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Abstract: With the growth of computing power, deep learning methods have recently been widely
used in machine fault diagnosis. In order to realize highly efficient diagnosis accuracy, people need
to know the detailed health condition of collected signals from equipment. However, in the actual
situation, it is costly and time-consuming to close down machines and inspect components. This
seriously impedes the practical application of data-driven diagnosis. In comparison, the full-labeled
machine signals from test rigs or online datasets can be achieved easily, which is helpful for the
diagnosis of real equipment. Thus, we introduced an improved Wasserstein distance-based transfer
learning method (WDA), which learns transferable features between labeled and unlabeled signals
from different forms of equipment. In WDA, Wasserstein distance with cosine similarity is applied to
narrow the gap between signals collected from different machines. Meanwhile, we use the Kuhn–
Munkres algorithm to calculate the Wasserstein distance. In order to further verify the proposed
method, we developed a set of case studies, including two different mechanical parts, five transfer
scenarios, and eight transfer learning fault diagnosis experiments. WDA reached an average accuracy
of 93.72% in bearing fault diagnosis and 84.84% in ball screw fault diagnosis, which greatly surpasses
state-of-the-art transfer learning fault diagnosis methods. In addition, comprehensive analysis and
feature visualization are also presented.

Keywords: intelligent bearing fault diagnosis; Wasserstein distance; convolutional neural network;
domain adaptive ability; Kuhn–Munkres algorithm

1. Introduction

With the rise of machine learning, especially deep learning, more and more data-
driven algorithms have been proposed and applied successfully in different fields in the
last few years [1–3]. Similarly, data-driven methods are increasingly suggested to deal
with problems in the field of machine health monitoring [4], which has great importance in
modern industry.

For example, Atoui et al. [5] presented Bayesian network for fault detection and
diagnosis, Rajakarunakaran S et al. [6] proposed artificial neural networks (ANN) for the
fault detection of the centrifugal pumping system, and Ivan et al. [7] suggested a novel
weighted adaptive recursive fault diagnosis method based on principal component analysis
(PCA) to reduce the false alarm rate in processing monitoring schemes. Recently, as deep
learning is rapidly developing, artificial intelligence methods are considered to handle the
fault detection and classification in rolling bearing elements, e.g., autoencoders [8] and
convolutional neural networks (CNN). Li et al. [9] proposed a bearing defect diagnosis
technique based on a fully connected winner-take-all autoencoder. Jafar Zarei [10] proposed
a pattern recognition technique for fault diagnosis of induction motor bearings via utilizing
the artificial multilayer perceptron neural networks. Olivier Janssens et al. [11] introduced
feature learning means for condition monitoring based on convolutional neural networks

Sensors 2021, 21, 4394. https://doi.org/10.3390/s21134394 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s21134394
https://doi.org/10.3390/s21134394
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21134394
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21134394?type=check_update&version=2


Sensors 2021, 21, 4394 2 of 19

to obtain signal features for bearing fault detection. Although many studies have been
conducted, most of them are only effective under a large amount of labeled data.

Through a brief review, it is obvious that most methods are only confirmed in theory,
and few are able to be applied in industry [12,13]. In a real industry situation, as machines
usually work in a healthy state, it is quite a difficult task to determine whether a fault has
occurred during the data collection. Moreover, even when the equipment breaking down
is known, it is difficult to point out the definite fault types disassembling and inspecting
the components such as bearings and ball screws in a machine, being time and labor-
consuming tasks. Additionally, the real machine always works under various working
conditions. Thus, the collected signals are combined with different data distributions.
Those scenarios in the industrial applications will seriously impact the performance of
data- based fault diagnosis.

