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Abstract: This paper presents an approach of depth image segmentation based on the Evolving
Principal Component Clustering (EPCC) method, which exploits data locality in an ordered data
stream. The parameters of linear prototypes, which are used to describe different clusters, are
estimated in a recursive manner. The main contribution of this work is the extension and application
of the EPCC to 3D space for recursive and real-time detection of flat connected surfaces based on
linear segments, which are all detected in an evolving way. To obtain optimal results when processing
homogeneous surfaces, we introduced two-step filtering for outlier detection within a clustering
framework and considered the noise model, which allowed for the compensation of characteristic
uncertainties that are introduced into the measurements of depth sensors. The developed algorithm
was compared with well-known methods for point cloud segmentation. The proposed approach
achieves better segmentation results over longer distances for which the signal-to-noise ratio is low,
without prior filtering of the data. On the given database, an average rate higher than 90% was
obtained for successfully detected flat surfaces, which indicates high performance when processing
huge point clouds in a non-iterative manner.

Keywords: depth sensor; line extraction; flat surface extraction; evolving clustering; machine vision;
smart sensor

1. Introduction

Modern technologies enable the development of new and more sophisticated sensors,
such as stereo cameras, RGB-D sensors, Laser Range Finders (LRF), etc., which are often
equipped with powerful processor units to capture and process information-rich data in
real time. Due to their increased popularity and ubiquity, they are indispensable in mobile
robotics applications [1–4]. Processing the data obtained from the aforementioned sensors
is a computationally demanding task; therefore, it is necessary to ensure the optimal
method of processing the acquired data for real-time operations is used, such as vision-
based high speed driving [5] or visual inspection in manufacturing processes [6]. With fast
and reliable (online) processing of sensor data, which enables high-level representation
and perception of the observed environment, we can enable the development of emerging
intelligent mobile robots that will be able of autonomous operation, such as fruit picking in
an outdoor environment [7] or vacuuming interiors [8]. In this paper, we present methods
for planar segmentation of point clouds and attempt to exploit data properties to simplify
algorithms while preserving good accuracy.

As shown in Figure 1, planar segmentation enables a more compact representation
of the 3D space, where a single point cloud with thousands of points can be described
with only a few flat surfaces. Indoor environments are particularly suitable for planar
segmentation, as such environments contain many man-made objects that are comprised
of flat surfaces. Interior spaces are, therefore, more structured and can be described with
prototypes of planes, which are often used as landmarks in autonomous applications,
e.g., walking of a quadruped robot on stairs [9]. Various engineering fields utilize 3D
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perception of the environment in many vision technology applications, such as 3D object
detection [10,11] and 3D reconstruction [12,13].

Figure 1. Example of 3D sensing of an indoor environment in the form of flat surfaces, where color
represents clusters. Depth image points whose color encodes depth distance are segmented using the
EPCC approach.

Grilli et al. [14] analyzed the methods and approaches used in point cloud segmen-
tation. They pointed out that 3D segmentation of the point cloud is a difficult task, since
the density of point sampling is usually not homogeneous: samples are often disordered
and contain significant amounts of noise. In the case of using a depth camera or LRF, we
usually obtained organized data, the structure of which allows for a more intuitive, simple,
and efficient implementation of the planar segmentation algorithm. However, the problem
of uneven point density and the presence of noise remains, especially in stereo camera
setups in which the amount of noise increases with distance when measuring depth.

In the field of computer intelligence and machine learning, evolutionary computing is
gaining importance as it demonstrates great potential for use in real-time and time-varying
systems and environments [15]. Many methods in this area are based on the assumption
that a large set of historical data is available for use for model generation in regression
or identification. Škrjanc et al. [15] pointed out that this assumption may not hold in
real applications, as in these systems the set of previous data may be insufficient, and we
usually deal with dynamic environments or systems. They also highlighted the inefficiency
of iterative algorithms in processing data that increase with time, as they typically require
multiple transitions across the same chunks of data. The described problems are addressed
in the field of self-developing modeling [16,17], which solves data stream processing with
a self-adaptation approach [18,19], single-pass learning [20,21], and the evolution of model
parameters on the fly [22,23].

Certain existing methods exploit the properties of ordered data for hierarchical clus-
tering of planar regions [24] or their extraction based on ordered laser scan profiles [25],
but these methods show limitations due to the fixed nature of clustering criteria, which
usually lack consideration of nonlinearity of sensory measurements. Methods that take into
account the camera noise model [26] have also been proposed to improve segmentation
accuracy in short-distance scenes and in wide-open scenes. They proposed robust planar
segmentation based on multilateral data smoothing, which, however, does not address the
problem of extreme outliers. Data smoothing or filtering processes are typically performed
in a batch manner, which is inappropriate for perception algorithms that need to operate
in real time. This poses a major problem, especially when processing data from depth
cameras. Methods based on the extraction of planar areas based on the aggregation of spa-
tially ordered lines [27] have also been developed, but the issue of outliers in segmentation
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has been re-highlighted, suggesting the need to improve the process of eliminating such
data. These problems of depth data segmentation are addressed in our study, where we
proposed a two-step filtering for the needs of reliable detection of outliers, which supports
integration with the structure of online algorithms.

In this paper, we present an extension of the EPCC [28] method to 3D space for the
detection of flat surfaces in ordered depth maps (point cloud) that enables the paralleliza-
tion of data-stream processing due to its structure. This study deals with the development
of a perception algorithm for autonomous mobile systems based on the use of a depth
camera. The perception algorithm is developed for indoor environments under controlled
lighting conditions, which represents the limitations of the algorithm from the very be-
ginning. Changing lighting conditions belong to the group of problems we encounter in
the development of many perception algorithms. New sensor technologies, such as event
cameras [29], have been developed to deal with challenging weather conditions. In this
manner, we will present the importance of considering and modeling only part of the non-
linearity or uncertainty of the measurements [30] in order to provide more accurate results.
Segmentation is performed on data from a depth camera using the recursive EPCC method,
which involves the clustering of line segments and flat surfaces with linear prototypes, for
which the main emphasis is on the recursive estimation of their parameters. Since depth
map data are ordered, we can use data orderliness with the proposed approach to process
a set of data in a single pass and to introduce a two-step filtering framework. This makes
the algorithm suitable for real-time applications. Moreover, the presented method allows
the consideration of the noise model as well as the non-homogeneous distribution of data
in order to maintain the continuity of the segments. Figure 2 shows an overview of the
proposed depth data clustering.

Figure 2. An overview of the EPCC-based segmentation.

This paper is organized as follows. Section 2 gives a brief overview of the related
work. In Sections 3 and 4 are described the properties of the input data that dictate
the structure of the segmentation algorithm. Section 5 describes the background of the
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line clustering, and noise modeling. In Section 6, the planar segmentation algorithm is
described. Section 7 presents the results of the database-based experiments, and Section 8
presents the conclusions with discussion of the results.

2. Related Work

Grilli et al. [14] presented the methodologies used in point cloud segmentation.
In our paper, we focused on the literature related to our work and highlighted three
commonly used methods for plane detection in a point cloud: approaches based on
RANSAC, region growing (RG), and the Hough transform. In addition, methods dealing
with direct processing of depth images will be presented in Section 2.1.

