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Abstract: With the growth of computing power, deep learning methods have recently been widely 
used in machine fault diagnosis. In order to realize highly efficient diagnosis accuracy, people need 
to know the detailed health condition of collected signals from equipment. However, in the actual 
situation, it is costly and time-consuming to close down machines and inspect components. This 
seriously impedes the practical application of data-driven diagnosis. In comparison, the full-labeled 
machine signals from test rigs or online datasets can be achieved easily, which is helpful for the 
diagnosis of real equipment. Thus, we introduced an improved Wasserstein distance-based transfer 
learning method (WDA), which learns transferable features between labeled and unlabeled signals 
from different forms of equipment. In WDA, Wasserstein distance with cosine similarity is applied 
to narrow the gap between signals collected from different machines. Meanwhile, we use the Kuhn–
Munkres algorithm to calculate the Wasserstein distance. In order to further verify the proposed 
method, we developed a set of case studies, including two different mechanical parts, five transfer 
scenarios, and eight transfer learning fault diagnosis experiments. WDA reached an average accu-
racy of 93.72% in bearing fault diagnosis and 84.84% in ball screw fault diagnosis, which greatly 
surpasses state-of-the-art transfer learning fault diagnosis methods. In addition, comprehensive 
analysis and feature visualization are also presented. 

Keywords: intelligent bearing fault diagnosis; Wasserstein distance; convolutional neural network; 
domain adaptive ability; Kuhn–Munkres algorithm 
 

1. Introduction 
With the rise of machine learning, especially deep learning, more and more data-

driven algorithms have been proposed and applied successfully in different fields in the 
last few years [1–3]. Similarly, data-driven methods are increasingly suggested to deal 
with problems in the field of machine health monitoring [4], which has great importance 
in modern industry. 

For example, Atoui et al. [5] presented Bayesian network for fault detection and di-
agnosis, Rajakarunakaran S et al. [6] proposed artificial neural networks (ANN) for the 
fault detection of the centrifugal pumping system, and Ivan et al. [7] suggested a novel 
weighted adaptive recursive fault diagnosis method based on principal component anal-
ysis (PCA) to reduce the false alarm rate in processing monitoring schemes. Recently, as 
deep learning is rapidly developing, artificial intelligence methods are considered to han-
dle the fault detection and classification in rolling bearing elements, e.g., autoencoders [8] 
and convolutional neural networks (CNN). Li et al. [9] proposed a bearing defect diagno-
sis technique based on a fully connected winner-take-all autoencoder. Jafar Zarei [10] pro-
posed a pattern recognition technique for fault diagnosis of induction motor bearings via 
utilizing the artificial multilayer perceptron neural networks. Olivier Janssens et al. [11] 
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introduced feature learning means for condition monitoring based on convolutional neu-
ral networks to obtain signal features for bearing fault detection. Although many studies 
have been conducted, most of them are only effective under a large amount of labeled 
data.  

Through a brief review, it is obvious that most methods are only confirmed in theory, 
and few are able to be applied in industry [12,13]. In a real industry situation, as machines 
usually work in a healthy state, it is quite a difficult task to determine whether a fault has 
occurred during the data collection. Moreover, even when the equipment breaking down 
is known, it is difficult to point out the definite fault types disassembling and inspecting 
the components such as bearings and ball screws in a machine, being time and labor-con-
suming tasks. Additionally, the real machine always works under various working con-
ditions. Thus, the collected signals are combined with different data distributions. Those 
scenarios in the industrial applications will seriously impact the performance of data- 
based fault diagnosis. 

To overcome problems of different working conditions, some researchers proposed 
increasing the generalization ability of the algorithms, which are named domain adaption 
techniques. For instance, Zhang et al. [14] proposed a deep neural network with high di-
agnostic accuracy in diagnosing signals with high noise and signals from different loads. 
In their work, the authors suggested that the high-level features of data from the different 
working conditions have a more similar distribution and are less affected by noise. More-
over, Zhu et al. [15] used capsule net to extract more general features from the time-fre-
quency spectrum and achieved higher diagnosis accuracy when dealing with data from 
different loads. With such improvement strategies, artificial neural networks have been 
proven to be a potential tool to deal with industry data. However, the above methods only 
focus on the variation between working conditions (e.g., speed, loads) on one machine, 
and they cannot handle the huge variations of mechanism between different types of 
equipment.  