To overcome problems of different working conditions, some researchers proposed
increasing the generalization ability of the algorithms, which are named domain adaption
techniques. For instance, Zhang et al. [14] proposed a deep neural network with high
diagnostic accuracy in diagnosing signals with high noise and signals from different
loads. In their work, the authors suggested that the high-level features of data from the
different working conditions have a more similar distribution and are less affected by
noise. Moreover, Zhu et al. [15] used capsule net to extract more general features from
the time-frequency spectrum and achieved higher diagnosis accuracy when dealing with
data from different loads. With such improvement strategies, artificial neural networks
have been proven to be a potential tool to deal with industry data. However, the above
methods only focus on the variation between working conditions (e.g., speed, loads) on
one machine, and they cannot handle the huge variations of mechanism between different
types of equipment.

Transfer learning theory has been introduced to machine fault diagnosis in order to
improve domain adaption ability among different machines. Transfer learning aims to
reduce the distribution discrepancy of diverse domains, as data from the target domain
have similar knowledge but different distribution compared to the source domain. For
example, Lu et al. [16] presented a deep model-based domain adaptation method for the
machine fault diagnosis. A gearbox dataset collected under different operation conditions
was used to test the performance of the proposed method. Wen et al. [17] set up a new deep
transfer learning method for fault diagnosis. The validation dataset was acquired from a
bearing testbed operating under different working conditions. Xie et al. [18] proposed a
transfer analysis-based gearbox fault diagnosis method. The performance of the presented
method was verified by a gearbox dataset obtained under various operation conditions.
Guo et al. [19] proposed deep transfer learning-based methods using maximum mean
discrepancy and adversarial training techniques together to regularize the discrepancy
between different domains. Sandeep et al. [20] presented a ConvNet-based transfer learning
method for bearing fault diagnosis with varying speeds. Hasan et al. [21] proposed a
transfer learning fault diagnosis framework using 2D acoustic spectral imaging-based
pattern formation method. Zhang et al. [22] introduced hybrid-weighted adversarial
learning to address the domain adaptation problem. Meanwhile, Zhang et al. [23] also
utilized federated learning to facilitate the mechanical fault diagnosis. However, the above
transfer learning methods took advantage of enough labeled data. Unfortunately, labeled
signals from the practical industrial machine are rare and hard to collect.

As the most critical issue during the process of transfer learning, modeling and
optimizing the discrepancy between different domains are the core of the proposed method.
As a stable and continuous measurement, Wasserstein distance has displayed its superiority
in different applications, e.g., image generation [24,25]. Thus, in this paper, we propose a
new method with excellent domain adaptive ability based on Wasserstein distance (WDA)
in order to deal with machine fault data from different machines. Cosine similarity and the
Kuhn–Munkres algorithm are introduced to improve transfer effects. The contributions of
this paper mainly lie in the following two parts:
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(1) To achieve classification on unlabeled signals, we propose a transfer learning
fault diagnosis method named WDA, which makes use of labeled signals from different
machines to help the classification of signals. In WDA, Wasserstein distance is applied
to manage the gaps between two distributions, during which we utilize cosine similarity
to measure the discrepancy between feature embeddings. Moreover, Kuhn-Munkres
algorithm is introduced to directly optimize the Wasserstein distance.

(2) We carried out extensive experiments to validate the effectiveness of the proposed
method on various transfer scenarios. Meanwhile, to better illustrate the training process
of high-dimensional feature embeddings, we also visualized the whole training process.

The structure of this paper is organized as follows. In Section 2, we introduce the
basic conception of transfer learning, Wasserstein distance, and the corresponding Kuhn-
Munkres algorithm. Following that, the proposed method and optimization algorithm
are discussed in Section 3. Then, the experiments are carried out in Section 4 to verify the
proposed method. Finally, the conclusion is drawn from the above experiments.

2. Related Works

In the field of machine learning, transfer learning is proposed to deal with the differ-
ences between the signals from the source domain and target domain, while Wasserstein
distance is a powerful criterion of the discrepancy. However, the calculation of Wasser-
stein distance belongs to the general assignment problem. Yet, in most of the research
work [26–28], there has hardly been one direct calculation of it. Thus, a brief introduction of
transfer learning, Wasserstein distance, and the solution of the general assignment problem
(GAP) are helpful to know about the development and the limitation of recent works.