2.1. Depth Image Segmentation Approaches

Methods for range image segmentation can be mostly categorized as region-based
segmentation or edge-based segmentation methods [31]. Jiang and Bunke [32] presented a
novel technique for determining planar patches in range images by grouping line scans,
whereby the algorithm, based on the estimated fixed noise variance, can be adapted to
different noise conditions. Lee et al. [33] proposed an image segmentation technique
using an adaptive least k-th order squares (ALKS) estimator to minimize statistics of the
squared of residuals. They highlighted a better tolerance to structured outliers. Koster and
Spann [34] presented a statistical method to compare polynomial models with additive
Gaussian distributed noise. They proposed a region-growing technique which uses the
robust test to compare and merge adjacent regions. In addition to the planar model, the
algorithm can be applied to segment 3D voxel data or to higher order vectorial data. Wang
and Suter [35] presented model-based image segmentation algorithm based on hierarchical
implementation and an Adaptive Scale Sample Consensus (ASSC) estimator. They high-
lighted the robustness of the algorithm to noisy or occluded data due to adaptive nature
of the ASCC estimator. Muller and Brink [36] presented a method for segmenting range
images into planar regions with graph cut optimization. The algorithm performs graph cuts
in order to find an optimal configuration of normal vectors at all pixels. Hasnat et al. [37]
proposed a novel unsupervised RGB-D segmentation method, which includes a joint clus-
tering method on RGB-D features (color, position and normals) to generate a set of regions
and a statistical planar region merging method to obtain final segmentation. Kumar and
Ramakrishnan [38] presented a planar segmentation approach, which is based on Markov
Random Field assumptions on depth data and solved using Graph Cuts. In this paper, we
present a simplified, reliable and an evolving approach for the detection of planar regions
in the case of noisy data, which is based only on exploiting the properties of an ordered
data and an online calculation of its basic statistical properties.

2.2. RANSAC Approaches

The RANSAC (Random Sample Consensus) method was presented by Fischler and
Bolles in [39] for the estimation of model parameters from experimental data that contain
many outliers. Xu et al. [40] presented planar segmentation, in which they classified
cloud points into different planar surfaces with the learned SVM (Support Vector Machine)
models and SVM predictions. They compared their results with ordinary and NDT-
RANSAC (Normal Distribution Transformation RANSAC) methods. Poz and Ywata [41]
presented an adaptive approach to the roof segmentation of buildings, which includes
both pre-processing of the point cloud for the separation of points between the associated
buildings, as well as plane segmentation using the RANSAC method and the process of
aggregation of over-segmented areas. Nguyen et al. [25] presented the segmentation of
partially ordered LRF point clouds, in which they first segment scan profiles with a laser
gauge based on directional vectors and then group these profiles to detect planes according
to planar values of different neighborhood scan profiles.
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2.3. Hough Transform Approaches

The Hough transform first introduced in [42] is, in addition to the RANSAC, a standard
method for detecting parametric models. Vera et al. [43] presented the detection of planes
in depth images for real-time operation using an implicit quadtree structure to identify
clusters of approximately co-planar points in 2.5-D space. Khanh et al. [44] presented
an improvement in ground segmentation in the point cloud for mobile robots based on
the RHT (Randomized Hough Transform) combined with distance and angle constraints
and compared it with the RANSAC method. Tian et al. [45] introduced a new method for
segmenting planar properties in disordered point clouds based on extracted lines using a
2D Hough transform and an octree structure.

2.4. Region-Growing Approaches

The advantage of the RG method is that it takes into account properties of ordered
point clouds and the neighboring point structure. Dong et al. [46] introduced a new
hybrid method of the region growing, in which they presented the problem of point cloud
segmentation as a robust optimization of global energy. The convergence of the algorithm
or energy function was ensured by the simulated annealing approach. Wu et al. [47]
presented the planar segmentation of Laser Range Finder point clouds using the MSTVM
(Multiscale Tensor Voting Method) to better determine the point that represents the seed of
the algorithm. They introduced a new property (the so-called plane strength indicator) to
determine the seed point more intuitively. Huang et al. [48] introduced the EVBS algorithm
(Encoding Voxel-Based Segmentation), which is based on the RG method by examining the
structure of voxels and taking into account the limitations of continuity and smoothness.

3. Linear Prototype-Based Segmentation

In this paper, we focus on 3D planar segmentation of the point cloud (depth image),
namely the extraction of flat surfaces based on the aggregation of detected line segments.
The process is based on the EPCC method, which represents an evolving approach, in
which we recursively estimate the parameters of linear prototypes that describe clusters
of similar data. Linear prototype-based segmentation refers to the evolving clustering
of data streams, in which clusters are described by its statistical properties and by the
corresponding linear prototype. In the case of line segment detection, a line model, along
with its statistical properties, is used to validate clusters expansion. The same approach is
used in the detection of flat surfaces, except that the line model is replaced by a plane model.

Integrating Data Structure in Evolving Clustering Framework

The method proposed in [28] is upgraded to work in structured indoor environments
and enables integration with sensors, such as LRF and cameras, thus increasing the appli-
cability of the method. In our case, we performed the experiments using an Intel RealSense
D435i depth camera. In addition to recursiveness, the EPCC method is capable of exploiting
data orderliness, so it is suitable for processing the data stream from the depth camera
used, as its data structure allows independent processing of columns or rows of the data
matrix, which also opens the door to process parallelization. The advantage of the used
sensor and EPCC is that they allow one passage through the data or matrix columns that
represent independent data sets. Additionally, the independent relations enable the use
of multiple linear prototypes in the clustering framework, within which we can enable
the integration of multiple-step filtering Figure 3 shows an overview of the depth image
segmentation process, which takes place in columns (vertically) or in rows (horizontally)
of the data matrix, independently.
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Figure 3. The concept of planar depth image segmentation with the EPCC method, in which the
detection of 3D line segments takes place in 2D projections of columns or rows of the data matrix.
Variables ei

1 and ei
2 represent the 2D coordinates of the points in the i-th column. With the process

of line segment aggregation, we achieve a 3D-planar representation of the environment, where
{rA, rB, rC} represent flat surfaces or bounded planes determined by the start and end points {aj, bj}
of line segments.

The advantage of using such a sensor is in the structure of the output data, which is
organized and enables the simplification of complex algorithms and even the parallelization
of processes, on the basis of which we can enable real-time operation. The data structure
itself allows for planar segmentation based on the use of two types of high-level features
(lines and planes), which allows for an improved process of detecting outliers within a
two-step filtering framework (Figure 2). Additionally, the use of linear prototypes has
proven to be an excellent choice in the reconstruction of less textured surfaces, especially
since we do not take into account additional information such as color. Taking into account
the properties of the ordered data in the framework of the EPCC method enables online
implementation, as the EPCC has an evolving character that allows real-time adaptation to
data of different variances.

4. Image Partitioning Based on Input Data Properties

The proposed method for line segment clustering is based on the use of input data
properties obtained with the depth camera. The stereo camera sensor, using a specific
method of finding the corresponding pairs of points in the left and right images, computes
a disparity image, which can be converted into a depth image with the relation

z = α f bd−1 (1)

where z is the depth value, α is the scaling factor, f is the focal length in pixels, b is the stereo
depth baseline, and d is the disparity. The sensor output therefore represents a depth image
or matrix of ordered depth points Z = [zrc], r = 1, . . . , m, c = 1, . . . , n, whose dimensions
represent the resolution of the image m × n and for which each element zrc represents
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a distance by Equation (1). The depth image can be converted into a suitable 2D/3D
representation of spatial points (Figure 4), by considering the coordinate system of the
camera, where the z-axis points out of the camera, the x-axis is in the horizontal direction
and the y-axis is in the vertical direction. This is achieved by triangulation of depth data
by Equation (2), taking into account the information about the image optical centre (cx, cy)
in pixels. 3D points are stored in the matrix H ∈ Rm × Rn × R3. The definition of the
matrix H will be used later for comparison, which will confirm the hypothesis about the
orderliness of the data obtained with the depth camera.

z = zrc x =
(c− cx) z

f
y =

(r− cy) z
f

(2)

Figure 4. Acquiring of a depth image through inverse disparity, determined by corresponding point
pairs of the left and right images.

Due to the way the data are acquired, the points in the matrix Z (consequently in H)
are locally ordered. In addition to the orderliness, we also observe a pattern of successive
occurrence of points within individual columns and rows of the data matrix (Figure 5).
Furthermore, we can observe that points (within columns), which are colored red in
Figure 5, on a plane represent the planar section of the canonical field of view of the depth
camera. The orderliness and sequence of points are important properties that give our
algorithm a structural and methodological form.