Transfer learning theory has been introduced to machine fault diagnosis in order to 
improve domain adaption ability among different machines. Transfer learning aims to 
reduce the distribution discrepancy of diverse domains, as data from the target domain 
have similar knowledge but different distribution compared to the source domain. For 
example, Lu et al. [16] presented a deep model-based domain adaptation method for the 
machine fault diagnosis. A gearbox dataset collected under different operation conditions 
was used to test the performance of the proposed method. Wen et al. [17] set up a new 
deep transfer learning method for fault diagnosis. The validation dataset was acquired 
from a bearing testbed operating under different working conditions. Xie et al. [18] pro-
posed a transfer analysis-based gearbox fault diagnosis method. The performance of the 
presented method was verified by a gearbox dataset obtained under various operation 
conditions. Guo et al. [19] proposed deep transfer learning-based methods using maxi-
mum mean discrepancy and adversarial training techniques together to regularize the 
discrepancy between different domains. Sandeep et al. [20] presented a ConvNet-based 
transfer learning method for bearing fault diagnosis with varying speeds. Hasan et al. [21] 
proposed a transfer learning fault diagnosis framework using 2D acoustic spectral imag-
ing-based pattern formation method. Zhang et al. [22] introduced hybrid-weighted ad-
versarial learning to address the domain adaptation problem. Meanwhile, Zhang et al. 
[23] also utilized federated learning to facilitate the mechanical fault diagnosis. However, 
the above transfer learning methods took advantage of enough labeled data. Unfortu-
nately, labeled signals from the practical industrial machine are rare and hard to collect. 

As the most critical issue during the process of transfer learning, modeling and opti-
mizing the discrepancy between different domains are the core of the proposed method. 
As a stable and continuous measurement, Wasserstein distance has displayed its superi-
ority in different applications, e.g., image generation [24,25]. Thus, in this paper, we pro-
pose a new method with excellent domain adaptive ability based on Wasserstein distance 
(WDA) in order to deal with machine fault data from different machines. Cosine similarity 
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and the Kuhn–Munkres algorithm are introduced to improve transfer effects. The contri-
butions of this paper mainly lie in the following two parts: 

(1) To achieve classification on unlabeled signals, we propose a transfer learning fault 
diagnosis method named WDA, which makes use of labeled signals from different ma-
chines to help the classification of signals. In WDA, Wasserstein distance is applied to 
manage the gaps between two distributions, during which we utilize cosine similarity to 
measure the discrepancy between feature embeddings. Moreover, Kuhn–Munkres algo-
rithm is introduced to directly optimize the Wasserstein distance. 

(2) We carried out extensive experiments to validate the effectiveness of the proposed 
method on various transfer scenarios. Meanwhile, to better illustrate the training process 
of high-dimensional feature embeddings, we also visualized the whole training process. 

The structure of this paper is organized as follows. In Section 2, we introduce the 
basic conception of transfer learning, Wasserstein distance, and the corresponding Kuhn–
Munkres algorithm. Following that, the proposed method and optimization algorithm are 
discussed in Section 3. Then, the experiments are carried out in Section 4 to verify the 
proposed method. Finally, the conclusion is drawn from the above experiments. 

2. Related Works 
In the field of machine learning, transfer learning is proposed to deal with the differ-

ences between the signals from the source domain and target domain, while Wasserstein 
distance is a powerful criterion of the discrepancy. However, the calculation of Wasser-
stein distance belongs to the general assignment problem. Yet, in most of the research 
work [26–28], there has hardly been one direct calculation of it. Thus, a brief introduction 
of transfer learning, Wasserstein distance, and the solution of the general assignment 
problem (GAP) are helpful to know about the development and the limitation of recent 
works. 

2.1. Transfer Learning 
Transfer learning is different from many other traditional machine learning methods, 

which are established under the assumption that training data and test data are drawn 
from the same distributions. To better illustrate transfer learning, we introduce two im-
portant conceptions: domain and task, as follows [29]. 

To begin with, domain D includes two key components: feature space χ and mar-
ginal distribution 𝑃(𝑋), where X = {𝑥 , … , 𝑥 } ∈ χ means that 𝑋 is a set containing sam-
ples from feature space χ, e.g., the signals collected from the machine in different health 
conditions. Then, a task consists of two components: a label space Y and an objective 
function G(∙), corresponding to the health conditions of signals and classification algo-
rithm. Generally speaking, the objective function could not be directly observed. How-
ever, it could be learned from training data, which consist of pairs {𝑥 , 𝑦 }. with the notion 
of source domain data 𝐷 = {(𝑥 , 𝑦 ), … , (𝑥 , 𝑦 )}  and target domain data 𝐷 ={(𝑥 , 𝑦 ), … , (𝑥 , 𝑦 )}. The transfer learning could be defined as the following: 

Given source domain D  and learning task T , a target domain D  and learning 
task T  transfer learning aims to help improve the performance of the predictive function f (∙) in D  through using the knowledge in D  and T , where D ≠ D  or T ≠ T . 

In the field of fault diagnosis, source and target domains usually are different. How-
ever, the tasks are equivalent, i.e., D ≠ D , T = T . This kind of problem is also called 
domain adaptation, belonging to transductive transfer learning [29,30]. For the transfer 
learning problems, there are four different approaches to solve them: instance transfer, 
feature representation transfer, parameter transfer, and relational knowledge transfer. 
Among them, the feature representation transfer is a widely used transfer learning 
method in transfer fault diagnosis [18,19,31–33]. Moreover, there are currently two meth-
ods to bridge the gap between two distributions: feature extractor regularization, apply-
ing regularization terms on feature extractor to obtain features extracted from different 
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domains in similar distributions, or using adversarial training methods to close two dis-
tributions. 