2.1. Transfer Learning

Transfer learning is different from many other traditional machine learning methods,
which are established under the assumption that training data and test data are drawn from
the same distributions. To better illustrate transfer learning, we introduce two important
conceptions: domain and task, as follows [29].

To begin with, domain D includes two key components: feature space χ and marginal
distribution P(X), where X = {x1, . . . , xn} ∈ χ means that X is a set containing sam-
ples from feature space χ, e.g., the signals collected from the machine in different health
conditions. Then, a task consists of two components: a label space Y and an objective
function G(·), corresponding to the health conditions of signals and classification algo-
rithm. Generally speaking, the objective function could not be directly observed. How-
ever, it could be learned from training data, which consist of pairs {xi, yi}. with the
notion of source domain data Ds = {(xS1, yS1), . . . , (xSns, ySns)} and target domain data
DT = {(xT1, yT1), . . . , (xTnt, yTnt)}. The transfer learning could be defined as the following:

Given source domain DS and learning task TS, a target domain DT and learning task
TT transfer learning aims to help improve the performance of the predictive function fT(·)
in DT through using the knowledge in DS and TS, where DS 6= DT or TS 6= TT .

In the field of fault diagnosis, source and target domains usually are different. How-
ever, the tasks are equivalent, i.e., DS 6= DT , TS = TT . This kind of problem is also called
domain adaptation, belonging to transductive transfer learning [29,30]. For the transfer
learning problems, there are four different approaches to solve them: instance transfer, fea-
ture representation transfer, parameter transfer, and relational knowledge transfer. Among
them, the feature representation transfer is a widely used transfer learning method in
transfer fault diagnosis [18,19,31–33]. Moreover, there are currently two methods to bridge
the gap between two distributions: feature extractor regularization, applying regularization
terms on feature extractor to obtain features extracted from different domains in similar
distributions, or using adversarial training methods to close two distributions.

Firstly, maximum mean discrepancy [34,35] and Wasserstein distance are widely
used to measure discrepancies in domain adaptation transfer learning. They are used
to regularize the output feature of the feature extractor to obtain equivalent marginal
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distribution. Secondly, some adversarial training methods such as DANN [36] are also
proposed to narrow the gap between source and target domain. Most of them use adver-
sarial training techniques in artificial neural networks to manage the gap of two different
distributions. However, these training methods suffer problems, e.g., those methods are
hard to train [37,38] and converge to a high-performance result. Thus, a high accuracy
method is badly needed.

2.2. Wasserstein Distance

Wasserstein distance, also called earth mover’s distance, is a metric to measure the
discrepancy between two distributions, and it is widely used in domain adaptation, e.g.,
WGAN [24] and BEGAN [39]. Wasserstein distance is generally based on a way that
transforms one distribution to the other with minimal cost.

As shown in Figure 1a, different discrepancies of two domains are represented, which
could also be considered as the cost of transporting distribution from one domain to the
other. We define the transporting cost as:

` =
1

na + nb

(
na

∑
i=1
F (`ai) +

nb

∑
j=1
F
(
`bj

))
(1)

where na, nb denote the numbers of samples of different fault types, and F (·) represents
a function measuring the difference between two samples, which usually is L2-norm or
L1-norm. As shown in Figure 1b, Wasserstein distance (noted as `1) is used to transport
the feature from the source domain to the target domain with minimal cost. The other
transport method, e.g., `2, shown in Figure 1b, is higher than `1.
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The formula of Wasserstein distance (`w) is shown as:

`w = in fγ∈Γ(µ1,µ2)
E(x1,x2)∼γ`(x1, x2) (2)