A by-product of the given properties is the independent treatment of columns or rows
Zcol ∈ Rm ×R1 of the Z. This means that the algorithm can be structurally simplified and
accelerated; simultaneously, the possibility of process parallelization opens up. The latter is
very important as we want to keep the EPCC functioning in real time. In the continuation
of the paper, only the segmentation by columns Zcol of the data matrix Z is discussed, since
by transposing it we can also achieve column segmentation of horizontal data, which is
enabled by the structure of the proposed algorithm. We use the independence of matrix
columns to partition Z in the case of line detection, and thus translate the problem of batch
clustering to the treatment of individual partitions Zcol independently of others. Separation
between partitions is not a problem for the algorithm, as the dimensions of the input matrix
are known in advance.
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Figure 5. Depth image (a) and the corresponding point cloud (b). (c) shows the matrix form of the
depth image, where the points in each column are arranged in order from the first to the last row.
Display of 3D points of the highlighted column of the data matrix (d), which confirms the hypothesis
about the orderliness and sequential occurrence of the data.

4.1. Line Segment Search Space

The data structure, or the nature of capturing spatial points within the cameras
(conical) FOV, enables the detection of line segments with line prototypes in 2D projections
of the point cloud. As shown in Figures 5 and 6, the points of the matrices Zcol lie on the
plane sections of the camera’s FOV that can serve as a search space for line segments.

Figure 6. Depth image points practically lie on color coded planes sections, which means that the
lines can be detected in 2D projections.

The individual Zcol or Hcol ∈ Rm × R1 × R3 thus represents a plane on which 3D
points can be projected while maintaining the geometric relations between them. The latter
can be solved by introducing a new local coordinate system of that plane, in which each
individual 3D point must follow the equation

hcol(k) = h0 + t1 · e1 + t2 · e2 (3)

where k is the index of the current point in Hcol , t1 and t2 are 2D coordinates of the point
hcol(k) in the plane’s coordinate system with h0 being its origin. The coordinate axes
of the plane section are determined by orthonormal directions e1 = (ex1, ey1, ez1) and
e2 = (ex2, ey2, ez2), which must meet the following conditions

n · e1 = 0 n · e2 = 0 e1 · e2 = 0 (4)
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where n is the plane’s normal (plane section). This way of projecting data can be a time-
consuming process, which can also have difficulty determining orthonormal directions in
the case of sparse data. We can do this in a more refined and faster way, which is described
in Section 4.1.1.

4.1.1. Plane Section as a 2D Search Space

Since the camera model and dimensions of the image are known, we can simplify and
accelerate the process of determining 2D points by performing projection (i.e., triangulation)
on the fly directly from the depth image Z by reintroducing Equation (2)

z =zrc x = tan(ϕ)zrc y = tan(ψ)zrc

tan(ϕ) =
c− cx

f
tan(ψ) =

r− cy

f
(5)

and by considering the depth-range relation defined by Equation (6), as shown in Figure 7.

z = R cos(β) (6)

where β can be determined from ϕ and ψ

tan2(β) = tan2(ϕ) + tan2(ψ) (7)

The updated aspect of triangulation equations is shown in Figure 8, where 2D-
coordinates are defined as

(t1, t2) = (dy, yc) (8)

where dy is the distance from the yc-axis and can be obtained by considering horizontal
offset ϕ of the spatial point (Figure 8)

dy =
z

cos(ϕ)
= z
√

1− tan2(ϕ) (9)

Figure 7. Depth vs range. Every depth pixel value is a measurement from the parallel plane of the
imaging devices (i.e., a pair of cameras) and not the absolute range to the object.
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Figure 8. The triangulation technique as a tool for straightforward 2D point projection or simulation
of the synthetic data.

With synthetic data, we can evaluate the performance of custom algorithms on ideal
or corrupted data with arbitrary noise or, if necessary, tweak their structural form. Figure 9
shows a synthetically generated depth image (point cloud)

z(r, c) =
−d

a tan(ϕ(r, c)) + b tan(ψ(r, c)) + c
(10)

where (a, b, c, d) are user-defined plane parameters.

Figure 9. Simulated depth image and the corresponding point cloud on the left side. On the right
side is demonstrated an example of the 2D representation of spatial points, on a plane section, which
is represented as a set of planar rays. Ideal data are colored blue and corrupted data red.

5. Evolving Line Segment Clustering

For the sake of transparency, we will introduce a new variable T ∈ Rm ×Rn ×R2 for
the input data matrix, whose columns Tcol ∈ Rm ×R1 ×R2 represent the 2D equivalent of
3D points of the matrices Hcol . Once the 2D representation of the depth image is defined,
we can start segmenting the image by clustering the points tj(k), within each partition
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Tcol , into line segments. Segmentation in each 2D projection is performed using recursive
estimation of the statistical properties of 2D data

σ2
j (k j) =

k j − 2
k j − 1

σ2
j (k j − 1) +

1
k j

d2
j (k) (11)

µj(k j) =
k j − 1

k j
µj(k j − 1) +

1
k j

t(k j) (12)

Σj(k j) =
k j − 2
k j − 1

Σj(k j − 1)

+
1
k j
(t(k j)− µj(k j − 1))(t(k j)− µj(k j − 1))T

(13)

where σ2
j is the variance of the orthogonal distance dj(k) to the j-th linear prototype, µj ∈ R2

is the average value of the j-th cluster, t(k j) is the 2D-point belonging to j-th cluster and
Σj ∈ R2×2 is the covariance data matrix of the j-th cluster. A linear prototype is described
by line parameters that the proposed method evaluates directly from the covariance matrix
Σj using only basic arithmetic operations, which allows acceleration of the algorithm. The
j-th model of the linear prototype is therefore described by the normal vector or eigenvector
pj, which belongs to the smallest eigenvalue of the matrix Σj

λj = pT
j Σj pj (14)

Equation (15) describes the normal vector, which is obtained from the matrix Σj

pj =


[

θ√
1+θ2 , −1√

1+θ2

]T
; |λ1| ≤ |λ2|[

1√
1+θ2 , θ√

1+θ2

]T
; |λ1| > |λ2|

(15)

where θ and eigenvalues λ1 in λ2 are determined by

θ =
−σ2

11 + σ2
22 +

√
σ4

11 + σ4
22 − 2σ2

11σ2
22 + 4σ4

12

2σ2
12

λ1 = σ2
22 − θσ2

12

λ2 = σ2
22 − θσ2

12 +
1 + θ2

θ
σ2

12

and where σ2
io, i, o ∈ {1, 2} are the elements of the covariance matrix. To avoid singularity

cases, the line parameters can be estimated using parameters δ and ρ, which can describe
an arbitrary line written in normal form (see also Figure 10)

x cos(δ) + y sin(δ) = ρ (16)

Figure 10. The normal form of the equation of a line.
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Normal vector is therefore defined as

pT
j =

[
cos(δ) sin(δ)

]
(17)

where δ and ρ can be computed with frequently used orthogonal least-squares approach [49]

[
ρ
δ

]
=

[
x cos(δ) + y sin(δ)

1
2 arctan −2σ2

12
σ2

22−σ2
11

]
(18)

where σ2
12, σ2

22, σ2
11 are elements of Equation (13).

The algorithm clusters the data within Tcol by initializing a new cluster, placing it on
the active list, and expanding it according to certain criteria, which are described below.
Cluster spreading is halted when the data do not meet the criteria and are removed from
the active list. In this way, we always expand those clusters that were last discovered, which
is also made possible by information about the orderliness and successive appearance of
the data. The criterion for adding to the active or j-th cluster depends on the orthogonal
distance to the j-th line model

dj(k) = |(t(k)− µj)
T pj| (19)

where t(k) is the current data sample and µj is the mean value of the j-th cluster’s data.
Noise is present in the acquired data, which increases with the square of the distance.

