and better generalization capacity is the U-Net architecture [26]; a visual
representation is depicted in Figure 1. U-Net is characterized by an encoder–decoder archi-
tecture, and consists of convolutional layers with a series of down-sampling followed by
progressive up-sampling blocks with skip connections between the two paths. The left side,
the encoder path, consists of 3 × 3 convolutional layers followed by batch normalization
and Leaky Relu activation functions. A 2D max-pooling layer follows these operations.
Each block in the encoder path doubles the feature maps and halves the image size. The
right side, the decoder path, performs the same operations as the encoder one, but the
max-pooling is replaced with a 2D up-sampling operation. Each block in the decoder path
halves the feature maps and doubles the image size. Furthermore, the decoder path also
performs a concatenation operation between the up-sampled feature maps of the lower
blocks and the output of the encoder path at the same level. This concatenation guarantees
that the information is properly propagated between the two paths, allowing the recovery
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of spatial information, which has been lost during the max-pooling operations. Finally, the
output layer is a single filter 2D convolutional layer with a 1 × 1 kernel. This layer also
employs a sigmoid activation function, which ensures that the values of the probabilistic
output map are comprised between 0–1.

We recently discussed a preliminary study aimed at evaluating the feasibility of pupil
automatic segmentation procedures based on feature extraction [27]. Here, we propose
a significant step forward to a more sophisticated approach, taking advantage of CNNs
for iris and pupil detection on the eye surface images extracted from surveillance videos
recorded by ETS device used at CNAO during OPT clinical workflow. The new method is
based on a dual stage CNNs framework that locates the pupil and iris with three cascaded
U-Nets from coarse to fine localization. In the first stage, a region of interest (ROI) is
automatically extracted and served as an input for the U-Nets, and a second pipeline stage
aimed at conclusive pupil and iris detection.
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Figure 1. U-Net architecture. Each map’s dimensions are specified on the left side for the encoder path
and on the right side for the decoder path. The number of channels is indicated above each blue box.
Both the input image (leftmost map) and the output prediction (rightmost map) are 256 × 256 pixels.
As specified in the legend, green and blue arrows represent convolutions, red and yellow represent
max-pooling and up-sampling operations, while the grey ones represent concatenation operations.

2. Materials and Methods
2.1. Patient Dataset

Clinical data of 140 ocular melanoma patients treated at CNAO between January 2018
and December 2020 were retrospectively collected. The study was performed within the
Local Ethics Committee notification (notification n◦ 37143/2021). The patients gave their
written informed consent for ocular proton treatment, and use of their anonymized data
for educational and research purposes.

Patient compliance to treatment participation was considered clinically acceptable.
The mean (std deviation) age of the patient cohort was 61 (13) years. As highlighted
in Table 1, in 110 patients the eye surface surveillance videos recorded the diseased eye
looking at the fixation light (left eye: 61 patients; right eye: 49 patients). Whereas, 30 pa-
tients showed visual impairment of the diseased eye, and the contralateral eye (left eye:
14 patients, right eye: 16 patients) was used for gaze stabilization.
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Table 1. Patient cohort description.

Fixation Eye N. of Patients Left Eye Right Eye

Diseased 110 61 49
Contralateral 30 14 16

ETS infrared videos were recorded in RGB24 AVI format, with a resolution of
512 × 640 pixels and a frame rate ranging between 6–12 Hz. Images were stored in
real-time in a dedicated work-station at the time of treatment, and made available for
off-line analysis.

For the proposed method, the training dataset included 650 randomly selected video
frames recorded by the ETS during different OPT clinical procedures (treatment preparation
and delivery) for 120 patients. An independent dataset of 57 video frames of 20 patients
treated with OPT at CNAO was used to evaluate the performance of the method. Overall,
we considered data of 140 patients, and we extracted a total of 707 images from the
surveillance videos (training set = 650 images; test set = 57 images).

The reference pupil and iris segmentation were manually contoured on each video
frame by a clinical operator, and were used as ground truth during training and testing. In
addition, a region of interest (ROI) of 350 × 350 pixels that embodied the pupil and iris
was manually selected.