Firstly, maximum mean discrepancy [34,35] and Wasserstein distance are widely 
used to measure discrepancies in domain adaptation transfer learning. They are used to 
regularize the output feature of the feature extractor to obtain equivalent marginal distri-
bution. Secondly, some adversarial training methods such as DANN [36] are also pro-
posed to narrow the gap between source and target domain. Most of them use adversarial 
training techniques in artificial neural networks to manage the gap of two different distri-
butions. However, these training methods suffer problems, e.g., those methods are hard 
to train [37,38] and converge to a high-performance result. Thus, a high accuracy method 
is badly needed. 

2.2. Wasserstein Distance 
Wasserstein distance, also called earth mover’s distance, is a metric to measure the 

discrepancy between two distributions, and it is widely used in domain adaptation, e.g., 
WGAN [24] and BEGAN [39]. Wasserstein distance is generally based on a way that trans-
forms one distribution to the other with minimal cost. 

As shown in Figure 1a, different discrepancies of two domains are represented, 
which could also be considered as the cost of transporting distribution from one domain 
to the other. We define the transporting cost as:  
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(a) Pairs of Wasserstein distance (b) Pairs of a high-cost transfer method 

Figure 1. Different pairs for measuring discrepancy between two distributions. 

ℓ = 1𝑛 + 𝑛 ( ℱ(ℓ ) + ℱ(ℓ )) (1)

where 𝑛 , 𝑛  denote the numbers of samples of different fault types, and ℱ(∙) represents 
a function measuring the difference between two samples, which usually is L2-norm or 
L1-norm. As shown in Figure 1b, Wasserstein distance (noted as ℓ ) is used to transport 
the feature from the source domain to the target domain with minimal cost. The other 
transport method, e.g., ℓ , shown in Figure 1b, is higher than ℓ . 

The formula of Wasserstein distance (ℓ ) is shown as: ℓ = 𝑖𝑛𝑓 ∈ ( , )𝐸( , )~ ℓ(x , x ) (2)

From the above equation, we can see that the Wasserstein distance is a low bound of 
the cost to transform a distance between two distributions. Berthelot et al. also proposed 
BEGAN to optimize the lower bound of Wasserstein distance to achieve better perfor-
mance on image generation [39]. Note that all the above methods are unsupervised meth-
ods. Different from supervised or semi-supervised methods, unsupervised methods do 
not care about the similarity of distributions of the input and output domains. However, 
it would remain a huge problem, especially in the beginning training stage, if the discrim-
inator is extremely unstable. Moreover, it is difficult to use it to regularize the feature ex-
tractor. Moreover, the discriminator could only be said to safely match the 1-Lipschitz 
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function in the features that already are trained with the discriminator. That is, with the 
training process going on, the distribution of the high-level features may change, and that 
discriminator may not correctly calculate the distance between features from two do-
mains. Thus, the methods based on adversarial training struggle to achieve high perfor-
mance. 

2.3. General Assignment Problem and Kuhn–Munkres Algorithm 
The calculation of Wasserstein distance belongs to a general assignment problem 

(GAP) while the samples of two distributions are equal. Considering that there are 𝓂 
samples from source domain {𝑥 , … , 𝑥 } and 𝓃 samples {𝑥 , … , 𝑥 } from target do-
main, without loss of generality, we assume that 𝓃 ≤ 𝓂. Any target samples 𝑥  could 
be assigned to the source 𝑥 . Each pair 𝑥 , 𝑥  has a cost 𝒸(𝑥 , 𝑥 ) to transfer from 𝑥  to 𝑥 . The task is to assign 𝓃 target samples to 𝓂 source samples with the minimal 
cost, which is also the Wasserstein distance between two distributions. Moreover, the as-
signment problem could be formulated as the following optimization problem: min ∑ ∑ 𝒸(𝑥 , 𝑥 ) ∙ 𝒯,𝓃𝓂 𝑠. 𝑡. 0 ≤ ∑ 𝒯, ≤ 1, ∑ 𝒯,𝓃 = 1, 𝒯, ∈ {0,1}. (3)

The K-M algorithm [40] could be implanted through different versions: graph [41,42] 
or matrix [43]. Unlike the adversarial learning-based methods, which utilize discriminator 
to approximate Wasserstein distance of two distributions [26,28], in this section, we intro-
duce the K-M algorithm through graph perspective, which has been applied to the appli-
cations such as multi-objective optimization [44] and role transfer [45]. Considering a bi-
partite graph G = X , 𝐸, X , where 𝐸  means the edges of pairs (𝑥 , 𝑥 )  and E ∈𝑋 × 𝑋 , we introduce the following three definitions: 

Definition 1: Neighborhood: the neighborhood of a vertices 𝑥 is the set ℐ (𝑥) with all 
vertices sharing edges with 𝑥; similarly, the neighborhood of a set 𝑋 is ℐ (𝑋), whose 
all vertices are sharing edges with any vertices in 𝑋. 
Definition 2: Feasible label: it is a function 𝒷: 𝑋 → 𝑅, which satisfies the following 
condition: 𝒷(𝑥 ) + 𝒷(𝑥 ) ≥ 𝓌(𝑥 , 𝑥 ) ∀𝑥 ∈ 𝑋  ∀𝑥 ∈ 𝑋  (4)

Definition 3: Matched/exposed: considering a match 𝑀, the vertex 𝑥 is called matched 
if it is a vertex in 𝑀. Otherwise, it is exposed. 