To enable robust data clustering, the presence of noise needs to be considered. For this
purpose, we introduce into the clustering criteria the definition of the variance of the
orthogonal distance of all points in the j-th cluster σj and the noise model σz, which
depends on the depth

dj(k) < kmax

√
σ2

j + σ2
z (z) (20)

where kmax represents positive constant, which determines the sensitivity of the clustering
criteria in the case of normal noise distribution (kmax = 3 would imply in proper classifica-
tion of 99.7% of all samples). Each cluster expansion, with new data sample, is followed by
an update of the normal vector and the statistical characteristics of the clusters. Figure 11
illustrates a brief overview of line segment clustering as presented in [28].
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Figure 11. Illustration of the line segment clustering operation. The first kmin = 3 samples initialize
the first cluster. The next sample extends the first cluster if it is sufficiently close to the straight line.
Samples (k5 : k8) fall outside the acceptance interval and therefore are buffered until kmin collinear
and consistent samples form a new cluster. Sample k5 is characterized as an outlier when a new
cluster is found. Next, samples (k9 : k12) are buffered due to the failed extension of the active cluster
and by the confirmed active cluster extension with sample k13.

5.1. Line Segment Extraction Algorithm

The line segment detection pseudocode is presented in the Algorithm 1.
The output of the algorithm is highly dependent on the choice of input parameters,

as they determine the shape of the searched segments. Furthermore, the setting of the
optimal parameters depends on the sensor used. In this section, an approximate estimate
of the range of values for the input parameters, in the case of using a depth camera, is
given. In the case of using LRF, the parameter settings are given in [28]. The parameter
kmin = l + lv specifies the minimum number of points needed to reliably build a new cluster
prototype, with l being the number of points used to build the model and lv the number
of points that must meet the clustering criteria. As introduced in [28], parameter kmin
determines dimensionality l of the input data, with which a linear model can be estimated
from at least l data samples. Following the example of [28], for the purpose of robust
segmentation, in the case of noise and outliers, it is necessary to set a higher parameter
kmin, so that the identification of linear models becomes over determined. The appropriate
selection of the kmin (including nbu f ) plays an important role in segmentation over longer
distances (Figure 12), as the noise increases with the square of the distance. The minimum
line segment size is a matter of application, but at longer distances it is recommended to
choose a larger kmin, thus detecting larger line segments, as this is the only way that the
correct segments can be successfully detected. By changing the ratio between l and lv,



Sensors 2021, 21, 4395 14 of 30

we can improve the treatment of outliers as well as the proportion of noise in the data in
the initialization process, where lv > l. The values for l and lv must meet the following
requirements {l ≥ 2, lv ≥ 0}. By selecting lv = 0, we disable the data consistency check
in initialization step. The extreme increase in kmin can have negative consequences, i.e.,
under-segmentation.

Algorithm 1: Line segment detection with the EPCC method.
1: Parameter definition: kmin, kmax, nbu f =2kmin, initialize buffer and list of prototypes
2: for k = 1 : m
3: Calculate dj(k) of the sample t(k).

4: if dj(k) ≤ kmax
√

σ2
j + σ2

z then

5: Add t(k) to the j-th cluster, update Equations (11), (12), (13) and (15).
Delete previous data in buffer bu f .

6: else
7: Store t(k) in bu f .
8: if length(bu f ) ≥ kminthen
9: Find new a cluster candidate from bu f and estimate dj of the lv next points from

bu f .
10: if ngood ≥ lv next points in bu f are consistent
11: Initialize the prototype, set j = j + 1 and update µj, Σj, pj and σj.

Clear buffer.
12: else
13: if len(bu f ) ≥ nbu f , remove the oldest sample
14: end if
15: end if
16: end if
17: end for
18: Outputs→ordered list of line segments and their properties

The nbu f parameter is used to set the maximum number of points in the buffer bu f
that are still being considered in the cluster detection process. The role of the buffer is,
in addition to the clustering criteria, to remove potential outliers. This is done by simply
removing the last data sample in buffer when the number of points in it exceeds nbu f .
Outlier removal can be enabled only when nbu f is higher than kmin. The setting of the
buffer parameters, in the case of dealing with laser data, is comprehensively described
in [28]. By changing the input parameters, we can vary the size of the smallest detected
line segment. Instructions for selecting proper kmin and nbu f are presented in Table 1.

Table 1. Parameter selection instructions.

Parameter Requirements Recommendations

kmin {l ≥ 2, lv ≥ 0} 4 ≤ kmin ≥ 12.
Selection depends on data and desired segment size. In
the case of noisy data from the depth camera it is recom-
mended to choose the smallest possible value to reduce
algorithm complexity, but one big enough to enable reli-
able detection of distinct surfaces on greater distances (e.g.,
7 ≤ kmin ≥ 10).

nbu f nbu f > kmin if nbu f = 3kmin then correct cluster initialization can be
obtained if the buffer contains less than ≈33% outliers

The algorithm’s outputs are identified 2D line segments that are defined by the
linear prototype’s parameters (eigenvectors and clusters centers), statistical properties, and
endpoints. Since we are dealing with a sorted data stream, these points represent the first
aj and last point bj of an individual cluster. To retain the efficient evolving approach, only
endpoints of line segments can be stored in the whole process of clustering. Additionally,
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these points can be projected onto the corresponding lines with respect to their orthogonal
distances dj to the linear prototype

ajp = aj − dj pj bjp = bj − dj pj (21)

where ajp and bjp stand for the j-th projected endpoints. Projection consequently changes
the original depth map or z-coordinate (distance) and needs to be recomputed when
transforming points to 3D space with Equation (9), then x-coordinate with Equation (5) and
finally y = yc. Figure 13 demonstrates the algorithm’s performance on ideal synthetic data
and data corrupted with noise, similar to one described in the section “Noise Modelling”.
An example of vertical and horizontal line clustering is demonstrated in Figure 14.

Figure 12. The effect of increasing kmin and nbu f is shown in the greater probability of outlier
detection and in the reduction in over-segmentation according to Equation (20), where kmax = 2.

Figure 13. Line segment detection on ideal data (a), which also confirms the proposed methodological
and structural form of data processing; (b) shows an example of detection on corrupted data, which
produces low over-segmentation but still succeeds in detecting representative line segments with
appropriately selected input parameters that are given in Table 1; (c) example of the high rate of
over-segmentation when kmin is small (l = 2, lv = 1).
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Figure 14. RGB scene and point cloud (upper pictures). An example of line clustering within columns
of the depth image, i.e., vertical clustering (bottom right picture). The same applies for rows, since
by transposing the depth image we achieve horizontal clustering (bottom left picture).

5.2. Noise Modelling

Data exposure to noise can lead to poor segmentation results in the form of over-
segmentation and a loss of representative segments. This problem can be mitigated by
taking noise into account. Noise in stereo sensors usually reflects quadratic behavior and
has been often described as a function of measured distance [50–52]. Thus, we introduce
the noise model into the clustering criteria defined by Equation (20)

σz(z) = k1z2 + k2z + k3 (22)

where k1 = 0.006954, k2 = −0.003713 and k3 = 0.001153. The noise model is evaluated
after dynamic sensor calibration using Intel’s dynamic calibration tool.

By observing the axial distribution of noise, Sung et al. [30] showed that it can be
modelled with the Gaussian distribution. Axial noise is considered to be the pixel-wise
standard deviation of the orthogonal distances between the triangulated points and an esti-
mated vertical plane, provided by the white target. The experiment is performed by placing
the white target at known distances and performing an analysis of the aforementioned
covered distances.

The examples in Figure 15 show that taking noise into account further improves
segmentation performance. In addition to reducing over-segmentation, with Equation (20)
taking noise into account, we can reduce the probability of incorrect clustering. The latter
can occur when we want to optimize kmax and increase its share of acceptable data by
increasing it. By considering Equation (22), we reduce the need for an unwanted increase
in kmax, which can also lead to the segmentation of genuine segments. The presented
model cannot compensate the depth point estimation error that occurs when searching for
a disparity image.
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Figure 15. Line segment detection on real data acquired with D435i. Two examples showing how
taking noise into account reduces over-segmentation and the possibility of incorrect clustering by
reducing an increase in kmax. In dashed rectangles the results when disregarding modelled noise
during segmentation are shown. Based on the results in the red rectangles, we can conclude that
in the case of using a depth camera, we can ignore quadratic noise behavior at smaller distances,
where over-segmentation is reduced by increasing kmax, but it can fail at larger ones due to its
significant increase.