From the above equation, we can see that the Wasserstein distance is a low bound of
the cost to transform a distance between two distributions. Berthelot et al. also proposed
BEGAN to optimize the lower bound of Wasserstein distance to achieve better performance
on image generation [39]. Note that all the above methods are unsupervised methods.
Different from supervised or semi-supervised methods, unsupervised methods do not care
about the similarity of distributions of the input and output domains. However, it would
remain a huge problem, especially in the beginning training stage, if the discriminator is
extremely unstable. Moreover, it is difficult to use it to regularize the feature extractor.
Moreover, the discriminator could only be said to safely match the 1-Lipschitz function in
the features that already are trained with the discriminator. That is, with the training process
going on, the distribution of the high-level features may change, and that discriminator
may not correctly calculate the distance between features from two domains. Thus, the
methods based on adversarial training struggle to achieve high performance.
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2.3. General Assignment Problem and Kuhn–Munkres Algorithm

The calculation of Wasserstein distance belongs to a general assignment problem
(GAP) while the samples of two distributions are equal. Considering that there are m
samples from source domain {xS1, . . . , xSm} and n samples {xT1, . . . , xTn} from target
domain, without loss of generality, we assume that n ≤m. Any target samples xTj could
be assigned to the source xSi. Each pair

{
xSi, xTj

}
has a cost c

(
xSi, xTj

)
to transfer from

xTj to xSi. The task is to assign n target samples to m source samples with the minimal
cost, which is also the Wasserstein distance between two distributions. Moreover, the
assignment problem could be formulated as the following optimization problem:

min
m

∑
i=1

\

∑
j=1
c
(

xSi, xTj
)
·Ti,js.t. 0 ≤

m

∑
i=1
Ti,j ≤ 1,

\

∑
j=1
Ti,j = 1, Ti,j ∈ {0, 1}. (3)

The K-M algorithm [40] could be implanted through different versions: graph [41,42]
or matrix [43]. Unlike the adversarial learning-based methods, which utilize discrimina-
tor to approximate Wasserstein distance of two distributions [26,28], in this section, we
introduce the K-M algorithm through graph perspective, which has been applied to the
applications such as multi-objective optimization [44] and role transfer [45]. Consider-
ing a bipartite graph G =

(
XSi, E, XTj

)
, where E means the edges of pairs

(
xSi, xTj

)
and

E ∈ XSi × XTj, we introduce the following three definitions:

Definition 1: Neighborhood: the neighborhood of a vertices x is the set IG(x) with all vertices
sharing edges with x; similarly, the neighborhood of a set X is IG(X), whose all vertices are sharing
edges with any vertices in X.

Definition 2: Feasible label: it is a function b : X → R , which satisfies the following condition:

b(xSi) + b
(
xTj
)
≥ w

(
xSi, xTj

)
∀xSi ∈ XS ∀xTi ∈ XT (4)

Definition 3: Matched/exposed: considering a match M, the vertex x is called matched if it is a
vertex in M. Otherwise, it is exposed.

Meanwhile, Gl denotes the subgraph of G, which contains those edges that perfectly
satisfy the feasible label, such as the following:

b(xSi) + b
(
xTj
)
= w

(
xSi, xTj

)
(5)

Moreover, Gl contains all the vertices of G. The K-M Algorithm 1 for solving the
assignment problem is shown below.

The K-M algorithm can efficiently address assignment problems, especially small-scale
ones, e.g., transfer between two mini-batch samples. Meanwhile, Wasserstein distance as a
useful divergence to measure the distance between two distributions has been widely used
in the field of transfer learning. However, the performances of these methods leave much
to be desired. Most of them used the approximation form of Wasserstein distance instead
of calculating it directly. Actually, the calculation of Wasserstein distance is an assignment
problem that could compute through the K-M algorithm. Thus, we proposed a novel
method using the K-M algorithm to address the discrepancy measurement of transferring
between two domains.
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Algorithm 1. Kuhn–Munkres Algorithm

Input: A bipartite graph G = (XS, E, XT), corresponding edge weights w
(

xSi, xTj

)
Output: the perfect matching M.