2.2. Framework Design and Training Details

The proposed framework used the same U-Net structure for three different tasks,
which operated in cascade with respect to each other. The first one aimed at roughly
identifying the eye within the original image and at extracting an ROI around it. The U-Net
training for this first task, namely the ROI U-Net, was performed using the original frames
without any pre-processing operations and extracted directly from the ETS recordings
(Figure 2a). The corresponding binary masks are depicted in Figure 2c and are composed
by merging iris and pupil structures (Figure 2b). As will be explained in the U-Nets cascade
section, the second and third tasks consisted respectively of iris and pupil detection within
an ROI extracted from the original image. These networks are called Pupil U-Net and Iris
U-Net, respectively. The ROI is a smaller portion of the image that should include both
the structures and excludes background features. In order to maximize the iris and pupil
prediction capabilities, the training process was performed by using the 350 × 350 pixels
ROI manually extracted from the video frames. Accordingly, the same ROI was identified
within the masks. This operation allowed the definition of the ground truth for the two
training processes. Figure 2, in panel (d) and (e), depicts the ROI-masks used respectively
for the iris and pupil training procedures. The dimensions of the binary masks were
350 × 350 pixels.

2.3. U-Net Details

For the scope of our work we adapted the original U-Net proposed by
Ronneberger et al. [26] (Figure 1). We investigated the benefits of reducing the feature
map number without changing the blocks number. The original U-Net [26] aimed at iden-
tifying cells with complex geometry, and adopted 64 filters in the first layer and 1024 in
the last one. The choice of filter number depends on the complexity of the objects which
have to be recognized by the model. Since the iris and pupil have basic shapes (mostly
circular/elliptical), for each U-Net we tested 3 configurations of feature maps: 16, 32, and
64. The best one has been identified through the analysis of accuracy and loss curves
(Figure 3). Each network has been trained for 60 epochs and the cross-entropy function
has been selected as loss function. The 3 networks (Pupil, Iris, and ROI U-Net) behaved
in a similar way. In particular, Figure 3 depicts accuracy and loss curves for the Pupil
U-Net: after 60 epochs the 3 different configurations converged with different speeds to



Sensors 2021, 21, 4400 5 of 14

the same value, both in terms of accuracy and loss. We preferred the lighter configuration,
promoting speed and reducing the inference time.
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The total number of trainable parameters is 1,947,153. Input image size has been fixed
to 256 × 256 pixels.

Once the architecture had been defined, the hyperparameter search had been refined
through an iterative manual approach. We decided to adopt a batch size equal to 4 to
speed up the training process, as smaller batches make it easier to fit one batch worth
of training data in memory. The weight optimization was done through the Adaptive
moment estimation (Adam) with a constant learning rate of 10−4 and zero decay. The
binary cross-entropy function was chosen as a loss function. The best weights were selected
by evaluating the performance on the training set in terms of cross-entropy.

In each training routine, all of the hyperparameters were maintained constant.
To face a limited dataset and to make the model more robust, data augmentation

techniques were used on the training set. The following operations were randomly applied
to each pair of image-masks during the training process:

• Reflection about the vertical and horizontal axis
• Random clockwise rotation from 0◦ to 360◦ degrees
• Image translation in both axis of 0–70 pixels
• Image zoom by a factor ±0.2

2.4. U-Nets Cascade

As stated in the introduction, we attempted to derive a robust detection of the pupil
and iris by concatenating cascades of U-Nets. The overall workflow is shown in Figure 4.
Overall, the entire method can be divided into two parts: the first block consisted in the
localization of the eye inside the original image and in the extraction of an ROI around the
eye (ROI U-Net). In the second one, the pupil and iris were detected inside the region of
interest, and the predictions were mounted back on the original image (Pupil U-Net and
Iris U-Net).
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Figure 4. The process can be divided into two blocks: the first one, after having localized the eye
inside the image (green prediction), identifies a 350 × 350 pixel ROI (red square), and the second one
detects the iris and pupil area (blue and red predictions, respectively).

The input image, with size 512 × 640 pixels, was rescaled to 256 × 256 pixels and gave
as input to the ROI U-Net. The output probabilistic map had a threshold at a probability
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of p > 0.2, denoised through morphological closing, and the largest connected component
was extracted to reject small false positive regions. The binarized mask was then rescaled
to the original image size.

Once the eye was located in the image, it was possible to identify a window around it,
which was applied to the original image for ROI extraction. The centroid of the ROI was
computed, and the binary prediction was cropped by a 350 × 350 pixels squared window
centered on the ROI centroids coordinates (Figure 5 red dots). Its size was selected to be
large enough to guarantee the inclusion of all of the ocular features within the window.
In case the eye was located at the edges of the image, the cropping ROI exited the image
as depicted in Figure 5b. In this case, the window was translated along the axis until the
window was completely inside the image (blue square).
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Figure 5. The original image is fed to the U-Net, which generates a probabilistic map. Once binarized
and applied the closing operations, the centroid is calculated and a square window (350 × 350)
centered on it is defined and applied to the original image. (a) No translation operations are required
because the window is within the image. (b) It is necessary to translate the window downward.