6. Flat Surface Detection

The flat surface detection algorithm retains the methodological form of the line seg-
ment detection algorithm, in which the orthogonal distance of the current data sample to
the linear prototype was used to determine its membership to one of the already existing
clusters but slightly differs in implementation. When processing, Algorithm 1 maintains
the data’s ordered and sequential appearance, which is reflected in the ordered occurrence
of 3D line segments, which, in addition to their statistical properties, represent the input
of a flat surface detection algorithm. In our case, this data arrangement dictates the algo-
rithm’s structure, which is set to recursively estimate 3D linear prototypes. To keep the
idea of 3D segmentation simple, we only use endpoints of line segments. In this section, a
method of investigating ordered data (line segments) is presented, which has the capability
to establish the second filtering step and the real-time operation by single-pass learning.
Additionally, an analysis of the algorithm parameter setting is performed for determining
the optimal parameters. Moreover, in the name of intuitive parameter setting, an analysis
on how the modelled data properties influence the desired outcome and help reduce the
tuning effort, is introduced.

Flat surface detection contains two steps: cluster initialization and its propagation
through the ordered list M, where each element represents a 3D line segment and its
statistical properties (Figure 16). The operation of the algorithm can be described as an
aggregation of line segments between adjacent planar sections of the camera’s FOV or
between the columns of list M as shown in Figures 16 and 17.

In an algorithmic sense, the cluster propagation through adjacent columns of M is
carried out according to the current column index (Figure 17). A line segment of the current
column is classified to the j-th cluster, present in the previous column, if the orthogonal
distance (dj1(k), dj2(k)) of the endpoints to the j-th linear prototype meets criteria

dj(k) < kmax

√
σ2

j + σ2
z (z) + σ2

seg(k) (23)



Sensors 2021, 21, 4395 18 of 30

where σ2
seg(k) is the current line segment’s residual, i.e., the distance variance obtained

from Algorithm 1, σ2
j is the distance variance of the j-th propagated cluster and dj(k) is the

orthogonal distance to the prototype

dj(k) = |(h− µj)
T pj| (24)

where h is a 3D-Cartesian endpoint of a line segment, µj ∈ R3 is the average value of the
j-th cluster and pj ∈ R3 is the prototype’s normal vector. The segmentation process is again
based on a recursive assessment of statistical properties defined by Equation (11), (12) and (25),
this time in the case of 3D data, for which normal vector pj is calculated using singular value
decomposition of the covariance matrix Σj ∈ R3×3. To robustify the clustering process, the
recursive estimation of covariance matrix is weighted and is defined as

Σj(k j) =
k j − 2
k j − 1

Σj(k j − 1)

+
w
k j
(t(k j)− µj(k j − 1))(t(k j)− µj(k j − 1))T

(25)

where

w = e

−dj(k)
2

µ2
jd (26)

and where µjd is the average orthogonal distance to the j-th linear prototype.
The correct classification of the current line segment into a true cluster is achieved by

checking all combinations, as shown in Figure 17. This is done by using the current line
segment (from the column indexed with i) to find the best criterion (Equation (23)) with
respect to all line segments in the previous column (indexed with i− 1) and to determine
the membership to the appropriate cluster. This has proved to be necessary, especially in
maintaining the continuity of flat surfaces. There are many holes in the point cloud (depth
image) that can represent dividers between surfaces. We maintain the continuity of these
by introducing criteria with Equation (27) that take into account the minimum Euclidean
distance devkmin

of the current line segment to the related cluster

devkmin
+ σz(z) ≤ d1 (27)

where d1 is constant, which determines the upper limit for devkmin
. In this way, we can

prevent the classification into a cluster, where there is an adequacy to the Equation (23) but
the assumption of surface continuity is violated. Each (j-th) propagated cluster is tracked
by introducing the membership labels or IDs, which are illustrated with different contour
colors in Figure 17. Thus, we can verify the identity of the clustered line segments in the
adjacent (i− 1)-th list column.

The initialization of new prototypes is carried out when we attempt to discover a new
cluster or the expansion of existing ones is not possible. Initialization is the formation of a
new linear prototype pj with three endpoints of line segments located between adjacent
columns of the list M (Figure 18).

As shown in Figure 18, the prototype is then validated according to
Equations (23) and (27) where dj(k) is the orthogonal distance of the fourth point to
the linear prototype. To reliably form a new cluster, the kmax can be lowered (e.g., by 50%)
and we can check if the directional vectors of the line segments have approximately the
same orientation, i.e., the angle between them is less than a certain threshold.
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Figure 16. List M of ordered line segments and their visualization. So called columns of the list
represent line segments lying on individual planar sections and are determined by their endpoints.

Figure 17. Flat surface clustering using line segments.

Figure 18. Initialization of a prototype plane with points of two unclassified line segments of adjacent
columns of the list M with respect to the orthogonal distance to the plane.

During clustering, some line segments may remain unclassified. Those that remain
unclassified in the i-th column go to the new cluster initialization process in the next
step. However, those that remain unclassified in the i − 1-th column become outliers.
Algorithm 2 presents the plane detection pseudocode. Because there is a small number of
elements (Algorithm 2), the proposed search is not very time consuming.
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Algorithm 2: Detection of planes by the EPCC method.
1: Parameter definition: d1, kmax.
2: for i = 1 : c (number of M’s columns)
3: for k = 1 : r1 (num. of rows of the i-th (current) column)
4: for s = 1 : r2 (num. of rows of the (i− 1)-th column)

Cluster current segi(k) to the j-th cluster with the best Equation (23) of all
combinations

5: if {dj1(k), dj2(k)} ≤ kmax
√

σ2
j + σ2

z + σ2
seg(k) & devkmin

≤ d1 then

6: Add segi(k) to the j-th cluster, update Equation (11), (12) and (25), pj and exit
the loop

7: end
8: if classification failed then

(find a new cluster among the unclassified segments)

9: if dj(k) ≤ kmax

√
σ2

z + σ2
seg(k) & devkmin

+ σz(z) ≤ d1

10: Add the new cluster and its label (j = IDnew) and estimate
σ2

j = d2
j (k), Equations (12) and (25), pj.

11: end if
12: end if
13: 3× end for

The output of the proposed algorithm is clusters of line segments that represent 3D
flat surfaces, their statistical properties, and corresponding parameters of linear prototypes.
These surfaces can be of any shape, as their shape is determined by the start and end points
of the line segments. The detected clusters of planar points cj have a certain deviation from
the corresponding linear prototypes. These deviations represent the orthogonal distances
dj of points to the prototypes pj, which are taken into account when projecting onto a plane

cjp = cj − dj pj (28)

where cjp represents the j-th cluster of projected planar points (line segments). Figure 19
shows the result of Algorithm 2, where the planar points are projected onto the correspond-
ing planes.

Figure 19. Bounded flat surfaces of a point cloud (left), whose boundaries are determined by
projected endpoints of line segments. Clusters are shown where every tenth corresponding line
segment is drawn. Triangle meshes of surfaces are shown on the (right).

It is important to note that the structure of the planar segmentation algorithm is tuned
to exploit the ordered arrangement of line segments, which is also preserved in individual
clusters after the clustering process. With this information, we can more quickly and easily
determine the contour of the surface or the edges of the object (Figure 19), determined from
the endpoints of the line segments. An example of the use of contour points is shown in
Figure 19, where the generation of a high-level geometric structure of concave shape is
demonstrated using the sweep-line algorithm for constrained Delaunay triangulation [53].
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6.1. Algorithm Tuning Effort

Algorithm 2 has two tuning parameters (kmax and d1), of which the kmax has the
greatest impact on clustering quality. Because the clustering criteria consider data variance,
the clustering adapts to current data. This makes it robust to data scaling or to different
noise in the data [28]. As shown in the operation of Algorithm 1, this reduces tuning effort
and possibility of wrong clustering. In this section, we will show the impact of parameter
tuning on clustering results as well as the results of using different forms of clustering
criteria. Figure 20 shows the clustering results when tuning the parameter kmax, whose
values are presented in Table 2.

Table 2. Values of kmax in the tuning process for different forms of clustering criteria. Bold numbers
represent optimal values, where we achieve the lowest over-segmentation (see also Figure 20).