Step 1: Generate initial labeling ` and match in G`

Step 2: If M perfect, stop. Otherwise, pick a free vertex xSi ∈ XS. Set S = xSi, T = ∅.
Step 3: If IS(X) = T, update labels (forcing IS(X) 6= T) with following Equations (6) and (7)

α` = min
s∈S,y/∈T

{
b(xSi) + b

(
xTj

)
−w

(
xSi, xTj

)}
(6)

b̂ =


b(x)− α`, x ∈ S
b(x) + α`, x ∈ T
b(x), otherwise

(7)

Step 4: If IS(X) 6= T, choose y ∈ IS(X)− T:
If y free, u− y is augmenting path. Augment M and go to 2

If y matched, say to z, extend alternating tree: S = S∪ z, T = T∪ y. Go to

3. Proposed Method

In this section, the proposed Wasserstein distance-based domain adaptive neural
network (WDA) is discussed. The architecture of the neural network and the objective of
WDA are introduced.

The framework of the proposed method is shown in Figure 2. Meanwhile, the detailed
architecture is shown in Figure 3. WDA is composed of two parts: CNN (feature extractor)
and a fully connected layer to extract features (noted as G1

(
θ f , ·

)
), and a full-connected

layer (classifier) noted as G2(θc, ·). The aim of CNN is to extract high-level features from
input data. Before high-level features are fed into the classifier, Wasserstein distance is
used to regularize the features from two different domains. Thus, the CNN could extract
features from different domains with similar distributions. Finally, the classifier is used to
predict the health conditions of different signals.
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Figure 2. Flow chart of the proposed framework for fault diagnosis on different working equipment.
During the training phase, we narrow the gaps between the distributions. At the test phase, the WDA
directly predicts the health conditions of unlabeled signals.
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Figure 3. The architecture of the proposed WDA. In the testing phase, the feature maps from the target domain are directly
fed into the classifier.

3.1. Network Architecture

The architecture of WDA is shown in Figure 4. It contains two parts: feature extractor
and fully connected classifier.
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As shown in Table 1, there are essentially 12 layers in the proposed WDA. The feature
extractor block contains two Conv-BN-Pooling-activation modules and a full-connected
layer. In addition, the classifier contains only one full-connected layer to predict the health
conditions of input data. The details of WDA are shown in Table 2. Due to the different
conditions of these methods, the ranges of labels vary from condition to condition, e.g.,
in some datasets, they are health, inner fault, and outer fault. However, in other datasets,
there are four fault types: health, inner fault, outer fault, and rolling ball fault, where No
means the number of classes of the models, and it should be 3 or 4.
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Table 1. Details of the classifier.

No. Layer Name Kernel
Size/Stride/Filters Parameters Symbols Output Shape

1 Convolution1 4 × 4/1/16 16(4 × 4 × 1 + 1) = 202

W1b1/B1

(60,60,16)
2 BatchNorm1 - 16 × 2 = 32 (60,60,16)
3 MaxPooling1 4 × 4/1/1 - (30,30,16)
4 ReLU - - (30,30,16)

5 Convolution2 3 × 3/1/64 64 × 16 × (3 × 3 + 1) = 10,240

W2b2/B2

(28,28,64)
6 BatchNorm2 - - (28,28,64)
7 MaxPooling2 2 × 2/2/1 - (14,14,64)
8 ReLU2 - - (14,14,64)

9 Dense Layer1 - (14 × 14 × 64 × 96 + 1) = 1,204,225
W3b3

96
10 BatchNorm3 - - 96
11 ReLU - - 96

12 Dense Layer2 - (128 × 3 (4) + 1) = 387/(513) W4b4 No

Table 2. Description of the dataset.

Dataset Sample Rate Resample Rate Loads Speed

IMS 20 KHz 1 KHz 6000 lbs. 2000 RPM
Self-collected 25 KHz 1 KHz 0 lbs. 900–1500 RPM

CWRU 48 KHz 1 KHz 2 hp 1750 RPM

3.2. Objective of WDA

In the proposed WDA, the loss function consists of two parts: classification loss (`c)
on the source domain DS and domain adaptive loss (`w) between source DS and target
domains DT . The classification loss aims at reducing the classification error on the source
domain, and the domain adaptive loss aims to bridge the gap between the source domain
and target domain. In the following section, they are introduced separately.