Meanwhile, 𝐺  denotes the subgraph of 𝐺, which contains those edges that perfectly 
satisfy the feasible label, such as the following: 𝒷(𝑥 ) + 𝒷 𝑥 = 𝓌(𝑥 , 𝑥 ) (5)

Moreover, 𝐺  contains all the vertices of 𝐺. The K-M Algorithm 1 for solving the 
assignment problem is shown below. 
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Algorithm 1 Kuhn–Munkres Algorithm 
Input: A bipartite graph G = (X , 𝐸, X ), corresponding edge weights 𝓌(𝑥 , 𝑥 ) 
Output: the perfect matching M. 

Step 1: Generate initial labeling ℓ and match in Gℓ 
Step 2: If 𝑀 perfect, stop. Otherwise, pick a free vertex 𝑥 ∈ X . Set S = 𝑥  , T = ∅. 
Step 3: If ℐ (𝑋) = T, update labels (forcing ℐ (𝑋) ≠ T) with following Equations (6)  

and (7) αℓ = min∈ , ∉ 𝒷(𝑥 ) + 𝒷 𝑥 − 𝓌(𝑥 , 𝑥 )  (6) 𝒷 = 𝒷(x) − αℓ, 𝑥 ∈ 𝑆𝒷(x) + αℓ,        𝑥 ∈ 𝑇𝒷(x),        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (7) 

Step 4:  If ℐ (𝑋) ≠ T, choose y ∈ ℐ (𝑋) − 𝑇:     If y free, 𝓊 − 𝓎 is augmenting path. Augment M and go to 2 ∙   If y matched, say to 𝓏, extend alternating tree: S = S ∪ 𝓏 , T = T ∪ y. Go to 3 
 

The K-M algorithm can efficiently address assignment problems, especially small-
scale ones, e.g., transfer between two mini-batch samples. Meanwhile, Wasserstein dis-
tance as a useful divergence to measure the distance between two distributions has been 
widely used in the field of transfer learning. However, the performances of these methods 
leave much to be desired. Most of them used the approximation form of Wasserstein dis-
tance instead of calculating it directly. Actually, the calculation of Wasserstein distance is 
an assignment problem that could compute through the K-M algorithm. Thus, we pro-
posed a novel method using the K-M algorithm to address the discrepancy measurement 
of transferring between two domains. 

3. Proposed Method 
In this section, the proposed Wasserstein distance-based domain adaptive neural net-

work (WDA) is discussed. The architecture of the neural network and the objective of 
WDA are introduced. 

The framework of the proposed method is shown in Figure 2. Meanwhile, the de-
tailed architecture is shown in Figure 3. WDA is composed of two parts: CNN (feature 
extractor) and a fully connected layer to extract features (noted as G (𝜃 ,∙)), and a full-
connected layer (classifier) noted as G (𝜃 ,∙). The aim of CNN is to extract high-level fea-
tures from input data. Before high-level features are fed into the classifier, Wasserstein 
distance is used to regularize the features from two different domains. Thus, the CNN 
could extract features from different domains with similar distributions. Finally, the clas-
sifier is used to predict the health conditions of different signals. 
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Figure 2. Flow chart of the proposed framework for fault diagnosis on different working equipment. 
During the training phase, we narrow the gaps between the distributions. At the test phase, the 
WDA directly predicts the health conditions of unlabeled signals. 

 
Figure 3. The architecture of the proposed WDA. In the testing phase, the feature maps from the 
target domain are directly fed into the classifier. 

3.1. Network Architecture 
The architecture of WDA is shown in Figure 4. It contains two parts: feature extractor 

and fully connected classifier.  

 
Figure 4. Architecture of WDA. 
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As shown in Table 1, there are essentially 12 layers in the proposed WDA. The feature 
extractor block contains two Conv-BN-Pooling-activation modules and a full-connected 
layer. In addition, the classifier contains only one full-connected layer to predict the health 
conditions of input data. The details of WDA are shown in Table 2. Due to the different 
conditions of these methods, the ranges of labels vary from condition to condition, e.g., in 
some datasets, they are health, inner fault, and outer fault. However, in other datasets, 
there are four fault types: health, inner fault, outer fault, and rolling ball fault, where 𝒩  
means the number of classes of the models, and it should be 3 or 4.  

Table 1. Details of the classifier. 