Example Clustering Criteria

(a) dj(k) < kmax
√

σ2
j + σ2

z (z) + σ2
seg(k)

kmax 1 2 3 4

(b) dj(k) < kmax
√

σ2
j + σ2

z (z)

kmax 1 2 3 4

(c) dj(k) < kmax
√

σ2
j + σ2

seg(k)

kmax 1 2 3 4

(d) dj(k) < kmax
√

σ2
j

kmax 1 2 3 4

Scene I I I I I I IV

The operation of the algorithm was tested for different forms of clustering criteria,
for which we found the optimal values of kmax. With the proposed clustering criteria
(Equation (23)), we achieve the lowest rate of over-segmentation with little tuning effort.

Figure 20. Clustering results for different forms of clustering criteria (a–d) and different values of
kmax for each scene, as presented in Table 2. The best segmentation results are marked with a green
rectangle, where kmax is set optimally. In this case, we still successfully detect flat surfaces but avoid
incorrect clustering.
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7. Experiments

The experiments were performed on a database obtained with the Intel RealSense
D435i depth sensor, which represents structured interior scenes. Each scene is represented
by a depth image of size 270× 480; thus, a point cloud contains 129,600 spatial points.
The proposed method is compared with the RG and RANSAC method, which are part
of the Point Cloud Library [54]. In Table 3, the method’s parameters, which were set
experimentally to obtain optimal results, are displayed and described. Our research is
focused on solving problems of environmental perception with depth cameras for the
purpose of autonomous navigation of mobile systems in large environments. The results
will be evaluated with performance indicators, which indicate the over-segmentation and
under-segmentation of areas and their correct detection. Therefore, we wish to make a
comparison with the aforementioned methods, on the basis of which we want to justify the
use of an evolving framework instead of standard working principles and demonstrate the
cons and pros of each method. For the purpose of developing and validating the SLAM
application in the future, a comparison on a public database will also be welcome. With the
proposed method, we achieve piecewise planar patch representation of arbitrary objects.

Table 3. Description of input parameters.

Param. Value Description Method

l 1 cm 3 cm 4 cm leaf size (VoxelGrid filter)

RG

cth 0.3 0.5 0.3 curvature threshold
Θth 3◦ 4◦ 3◦ smoothness constraint

numk 30
point normal estimation

with k neighbors
minc 50 minimum cluster size
maxc 106 maximum cluster size
kn 50 segmenting with k closest neighbors
ine dth 1.5 cm 3.2 cm 5 cm distance threshold

RANSACwn 0.02 0.03 normal distance weight
itmax 100 max iterations

kmin 8

see Section 5 EPCC
kmax 2 (Algorithm 1)
minc 30
kmax 3 2
d1 15 cm

Scene (a) (b) (c) (d)

7.1. Experimental Comparison

Clustering results are evaluated in terms of the proportion of correctly detected flat
surfaces D

N , where D is the number of correctly detected areas and N is the number of all
flat surfaces in a given scene, which represent ground truth as illustrated in Figure 21. We
say that a certain algorithm correctly detects a surface when it maintains its continuity,
despite the possible over-segmentation or under-segmentation of the same. The number
of identified clusters for each method is denoted as IC. We also estimate the proportion
of over-segmented Nn

N and under-segmented Np
N areas, where Nn is the number of over-

segmented and Np is the number of under-segmented areas. A particular area is not
over-segmented when it is not fragmented or broken into several parts. If the algorithm
successfully detects a flat surface, it is considered under-segmented if less than 80% of the
points are classified according to ground truth.
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Figure 21. Planar segmentation results, in which individual flat surfaces of a point cloud are color-
coded. Clustered region-growing point clouds are more sparse due to required filtering process.
More importantly, we can observe that the EPCC gives comparable or better results over long
distances (bottom two rows), where depth measurement errors are considerably high due to noise
quadratic behavior.

In Figure 21, the results of planar segmentation of the methods are presented. In
Table 4, the segmentation results for all the methods are shown. It is important to note
that in the case of segmentation with the RG method, it was necessary to filter the data;
otherwise, the method gives incomparable results, which are reflected in excessive over-
segmentation. Using the VoxelGrid filter [54], we down-sampled a point cloud by approxi-
mating points inside each voxel with their centroid. It is important to emphasize that the
tested RG and EPCC method have a set value of the minimum (maximum) cluster size.
This means that after the segmentation is done, all clusters that have fewer points than
minimum (or have more than maximum) will be discarded, which leads to a reduction in
over-segmentation.

Table 4. Segmentation results.

Method IC D ( D
N ) Nn

N
Np
N N

(a)

RG 6 5 (100%) 0.0 0.2
5RANSAC 11 5 (100%) 0.4 0.0

EPCC 7 5 (100%) 0.4 0.0

(b)

RG 16 11 (100%) 0.09 0.18
11RANSAC 32 9 (82%) 0.27 0.09

EPCC 15 11 (100%) 0.09 0.0

(c)

RG 15 8 (89%) 0.22 0.33
9RANSAC 25 9 (100%) 0.66 0.0

EPCC 10 9 (100%) 0.1 0.0

(d)

RG 11 5 (56%) 0.0 0.22
9RANSAC 53 8 (89%) 0.56 0.11

EPCC 14 8 (89%) 0.22 0.0

When comparing methods, it is first necessary to point out the essential difference
between them, which will prove to be key in achieving good segmentation results. Com-
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pared to our method, the biggest disadvantage of the RG and RANSAC method is non-
adaptability or inflexibility of the clustering criteria when processing point clouds. These
methods have fixed parameters that need to be determined in advance for the needs of
a particular situation or application. Similarly, when using the EPCC method, the input
parameters of the algorithm must also be determined in advance (e.g., kmax and d1), but for
further operation (in changing noise conditions) this is no longer necessary, as the clustering
criteria are adaptive and have the ability to adapt to data variability. It follows that not
much effort is required in setting the parameters, as mentioned in Section 6.1. Presetting
the parameters in the EPCC can be done quite easily in most cases. Nevertheless, we must
be careful when we are performing segmentation at shorter distances (scenes (a) and (b)),
where (due to very low noise amplitudes) it is necessary to increase the input parameter
kmax (Table 3) to avoid over-segmentation. The adaptive character of the clustering criteria
together with the consideration of the noise model plays an important role in the detection
of flat surfaces over longer distances, where large noise amplitudes are often present in the
case of stereoscopic environmental perception.

On the left Figure 21 shows a database representing (non) complex scenes whose
objects are close as well as far from the depth camera origin. In the case of RG and
RANSAC, we can see in Table 3 that it is necessary to reset a collection of parameters
to achieve optimal results for each scene; RANSAC requires a smaller number of input
parameters. The inflexibility of their criteria (parameters) as well as the disregard for the
noise model leads to poorer segmentation results (Table 4), which can be quickly observed
in Figure 21, in the case of detecting more distant objects in scene (d). This shows the
sensitivity of the RG and RANSAC methods to noise; the former did not detect a door
at the end of the corridor, and the latter described this part of the space with excessive
data over-segmentation. Furthermore, a disadvantage of the RANSAC method is that it
does not maintain the continuity of the surfaces, which can lead to overlapping of certain
areas if complete areas have not been detected in the previous steps. In contrast, in the
case of the EPCC method, we can observe from the results the desired segmentation effect
over long distances (see Table 4), in which the EPCC achieves a high rate of successfully
detected flat surfaces and identifies the fewest clusters. In addition, it achieves minimal
over-segmentation and under-segmentation of flat surfaces.