The ROI image size was then reshaped to 256× 256 pixels and given as input, firstly to
the iris U-Net, and secondly to the pupil U-Net. Both the probabilistic maps had thresholds
at a probability of p > 0.5 and p > 0.15, respectively. Morphological closing and largest
connected component detections were computed to exclude small false positive regions
eventually predicted by the network. A reshape operation was performed to recover
the ROI original size (350 × 350 pixels). Finally, the two prediction masks were merged
together and brought back to the correct position inside the original image.

2.5. Evaluation Metrics

The training was carried out in a Cuda-enabled environment, equipped with a 4-core
CPU, 25 GB RAM and a NVIDIA TESLA T4 GPU card. The neural networks implementa-
tion and their training routines were computed with Python, leveraging the Keras libraries
and the Tensorflow framework [28]. Model evaluations were computed on the test dataset.
It consisted of blind data (57 frames) not used for network training.

To assess the accuracy of the ROI U-Net, we evaluated the Euclidean distance, mea-
sured in pixels, between the predicted eye center and the ground truth label.

Iris U-Net and pupil U-Net predictions were compared with the corresponding
masks, and evaluated with some commonly accepted measures of quality for segmentation
tasks [29]: DICE coefficient, Szymkiewicz–Simpson coefficient, Intersection over Union
(IoU) and Hausdorff Distance.
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The DICE coefficient computes the overlap between predicted and manually labelled
areas, and assuming that A is the segmentation performed by the model and G is the
ground truth is defined as:

DICE =
2|A ∩ G|
|A|+ |G|

The Szymkiewicz–Simpson coefficient expresses the ratio between the size of the
intersection and the smaller size of the two areas:

Szymkiewicz–Simpson =
|A ∩ G|

min(|A|, |G|)

The IoU expresses the size of the intersection divided by the size of the union of the
sample sets:

IoU =
|A ∩ G|
|A ∪ G|

All of these similarity coefficients range between 0 and 1. The Hausdorff distance,
expressed in pixels, measures the maximum contour distance between prediction and
manual labelling.

Moreover, the entire framework was also evaluated considering the total execution
time to explore the feasibility of its introduction in the clinical workflow.

3. Results
3.1. ROI U-Net

This network received the original image as input and predicted the eye position,
resulting in the eye center coordinates. To evaluate its performance, we computed the
Euclidean distance between the predicted eye center and the ground truth label. For the
57 frames included in the test set, median (IQR) Euclidean distance, was 3.05 (4.14) pixels.
Figure 6 illustrates some exemplary cases.
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3.2. Iris U-Net and Pupil U-Net

Both networks were evaluated with the previously described metrics. Their input
was an ROI extracted from the original image, and their output was a ROI probabilistic
map with pupil and iris predictions. We decided to apply the metrics not on the ROI
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predictions but over the entire image: before the evaluation, the ROI probabilistic maps
were transferred back to the original image location.

Figure 7 depicts on the first line (a), the eye surface images and, on the second one (b),
the final output of the iris and pupil U-Nets super-imposed on the original images.
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The evaluation metrics distributions are summarized as boxplots in Figure 8. Table 2
reports their values in terms of median and interquartile ranges.
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Figure 8. Boxplots of Dice, Szymkiewicz–Simpson, IoU and Hausdorff Distance (expressed in pixels).
Iris and pupil predictions were performed with the iris U-Net and the pupil U-Net, respectively,
on an ROI image. The metrics were evaluated once the 350 × 350 pixels probabilistic maps were
restored on the original image size (512 × 640).
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Table 2. Difference between predicted and manually labelled iris and pupil regions, measured in
terms of median values (75–25 percentile) of DICE coefficient, Szymkiewicz–Simpson coefficient, IoU
coefficient and Hausdorff Distance.