No. Layer Name Kernel 
Size/Stride/Filters 

Parameters Sym-
bols  

Output 
Shape 

1 Convolution1 4 × 4/1/16 16(4 × 4 × 1 + 1) = 202 𝒲 𝒷 /ℬ  

(60,60,16) 
2 BatchNorm1 - 16 × 2 = 32 (60,60,16) 
3 MaxPooling1 4 × 4/1/1 - (30,30,16) 
4 ReLU - - (30, 30,16) 

5 Convolution2 3 × 3/1/64 
64 × 16 × (3 × 3 + 1) = 

10,240 𝒲 𝒷 /ℬ  

(28,28,64) 

6 BatchNorm2 - - (28,28,64) 
7 MaxPooling2 2 × 2/2/1 - (14,14,64) 
8 ReLU2 - - (14,14,64) 

9 Dense Layer1 - (14 × 14 × 64 × 96 + 1) = 
1,204,225 𝒲 𝒷  

96 

10 BatchNorm3 - - 96 
11 ReLU - - 96 

12 Dense Layer2 - (128 × 3 (4) + 1) = 
387/(513) 

𝒲 𝒷  𝒩  

Table 2. Description of the dataset. 

Dataset Sample Rate Resample Rate Loads Speed 
IMS 20 KHz 1 KHz 6000 lbs. 2000 RPM 

Self-collected 25 KHz 1 KHz 0 lbs. 900–1500 RPM 
CWRU 48 KHz 1 KHz 2 hp 1750 RPM 

3.2. Objective of WDA 
In the proposed WDA, the loss function consists of two parts: classification loss (ℓ ) 

on the source domain D  and domain adaptive loss (ℓ ) between source D  and target 
domains D . The classification loss aims at reducing the classification error on the source 
domain, and the domain adaptive loss aims to bridge the gap between the source domain 
and target domain. In the following section, they are introduced separately. 

3.2.1. Classification Loss 
Classification loss of WDA is a cross-entropy loss set as Equation (8), where softmax 

is described in Equation (9). As shown in Algorithm 1, G (𝜃 ,∙) represents the feature ex-
tractor and G (𝜃 ,∙) represents the classifier. Note that classification loss is only acted 
upon a source domain data whose labels are known. ℓ = 1𝑛 −log (𝑠𝑜𝑓𝑡𝑚𝑎𝑥(G (𝜃 , G (𝜃 , 𝑥 )))) ∙ 𝑦∈  (8)
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𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧 ) = 𝑒𝑥𝑝 (𝑧 )∑ 𝑒𝑥𝑝 (𝑧 )∈ _  (9)

3.2.2. Domain Adaptive Loss 
Usually, for the semi-supervised problems, most methods want to regularize the fea-

ture extractor to obtain the features of source and target domains in exactly the same dis-
tribution. However, it is too strict for transfer learning categorical models. Actually, for 
the classifier, especially the linear classifier, the real concern is the pattern of the features 
(e.g., orientation of features). We demonstrate it through the following equation:  𝑓(𝑊, 𝑏, 𝑠 ) = 𝑊𝑠 + 𝑏 (10)

As shown in Equation (10), a linear classifier, which is designed to classify output 
features from a feature extractor, is present to explain the mechanism, where 𝑊 ∈ 𝑅 ,  
indicates the weights of classifier, 𝑏 ∈ 𝑅  means the bias of the classifier, and 𝑠 ∈ 𝑅  in-
dicates the input feature of the classifier. If the label of the feature 𝑠  is 𝑦 , Equation (11) 
would be established: 𝑓(𝑊, 𝑏, 𝑠 ) > 𝑓(𝑊, 𝑏, 𝑠 )  𝑦 ≠ 𝑦 . (11)

As we utilize the ReLu activation function, there is an interesting characteristic that 𝑅𝑒𝐿𝑈(𝛼𝑠 ) = 𝛼𝑅𝑒𝐿𝑈(𝑠 ) (for 𝑠 ≤ 0, 𝑅𝑒𝐿𝑈(𝛼𝑠 ) = 0 = 𝛼𝑅𝑒𝐿𝑈(𝑠 )). From Equation (12), we 
can see that if the label of the feature 𝑠  is 𝑦 , the prediction of feature 𝛼 ∙ 𝑠  in the same 
orientation with 𝑠  is also 𝑦 , that is: 𝑓(𝑤, 𝑏, 𝛼 ∙ 𝑠 ) = 𝛼 ∙ 𝑓(𝑊, 𝑏, 𝑠 ) > 𝛼 ∙ 𝑓(𝑤, 𝑏, 𝑠 ) = 𝑓(𝑤, 𝑏, 𝛼 ∙ 𝑠 ) . (12)

Equation (12) shows that the scale of features actually does not affect the classification 
result. Thus, the traditional ways are limited by using the L2-norm to measure the dispar-
ities between two variables. It is noted that cosine similarity calculates the orientation di-
vergence of two vectors, which focuses more on the output pattern. Thus, for the feature 
extractor, we could use the cosine similarity to measure samples from different domains 
and change Wasserstein distance as: ℓ = 𝑖𝑛𝑓 ∈ ( , )𝐸( , )~ ℂ(𝑥 , 𝑥 ) (13)

where ℂ(x , x ) is cosine similarity from feature 𝑥 , 𝑥 , shown as the following: ℂ(𝑥 , 𝑥 )ℂ(𝑥 , 𝑥 ) = 𝑎𝑟𝑐𝑐𝑜𝑠 ( 𝑥 ∙ 𝑥‖𝑥 ‖ ∙ ‖𝑥 ‖) 1𝜋 (14)

Once the objectives and architecture of WDA are established, the optimization of the 
proposed method is introduced in the following section. 