The success of point cloud segmentation is also conditioned by the successful detection
and exclusion of many outliers. RANSAC has been designed to work well in the case
of data that contain many outliers, but due to the great uncertainty and nonlinearity of
the measurements it fails to deliver complete reconstruction, as shown in scene (c) and
(d). The same goes for the RG method, which appears to be even more sensitive to noise
at given input parameters according to visually demonstrated results in Figure 21. This
includes the inability to detect the surfaces of objects, or objects in their entirety, which
are often accompanied by a high over-segmentation rate. In contrast, the outlier detection
and its exclusion in our case is ensured through a two-step filtering, which is carried out
recursively within the high-level feature detection, e.g., lines and planes. As demonstrated
in the proposed 3D sensing method and in the other applications (e.g., SLAM), the use of
high-level features again proved to be beneficial as they allow for error minimization and
for assuring optimal results. The use of features in the evolving framework of the EPCC
algorithm has proved promising, because in most cases it has enabled reliable detection of
textureless homogeneous surfaces present in a given database. This is very important since
passive stereo systems have difficulty in finding a disparity image when there is very little
texture on the surfaces of the observed environment (e.g., a completely clean homogeneous
plate or board). Active systems improve the accuracy of the measured depth by artificially
creating texture on the scene by using structured light of its own origin. Although in most
cases this considerably resolves the correspondence problem of stereo perception, these
stereo setups are not entirely immune to visual ambiguities.

At this point, we need to highlight another advantage of the EPCC method. With
the latter, we obtain not only the parameters of flat surfaces (polygons) recursively, but
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also the uncertainty of the parameters. Information about the uncertainty can play an
important role in robotic applications, such as localization. In addition, the surfaces in our
case can be represented as a set of ordered line segments (with the associated parameter
uncertainties) or as a set of points, which can be either projected from the data or we can
randomly (ordered) sample the bounded surface. In this way we can efficiently generate
high-level geometric structures, such as meshes and dense surfaces, for the purpose of
building various AR/VR applications.

The iterative nature of the algorithms (e.g., RANSAC, Hough-Transform) limits the
applicability of certain methods to unorganized point clouds, while the EPCC algorithm
is capable of processing ordered as well as general data streams, as stated in [28]. The
advantage of the proposed method is its evolving nature, which is characterized by the
ability to adapt to the variance of current data and different noise conditions. Theoretical
and simulation explanation showed that the EPCC algorithm is capable of integration with
other sensor systems that have a similar principle of data acquisition, which increases the
applicability of the method. Based on the experimental comparison, we can observe that the
EPCC achieves performance comparable to established methods for planar segmentation
of point clouds on a given database. It is worth nothing that the performance of the
proposed method strongly depends on the modelled properties of the input data. Changing
light conditions and different depth camera orientations could significantly affect the
performance of the algorithm.

7.2. Robustness to Soft Data Transitions and Noise

Blurred boundaries between objects can reduce segmentation accuracy and cause
the occurrence of holes between certain surfaces (Figure 22). This often happens due to
soft or slow data transitions between the surfaces of different objects, which can make the
segmentation of depth information difficult, as there are no sharp inter-object transitions
due to large noise amplitudes, especially at greater distances. Locally unrecognizable
boundaries between objects can also be the result of occlusions, including tough noise
conditions. With certain scanning directions of the depth image, the borders may appear
additionally obscured, which can lead to information loss in the line segment clustering
phase (Figure 22). This problem can be mitigated to some extent by quasi-mimicking the
different scanning directions of the image or point cloud, where noise model consideration
also plays an important role.

The advantage of the locally ordered data is that they enable arbitrary clustering
direction, which can be utilized to solve the problem of transitions and noise. In our
case, vertical and horizontal clustering represent two modes of the so-called depth image
scanning. In Figure 22 the results for both cases are shown in the case of segmenting a
distant scene with non-complex layout of the environment. In both cases, the clustered
line segments are projected onto corresponding linear prototypes, which further increases
hole size between adjacent surfaces. This problem can be addressed by triangulation
between adjacent surfaces, where joint connections could be searched for by checking the
possible intersections of adjacent line segments in the case of small holes. Moreover, the
final boundaries of different surfaces can be also determined by considering additional
information, such as texture or color. Figure 23 shows the comparison of horizontal
and vertical clustering in the case of the nearby environment with complex layout and
few occlusions.
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Figure 22. Horizontal scanning of a point cloud and an area of soft transitions between the boundaries
of flat surfaces marked by a white ellipsoid (upper pictures). The intermediate area between colored
flat surfaces represent data loss. The case of vertical clustering (a), for which the smallest data loss
and highest accuracy is achieved. Horizontal clustering (b) is more affected by blurred boundaries,
which caused under-segmentation of the violet colored floor and thus bigger holes.

Figure 23. Red ellipse marks occluded sparse area which is over-segmented in vertical clustering
(a) and almost completely removed in horizontal clustering (b). The floor is over-segmented due
to occlusion caused by the object marked with orange ellipsis. Yellow ellipsis marks the part of the
over-segmented red wall, as a result of blurred boundaries.

Figure 24 shows the robustness of the algorithm when taking noise into account. In
low range areas, an increase in criteria parameters improves segmentation results despite
disregarding the noise model, but fails in remote areas due to high noise amplitudes. This
is usually a consequence of higher a probability of incorrect clustering, as demonstrated in
Section 5.2.
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Figure 24. EPCC reduces over-segmentation by decreasing the sensitivity of clustering, which can
inversely lead to increased sensitivity to the incorrect clustering, when disregarding the noise model
in remote areas (middle column). This does not apply to nearby areas (left and right).

8. Conclusions

We presented an evolving approach to point cloud segmentation based on the EPCC
method, which recursively estimates statistical properties of clusters and corresponding lin-
ear prototypes’ parameters. The proposed method exploits data locality in an ordered data
stream, which enables faster and simpler implementation and real-time data processing.
The algorithm is upgraded to work in 3D space for the purpose of detecting flat connected
surfaces based on an aggregation of line segments. The use of high-level features (e.g., lines
and planes) enabled the detection of textureless homogeneous surfaces, which are known
to cause visual ambiguities in stereo perception. Flat surfaces can be represented as a set of
ordered line segments, which can simplify the extraction of a surface’s contour or edges
of an object. In this manner, we can efficiently generate high-level geometric structures,
such as meshes. We highlighted the possibility of arbitrary sampling of object surfaces,
which can be used for generating dense representations. Moreover, the uncertainty of
the linear prototypes’ parameters is obtained through recursive assessment of clusters’
statistical properties. This can play an important role in mobile robotic applications, such
as localization.

The results showed that the EPCC approach can cope with established approaches
for point cloud processing in terms of accuracy, even without prior data filtering. More
importantly, it outperforms them over long distances when the signal-to-noise ratio is low
due to the adaptive nature of clustering criteria. The RANSAC and RG methods require a
lot of hard work in setting the parameters for each experiment in order to obtain optimal
results. Moreover, the fixed nature of their clustering criteria is the main reason for poor
performance in larger environments. We highlighted the problem of lighting conditions
and the influence of camera orientation on data accuracy, which may limit the operation
of the proposed method. On the given database, an average rate higher than 90% has
been obtained for successfully detected flat surfaces. The robustness of the algorithm to
data scaling and different noise conditions follows from the fact that the clustering criteria
consider data variance, which allows the clustering to adapt to current data. The noise
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model, which is considered in the segmentation process, allowed for the compensation of
characteristic uncertainties that are introduced into the measurements of depth sensors.
In addition, noise consideration reduced the possibility of incorrect clustering and also
reduced algorithm tuning effort. To ensure optimal results we introduced a two-step
filtering for outlier detection within clustering framework.

We highlighted the problem of blurred boundaries between flat surfaces, which can
lead to significant information loss. To alleviate this problem and the problem of occlusions,
we proposed the mimicking of arbitrary scanning directions of the depth image, which
was enabled by the fact that data appear locally ordered. The EPCC method is generally
applicable as it allows the processing of ordered as well as general data streams where the
data arrive randomly. Moreover, theoretical and simulation part proved that the algorithm
allows for operation with other sensor systems that have similar data capture principles
(e.g., laser range finders). Because the data structure allows separate searching by columns
and rows of the depth image, we plan to explore the possibility of jointly combining data
from columns and rows to describe planar features, which can form the basis for real-time
SLAM or AR/VR application. In the future, we plan to include the proposed method in
the SLAM application, the operation of which will be evaluated on a public data set.