DICE
Coefficient

Szymkiewicz–Simpson
Coefficient IoU Area Hausdorff

Distance (Pixel)

Iris 0.94 (0.96–0.92) 0.97(0.98–0.96) 0.88 (0.92–0.86) 11.7 (19.1–8.4)
Pupil 0.97 (0.98–0.96) 0.99 (0.99–0.98) 0.94 (0.96–0.92) 5.0 (7.0–3.6)

3.3. Inference Time

We tested our entire framework on different machine setups with and without GPU to
evaluate the total inference time. We computed the total inference time of this framework,
starting from the original image and applying the prediction masks onto it. Then, we
divided the entire task into five main subtasks, and we computed the execution time of
each one to investigate which operations were time-consuming. The ROI extraction process
was divided into two subtasks: the first one consisted of the ROI prediction performed by
the ROI U-Net, while the second one included the post-processing operations performed
on the probabilistic map, and consequently the extraction of a 350× 350 pixel window from
the original image. Pupil and iris detection processes were considered two further distinct
subtasks. The last one was the set of operations performed on the iris and pupil U-Net
predictions (binarizations, morphological closing and reshape to original dimensions).

As reported in Table 3, the machines equipped with GPU performed better. The total
mean execution time to process one image without GPU was 366 ms. Using a GPU with
compute capability of 3.7, the execution time dropped to 339 ms, while a 7.5 compute
capability GPU lowered the time further to 249 ms.

Table 3. Execution time of the five subtasks identified during the entire workflow, along with the
total inference time. Values are computed over the entire test set and averaged over the total number
of images. They are expressed in terms of median values (75–25 percentile). Best performances are
obtained by Tesla T4 (compute capability 7.5).

Tesla K80 CC: 3.7 Tesla T4 CC: 7.5 No GPU

ROI Prediction 105 (110–103) ms 105 (110–103) ms 121 (124–117) ms
ROI Post-Processing 44 (45–43) ms 37 (38–37) ms 29 (30–29) ms

IRIS Prediction 67 (69–61) ms 45 (45–43) ms 93 (95–90) ms
Pupil Prediction 73 (74–71) ms 47 (48–45) ms 93 (95–90) ms

Final Post-processing 50 (51–49) ms 43 (45–42) ms 30 (31–29) ms
Total Inference Time 338 (340–335) ms 249 (251–245) ms 366 (371–359) ms

4. Discussion

The presented study proposed and evaluated a new approach for the automatic pupil
and iris detection on the eye surface images extracted from surveillance videos recorded by
the ETS device used at CNAO during OPT clinical workflow. The presented method was
based on a dual stage convolutional neural network pipeline that located the pupil and iris
with two cascaded U-Nets from coarse (ROI U-Net) to fine localization (Pupil U-Net and
Iris U-Net). In its first stage, the pipeline performed rough eye localization within the video
frame using the presented U-Net architecture for the ROI identification (ROI U-Net). The
extracted ROI embodied the pupil and iris, and it was used as an input for the U-Nets in
the second pipeline stage (pupil U-Net and iris U-Net) aimed to provide conclusive pupil
and iris detection.

The ROI identification stage was devoted to extract a portion of image in which the
relevant ocular features (pupil and iris) should be likely included thus discarding eventual
background elements such as eyelid, eyelashes and retractors. Moreover, this cropping
operation helped to reduce eventual illuminating inhomogeneities, mitigating the impact
of image noise and permitted a larger pupil and iris resolution. In fact, the last two U-Nets
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(pupil U-Net and iris U-Net) operated on a larger pupil and iris resolution providing
an increased feature extraction accuracy. The detection of the eye center was improved
by a 7% factor between the first and the second stage of the proposed method. Several
CNN approaches for object classification within an image increased their performance
by restricting the recognition problem to a given region of the image [19,30,31]. In our
proposed method, similarly to the one proposed by Fuhl et al. [19], the ROI extraction
does not require manual interaction, and it automatically provides the input image for the
subsequent U-Nets.

We decided not to develop a multiclass U-Net but we opted for single class networks
for two main reasons: (I) we believe that our dataset was larger enough for training single
class networks but not for multiclass. (II) The identification and discrimination of features
requires heavier and deeper networks. As we wanted a framework that could potentially
have capabilities for real-time analysis, we decided to use two faster and lighter structures
rather than one heavier. Moreover, the design of the proposed method is flexible enough
for permitting eventual future integrations of additional U-Net cascades aimed at other
supplementary ocular feature extractions.