3.3. Optimization of WDA 
Following the establishment of the architecture and objective of WDA, the training 

algorithms are introduced in this chapter. The optimization algorithm is shown in Algo-
rithm 2. 

Algorithm 2: Training WDA with ADAM optimization method 𝐍𝒄 = number of categories 
Initialize: initial WDA feature extractor parameters 𝜃  and classifier parameters 𝜃  
For the number of training iterations, do: ⦁ Sample minibatch of samples 𝑋 , 𝑌 = ({𝑥 … 𝑥 }, {𝑦 … 𝑦 }), from source domain sig-
nals distribution 𝑃 (𝑋, 𝑌), 𝑋 = {𝑥 … 𝑥 } from target domain 𝑃 (𝑋). ⦁ Extract feature from two different domains with two shared weights feature extractors
through Equation (15). 
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χ = G 𝜃 , 𝑋   χ = G 𝜃 , 𝑋    (15)⦁ Calculate the 𝑛 × 𝑛 cost matrix 𝐴 between the high-level features from source and tar-
get domains (Equation (16)). 𝐴[𝑖, 𝑗] ← ℂ χ , χ  𝑓𝑜𝑟 𝑖𝜖[1, 𝑁], 𝑗𝜖[1, 𝑁] (16)⦁ Use the K-M algorithm in Table.2 to address the assignment problem of cost matrix 𝐴. 

Input: bipartite graph G = X , 𝐸, X = χ , X = {χ , χ , … , χ }  X = {χ , χ , … , χ }  𝐸 = 𝐴  (17)

Output: permutations 𝑆. 
After obtaining optimal permutations 𝑆 = {𝑆 , 𝑆 … 𝑆 } , calculate Wasserstein distanceℓ : ℓ ← 𝐴[𝑖, 𝑆 ] (18)⦁ Calculate cross-entropy classification loss on the source domain. ℓ ← 1𝑛 −log (𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐺 (𝐺 𝑥 , 𝜃 , 𝜃 ))[𝑦 ]) (19)⦁ Calculate cross-entropy loss on the source domain. ⦁ Calculate loss. ℓ = ℓ + ℓ  (20)⦁ Backward propagation of ℓ, getting the gradients of parameters and updating the pa-
rameters 𝜃 , 𝜃 . 
end 

Moreover, in order to verify the choice of cosine similarity, we carried out experi-
ments that contain feature visualization and comparisons with state-of-the-art domain 
adaptive transfer learning methods. 

4. Case Study and Experiment Result 
In this section, experiments and analyses of the model that were carried out are 

shown. In order to verify the generalization of the proposed method, we separately inves-
tigated transfer scenarios on different mechanical parts, bearing and ball screws. WDA 
was written in python 3.6, Pytorch 0.4.1 training with Intel i3-8100 CPU, and a GTX1070 
GPU. 

4.1. CASE I: Bearing Fault Diagnosis 
In this section, the proposed method was trained and tested on three different do-

mains. There were three datasets named IMS dataset (α), self-collected bearing dataset (β), 
and CWRU bearing dataset (γ). We first give a brief introduction to those three datasets. 
Then, we present the data preprocessing procedures with implementation details and fi-
nally discuss the experimental results. 

4.1.1. α: IMS Bearing Dataset 
The data were generated by the NSF I/UCR Center for Intelligent Maintenance Sys-

tems (IMS) [46]. These sets of data contain four bearings that were run to failure under a 
constant load as shown in Figure 5a,b. Every 10 min, 1 s vibration signals were collected 
and saved into a file that contains 20,480 points for each bearing. IMS contains four differ-
ent conditions: health, inner fault, rolling elements fault, and outer fault. Radial load is 
6000 lbs., and rotation speed is kept constant at 2000 RPM under all conditions. 
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(a) (b) 

Figure 5. (a) Test rig of IMS dataset. (b) Illustration of IMS test rig. 

4.1.2. β: Self-Collected Bearing Dataset 
The second dataset was collected by the test rig shown in Figure 6. It contains an 

induction motor, an accelerometer, and a rotation shaft with two bearings for support. 
Bearing is in the type of 6204. The dataset contains three different health conditions: 
health, inner fault, and outer fault as shown in Figure 7. The dataset includes artificial 
defects, which are shown in Figure 6. Different rotation speeds were also collected, in-
cluding 900 RPM, 1020 RPM, 1140 RPM, 1260 RPM, 1380 RPM, and 1500 RPM, while the 
sample rate was 48 kHz. 

 
Figure 6. Test rig used to collect different speeds and different sample rate data. 