Author Contributions: Conceptualization, M.A., A.Z. and I.Š.; methodology, M.A., A.Z. and I.Š.;
software, M.A. and A.Z. and I.Š.; validation, M.A., A.Z. and I.Š.; formal analysis, M.A., A.Z. and I.Š.;
investigation, M.A., A.Z. and I.Š.; resources, M.A., A.Z. and I.Š.; data curation, M.A., A.Z. and I.Š.;
writing—original draft preparation, M.A., A.Z. and I.Š.; writing—review and editing, M.A., A.Z. and
I.Š.; visualization, M.A., A.Z. and I.Š.; supervision, M.A., A.Z. and I.Š.; project administration, M.A.,
A.Z. and I.Š.; funding acquisition, I.Š. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Slovenian Research Agency grant number P2-0219.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The authors acknowledge the financial support from the Slovenian Research
Agency (research core funding No. P2-0219).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Zhang, X.; Wang, W.; Qi, X.; Liao, Z.; Wei, R. Point-Plane SLAM Using Supposed Planes for Indoor Environments. Sensors 2019,

19, 3795. [CrossRef] [PubMed]
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4. Zdešar, A.; Škrjanc, I.; Klančar, G. Homography estimation from circular motion for use in visual control. Robot. Auton. Syst.

2014, 62, 1486–1496. [CrossRef]
5. Drews, P.; Williams, G.; Goldfain, B.; Theodorou, E.A.; Rehg, J.M. Vision-Based High-Speed Driving With a Deep Dynamic

Observer. IEEE Robot. Autom. Lett. 2019, 4, 1564–1571. [CrossRef]
6. Tang, Y.; Li, L.; Wang, C.; Chen, M.; Feng, W.; Zou, X.; Huang, K. Real-time detection of surface deformation and strain in recycled

aggregate concrete-filled steel tubular columns via four-ocular vision. Robot. Comput. Integr. Manuf. 2019, 59, 36–46. [CrossRef]
7. Tang, Y.; Chen, M.; Wang, C.; Luo, L.; Li, J.; Lian, G.; Zou, X. Recognition and Localization Methods for Vision-Based Fruit Picking

Robots: A Review. Front. Plant Sci. 2020, 11, 510. [CrossRef] [PubMed]
8. Ramalingam, B.; Veerajagadheswar, P.; Ilyas, M.; Elara, M.; Manimuthu, A. Vision-Based Dirt Detection and Adaptive Tiling

Scheme for Selective Area Coverage. J. Sens. 2018, 2018, 13. [CrossRef]
9. Woo, S.; Shin, J.; Lee, Y.H.; Lee, Y.H.; Kang, H.; Choi, H.; Moon, H. Stair-mapping with Point-cloud Data and Stair-modeling for

Quadruped Robot. In Proceedings of the 2019 16th International Conference on Ubiquitous Robots (UR), Jeju, Korea, 24–27 June
2019; pp. 81–86. [CrossRef]

http://doi.org/10.3390/s19173795
http://www.ncbi.nlm.nih.gov/pubmed/31480722
http://dx.doi.org/10.1080/00207721.2013.775379
http://dx.doi.org/10.5772/56757
http://dx.doi.org/10.1016/j.robot.2014.05.012
http://dx.doi.org/10.1109/LRA.2019.2896449
http://dx.doi.org/10.1016/j.rcim.2019.03.001
http://dx.doi.org/10.3389/fpls.2020.00510
http://www.ncbi.nlm.nih.gov/pubmed/32508853
http://dx.doi.org/10.1155/2018/3035128
http://dx.doi.org/10.1109/URAI.2019.8768786


Sensors 2021, 21, 4395 29 of 30

10. Chen, M.; Tang, Y.; Zou, X.; Huang, K.; Huang, Z.; Zhou, H.; Wang, C.; Lian, G. Three-dimensional perception of orchard banana
central stock enhanced by adaptive multi-vision technology. Comput. Electron. Agric. 2020, 174, 105508. [CrossRef]

11. Fernandes, D.; Silva, A.; Névoa, R.; Simões, C.; Gonzalez, D.; Guevara, M.; Novais, P.; Monteiro, J.; Melo-Pinto, P. Point-cloud
based 3D object detection and classification methods for self-driving applications: A survey and taxonomy. Inf. Fusion 2021,
68, 161–191. [CrossRef]

12. Li, J.; Tang, Y.; Zou, X.; Lin, G.; Wang, H. Detection of Fruit-Bearing Branches and Localization of Litchi Clusters for Vision-Based
Harvesting Robots. IEEE Access 2020, 8, 117746–117758. [CrossRef]

13. Cheng, Q.; Sun, P.; Yang, C.; Yang, Y.; Liu, P.X. A morphing-Based 3D point cloud reconstruction framework for medical image
processing. Comput. Methods Programs Biomed. 2020, 193, 105495. [CrossRef] [PubMed]

14. Grilli, E.; Menna, F.; Remondino, F. A review of point clouds segmentation and classification algorithms. Int. Arch. Photogramm.
Remote Sens. Spat. Inf. Sci. 2017, 42, 339–344. [CrossRef]

15. Škrjanc, I.; Martinez, J.A.I.; Sanchis, A.; Leite, D.; Lughofer, E.; Gomide, F. Evolving fuzzy and neuro-fuzzy approaches in
clustering, regression, identification, and classification: A survey. Inf. Sci. 2019, 490, 344–368. [CrossRef]

16. Lemos, A.; Caminhas, W.; Gomide, F. Evolving Intelligent Systems: Methods, Algorithms and Applications. In Emerging
Paradigms in Machine Learning; Springer: Berlin/Heidelberg, Germany, 2013; pp. 117–159.

17. Škrjanc, I.; Sašo, B.; Lughofer, E.; Dovžan, D. Inner matrix norms in evolving Cauchy possibilistic clustering for classification and
regression from data streams. Inf. Sci. 2019, 478, 540–563. [CrossRef]

18. Rong, H.J.; Sundararajan, N.; Huang, G.B.; Saratchandran, P. Sequential Adaptive Fuzzy Inference System (SAFIS) for nonlinear
system identification and prediction. Fuzzy Sets Syst. 2006, 157, 1260–1275. [CrossRef]

19. Dovžan, D.; Škrjanc, I. Fuzzy space partitioning based on hyperplanes defined by eigenvectors for Takagi-Sugeno fuzzy model
identification. IEEE Trans. Ind. Electron. 2020, 67, 5144–5153. [CrossRef]

20. Škrjanc, I. Cluster-volume-based merging approach for incrementally evolving fuzzy Gaussian clustering-eGAUSS+. IEEE Trans.
Fuzzy Syst. 2019, 28, 2222–2231. [CrossRef]

21. Baruah, R.D.; Angelov, P. Evolving local means method for clustering of streaming data. In Proceedings of the 2012 IEEE
International Conference on Fuzzy Systems, Brisbane, QLD, Australia, 10–15 June 2012; pp. 1–8. [CrossRef]

22. Škrjanc, I.; Sašo, B. Incremental fuzzy c-regression clustering from streaming data for local-model-network identification. IEEE
Trans. Fuzzy Syst. 2020, 28, 758–767. [CrossRef]

23. Kasabov, N. Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning. IEEE Trans. Syst.
Man Cybern. Part B (Cybern.) 2001, 31, 902–918. [CrossRef]

24. Feng, C.; Taguchi, Y.; Kamat, V.R. Fast plane extraction in organized point clouds using agglomerative hierarchical clustering. In
Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June
2014; pp. 6218–6225. [CrossRef]

25. Nguyen, H.L.; Belton, D.; Helmholz, P. Planar surface detection for sparse and heterogeneous mobile laser scanning point clouds.
ISPRS J. Photogramm. Remote Sens. 2019, 151, 141–161. [CrossRef]

26. Holz, D.; Behnke, S. Approximate triangulation and region growing for efficient segmentation and smoothing of range images.
Robot. Auton. Syst. 2014, 62, 1282–1293. [CrossRef]

27. Georgiev, K.; Creed, R.T.; Lakaemper, R. Fast plane extraction in 3D range data based on line segments. In Proceedings of the
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011;
pp. 3808–3815. [CrossRef]
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