In 51 out 57 testing video frames (90% of the testing dataset) Dice, Szymkiewicz–
Simpson and IoU coefficients were greater than 0.80 for both pupil and iris automatic
detection. The selected similarity metrics suggested that the detected pupil and iris areas
were highly similar to the manually labelled ground truths. Pupil detection performed
better than iris detection, reporting greater median similarity coefficients. In addition, the
interquartile ranges of the similarity coefficient distributions were found to be smaller for
the automatic pupil detection rather than for the automatic iris detection: in our opinion
this confirmed the robustness of pupil extraction against different testing video frames.
Moreover, the automatic estimation of iris areas were slightly overestimated with respect
to the manual contours, as suggested by IoU coefficients. Besides, the Hausdorff distance
of iris contours was greater than the pupil, and showed greater variability. Although, there
were a few failure cases in the test set as reported in Figure 9. The main causes may depend
on the lack of sufficient contrast between the sclera-iris and pupil-iris structures: the ETS
position into the space affects the scene illumination, and thus how much two structures
are discernible. Furthermore, we have noticed that the network performance worsened
when the images were blurred or when the eye was positioned at the image borders. Not
surprisingly, also in clinical practice, the more the video images are blurred, the more the
inter-operator variability increased [27].

Image quality is strongly affected by several factors which are introduced by the OPT
clinical workflow:

• Patient is immobilized on a treatment chair by using a personal thermoplastic mask;
• Eye retractors are placed to prevent eyelid movements and to maintain the eye

wide open;
• Room illumination may be not homogenously diffused (this is a patient specific

variable, since some of them are facilitated by low light conditions. ETS features two
IR LEDs, resulting in insensitivity in those cases)

• Camera FOV is intrinsically not constant, depending by the desired gaze direction
and the displacement of ETS in refer to the patient.

As our CNN method has been accurately trained on a dataset that includes all the
above-mentioned peculiarities, we decided not to consider a comparison with other state-
of-the-art algorithms. Although they have been trained to be as flexible as possible and
to have a high generalization ability, our dataset possesses unique characteristics, and we
believe that a benchmark with our method would be unfair.

The OPT treatments at CNAO strongly rely on the expertise of the clinical operator
who manually delineates the contours of the main structures on images recorded by
means of the ETS and, depending on the qualitative evaluation of misalignments and
supported by x-ray verification images acquired during the irradiation, manually interrupts
beam delivery.
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U-Net underperformed (Pupil Dice = 0.68 and Iris Dice = 0.68). 

Image quality is strongly affected by several factors which are introduced by the OPT 
clinical workflow: 
• Patient is immobilized on a treatment chair by using a personal thermoplastic mask;  
• Eye retractors are placed to prevent eyelid movements and to maintain the eye wide 

open;  
• Room illumination may be not homogenously diffused (this is a patient specific var-

iable, since some of them are facilitated by low light conditions. ETS features two IR 
LEDs, resulting in insensitivity in those cases)  

• Camera FOV is intrinsically not constant, depending by the desired gaze direction 
and the displacement of ETS in refer to the patient. 
As our CNN method has been accurately trained on a dataset that includes all the 

above-mentioned peculiarities, we decided not to consider a comparison with other state-
of-the-art algorithms. Although they have been trained to be as flexible as possible and to 
have a high generalization ability, our dataset possesses unique characteristics, and we 
believe that a benchmark with our method would be unfair. 

The OPT treatments at CNAO strongly rely on the expertise of the clinical operator 
who manually delineates the contours of the main structures on images recorded by 

Figure 9. Graphical representation of the Dice coefficients coming from the comparison between the
predicted and manually contoured structures (iris and pupil) for the 57th frames present in the test set.
Furthermore, the figure depicts examples of failed pupil segmentation (frame 1 and 16) and failed iris
segmentation (frame 16 and 53). In frame n◦ 1 iris prediction worked correctly (iris Dice = 0.92) while
pupil prediction failed (pupil Dice = 0.41). On the other side, frame 53 presents an iris Dice = 0.76
while pupil Dice = 0.94. The worst case is the frame 16 in which both the Pupil and Iris U-Net
underperformed (Pupil Dice = 0.68 and Iris Dice = 0.68).

Manual segmentation procedures are operator-dependent and time-demanding. As
reported in Table 2, our method could potentially perform image segmentation in less
than 400 ms using PCs without GPU, and less than 250 ms in PCs equipped with GPU.
During treatment, we can assume that the ROI selection on screen is well maintained, so
that the eye position inside the 512 × 640 pixel images should not change significantly.
This suggests that the first step of the U-Net cascade could be executed only during the
first frames. Once the ROI position is defined, the reduction of total inference time can be
achieved by running only the iris and pupil detection pipeline.
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