 
 

 
 

 
 

(a) EMD (b) Drilling (c)Pitting 

Figure 7. Different fault in testing bearings. 

4.1.3. γ: CWRU Bearing Dataset 
Data from dataset γ  were collected from Case Western Reserve University [47], 

whose test rig is shown in Figure 8. All faults in the dataset arise in the form of EMD. The 
experimental setup mainly contained an induction motor, an accelerometer, testing bear-
ings, and a loading motor. 
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Figure 8. Test rig used in Case Western Reserve University Lab [41]. 

Each bearing was tested under four different loads (1, 2, and 3 hp). In addition, dam-
ages caused by EMD lie in the outer race, inner race, or rollers of the bearings with fault 
diameters of 0.007, 0.014, and 0.021 inches (1 in. = 25.4 mm), respectively, which means 
that the number of categories under each load is 10. All of the information is listed in Table 
3. 

Table 3. The working condition of different loads. 

Index Supporting Speed (RPM) Loads (N.M) ζ Fixed—floating 1500 × Sin(5t)/400/1500 0/10/35 η Fixed—none 1500 × Sin(5t)/400/1500 0/10/35 

Data preprocessing and implementation details: In the proposed method, the short-
time Fourier transform is applied to the raw signals to obtain a time-frequency graph. For 
a window sliding on the raw signals at the same stride, we obtained the signals in the 
window and applied Fourier transform to it. With the above steps occurring, we could 
change a series of time-domain signals to a graph that fuses both time and frequency fea-
tures. In order to reduce the accidental noise, we applied normalization to the time-fre-
quency graph as: 𝑥∗ = 𝑥 − 𝜇𝜎  (21)

where x is input signals, and 𝜇 and  𝜎 are the average and standard deviation of the 
data, respectively. Through zero-mean normalization, the effect of the noise and zero drift 
on the data could be removed. 

In Figure 9 and Table 2, different datasets contain different signals collected in dif-
ferent sample rates. The sample rate greatly affects the characteristics of signals. Moreo-
ver, it is fixed for one dataset and artificially set. Thus, in the experiment, the signals were 
resampled to be the same (1 Kh). Meanwhile, short time Fourier transformation (STFT) 
was used as means of preprocessing. The kernel size of STFT was set to 128, and the stride 
was 5. Moreover, the size of the output time-frequency graph (TFG) was 128 × 63. Then 
it was clipped to 63 × 63 because TFG is symmetrical, and the first element was the dc 
component. Thus, the length of raw signals of a TFG was 128 + 62 × 5 = 438. Due to the 
fault types of different datasets: β, γ contained four health conditions, α contained three 
health conditions, and the number of samples in datasets was changed. The sample num-
ber of each health condition was 5000, e.g., in the transfer condition γ → α, the numbers 
of samples in train and test domains both were 20,000; however, in α → β, they were 
15,000. All the training and testing signals were randomly sampled from datasets. 
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Figure 9. Transfer pipeline of the proposed framework. Dataset α → dataset β denotes that we 
utilized the α as the source domain and the β as the target domain. 

During the training phase, we utilized the ADAM optimizer with the first and the 
second momentums as 0.9 and 0.999, respectively. We trained it for 100 epochs with the 
batch size set to 128. The learning rate was initialized to 0.003 and exponentially decayed 
with a factor of 0.98 for each epoch to 0.00013. The comparison methods are listed in Table 
4. The detailed information of training process of different methods is presented in Table 
5. CNN denotes a simple convolutional network without any transfer learning technique. 
SVM represents a support vector machine [48], which is also only trained on the source 
domain. DDC [34] and DANN [36] are image-based transfer learning algorithms. For fair 
comparison, we trained them with the time-frequency graph (TFG), which is the same as 
the proposed method. DCTLN [17] is a transfer learning-based deep neural network for 
bearing fault diagnosis. We trained those methods with the same protocols and recom-
mended hyper-parameters from the original paper for a fair comparison. 

Table 4. Accuracies of methods under different transfer conditions. 

Method CNN SVM DDC DANN DCTLN WDA ζ → η 53.30% 48.78% 67.50% 58.10% 74.34% 89.13% η → ζ 47.41% 49.60% 63.20% 66.53% 73.25% 80.54% 
Average 50.36% 49.19% 65.35% 63.32% 73.80% 84.84% 

Table 5. Description of the training process of different methods. 

Name Property Input Type 
CNN Supervised (only source domain) TFG 
SVM Supervised (only source domain) TFG 
DCC Transfer learning TFG 

DANN Transfer learning TFG 
DCTLN Transfer learning Time frequency signals 
WDA Transfer learning TFG 

The experiment results in Figure 10 and Table 6 show the excellent performance of 
the proposed method. No matter the traditional machine learning method or deep learn-
ing method, it is easy to obtain semi-supervised methods that could achieve better perfor-
mance than supervised methods. DCTLN as a transfer learning method designed for fault 
diagnosis showed its superiority over general transfer learning algorithms such as DCC 
and DANN. However, proposed WDA exceeded DCTLN in most conditions, especially 
conditions γ→β (from 80.60% to 98.96%). Although DCTLN achieved 89.70% on the γ →α, it only exceeded 1.67% to WDA. Moreover, WDA finally achieved an average accuracy 
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of 93.72%, more than 7.79% of DCTLN, and 16.45% and 22.87% of DANN and DCC, re-
spectively. 

 
Figure 10. Comparison accuracies of different methods. 

Table 6. Results of different transfer result. 

Method 𝛂 → 𝛃 𝛃 → 𝛂 𝛂 → 𝛄 𝛄 → 𝛂 𝛃 → 𝛄 𝛄 → 𝛃 Average 
CNN 75.95% 67.78% 52.83% 73.01% 70.34% 70.35% 67.98% 
SVM 60.72% 73.52% 61.35% 66.75% 73.65% 77.13% 68.85% 
DDC 74.56% 72.71% 75.45% 73.87% 69.91% 58.61% 70.85% 

DANN 78.80% 85.27% 81.80% 78.76% 73.72% 64.70% 77.18% 
DCTLN 87.98% 85.04% 89.90% 89.70% 82.36% 80.60% 85.93% 
WDA 94.89% 93.80% 97.96% 88.06% 88.64% 98.96% 93.72% 

4.2. CASE II: Ball Screw Fault Diagnosis 
In order to further investigate the domain adaptive ability of the proposed method, 

we set up a test rig for ball screw fault diagnosis, and some vibration signals were col-
lected from the machine, which is shown in Figure 11. 

 
Figure 11. Test rig for ball screw fault diagnosis. 

In order to simulate different working conditions, we collected the vibration signals 
of the ball screw under different forms of end supports. As shown in Table 4, there WERE 
two ball screw supporting forms: fixed-floating (ζ) and fixed-none (η). In the ζ set, the 
ball screws were fixed in one end and supported in a floating form on the other end. In 
the η set, the ball screws were fixed on one end and had no support on the other end. 

40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

α→β β→α α→γ γ→α β→γ γ→β Average

CNN SVM DDC DANN DCTLN WDA
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As seen in the Figure 12, all the transfer learning methods surpassed the traditional 
methods, showing that transfer learning is essential and effective to bridge the gap be-
tween different domains. Moreover, the experiment result shows that WDA had better 
performance than other state-of-the-art transfer learning methods. Compared to DCTLN, 
WDA improved about 11.04% more than DCTLN and 21.52% more than DANN. In the 
condition (‘ζ → η’), WDA reached an accuracy of 89.13%, greatly surpassing other meth-
ods. All this evidence shows that WDA as a transfer learning method has superiority over 
state-of-the-art methods. 

 
Figure 12. Accuracies of methods under different transfer conditions. 

4.3. Feature Visualization 
To further investigate the inner mechanism of the proposed method, we applied the 

feature visualization to output features of CNN from both source and target domains. 
Different colors represent different features from different health conditions, and the 
shapes of feature points represent different domains. 

In the feature visualization of Figure 13, the features in the whole training process of 
WDA are shown. The features in the training process gradually gathered into several 
lines, as in the WDA, cosine similarity was chosen to measure the differences of features 
from different domains. In addition, under the restriction of cosine similarity, features 
with the same characteristics (e.g., within the same category) turned to keep in the same 
line rather than a point, although there were some features that did not get in the same 
line with other features. However, this had little effect on the prediction accuracy of the 
proposed method. Moreover, we could see that with the training process going on, the 
source domain features were gradually grouped in several lines with target domain fea-
tures.  

  
(a) (b) 
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Figure 13. Feature visualization of the training process. 

5. The Limitation and Future Works 
The proposed method utilized the labeled source domain signals with unlabeled tar-

get domain signals for joint training. However, signals from target domains were still 
class-balanced, which is the limitation of the proposed method. In future works, we will 
continue to work on the transfer learning task to improve its practicability on the class-
unbalanced signals. Moreover, we also want to popularize this method into other transfer 
learning background problems. 

6. Conclusions 
In order to produce a more accurate fault diagnosis in unlabeled data, we proposed 

a Wasserstein distance-based transfer learning fault diagnosis method called WDA. In 
WDA, the K-M algorithm was introduced to directly calculate the Wasserstein distance. 
Unlike other methods that use L2-norm measuring the Wasserstein distance, in our meth-
ods, cosine similarity was used instead. Moreover, the conception of transfer learning and 
Wasserstein distance were well explained. Experiments showed that: (1) WDA had better 
performance than state-of-the-art transfer learning fault diagnosis methods and reached 
average accuracies of 93.72% and 84.84% on different mechanical parts transfer learning; 
(2) feature visualization also demonstrated that cosine similarity is efficient to group fea-
tures from different domains; and (3) the proposed methods could make use of available 
labeled signals to help unlabeled data classification, thus addressing the problem of the 
high cost of data labeling and insufficient labeled data. In the age of big data, with the cost 
of data labeling going up, making use of unlabeled data has become a hot research topic. 
Thus, transfer learning fault diagnosis requires more attention in research.  
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