3.2.1. Classification Loss

Classification loss of WDA is a cross-entropy loss set as Equation (8), where softmax
is described in Equation (9). As shown in Algorithm 1, G1

(
θ f , ·

)
represents the feature

extractor and G2(θc, ·) represents the classifier. Note that classification loss is only acted
upon a source domain data whose labels are known.

`c =
1
n ∑

i∈n
− log

(
so f tmax

(
G2

(
θc, G1

(
θ f , xi

s

))))
·yi

s (8)

so f tmax(zi0) =
exp(zi0)

∑i∈num_class exp(zi)
(9)

3.2.2. Domain Adaptive Loss

Usually, for the semi-supervised problems, most methods want to regularize the
feature extractor to obtain the features of source and target domains in exactly the same
distribution. However, it is too strict for transfer learning categorical models. Actually, for
the classifier, especially the linear classifier, the real concern is the pattern of the features
(e.g., orientation of features). We demonstrate it through the following equation:

f (W, b, si) = Wsi + b (10)

As shown in Equation (10), a linear classifier, which is designed to classify output
features from a feature extractor, is present to explain the mechanism, where W ∈ Rn,m
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indicates the weights of classifier, b ∈ Rm means the bias of the classifier, and si ∈ Rn

indicates the input feature of the classifier. If the label of the feature si is yi, Equation (11)
would be established:

f (W, b, si)yi > f (W, b, sk)yk yk 6= yi. (11)

As we utilize the ReLu activation function, there is an interesting characteristic that
ReLU(αsi) = αReLU(si) (for si ≤ 0, ReLU(αsi) = 0 = αReLU(si)). From Equation (12),
we can see that if the label of the feature si is yi, the prediction of feature α·si in the same
orientation with si is also yi, that is:

f (w, b, α·si)yi = α· f (W, b, si)yi > α· f (w, b, sk)yk = f (w, b, α·sk)yk. (12)

Equation (12) shows that the scale of features actually does not affect the classification
result. Thus, the traditional ways are limited by using the L2-norm to measure the dis-
parities between two variables. It is noted that cosine similarity calculates the orientation
divergence of two vectors, which focuses more on the output pattern. Thus, for the feature
extractor, we could use the cosine similarity to measure samples from different domains
and change Wasserstein distance as:

`w = in fγ∈Γ(µ1,µ2)
E(x1,x2)∼γC(x1, x2) (13)

where C(x1, x2) is cosine similarity from feature x1, x2, shown as the following:

C(x1, x2)C(x1, x2) = arccos
(

x1·x2

‖x1‖·‖x2‖

)
1
π

(14)

Once the objectives and architecture of WDA are established, the optimization of the
proposed method is introduced in the following section.

3.3. Optimization of WDA

Following the establishment of the architecture and objective of WDA, the training algo-
rithms are introduced in this chapter. The optimization algorithm is shown in Algorithm 2.

Moreover, in order to verify the choice of cosine similarity, we carried out experiments
that contain feature visualization and comparisons with state-of-the-art domain adaptive
transfer learning methods.
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Algorithm 2. Training WDA with ADAM optimization method Nc = number of categories

Initialize: initial WDA feature extractor parameters θ f and classifier parameters θg
For the number of training iterations, do:

• Sample minibatch of samples
(

Xi
S, Yi

S

)
=
({

x1
S . . . xn

S
}

,
{

y1
S . . . yn

S
})

, from source domain

signals distribution PS(X, Y), X j
T =

{
x1

T . . . xn
T
}

from target domain PT(X).
• Extract feature from two different domains with two shared weights feature extractors through
Equation (15).  χi

S = G1

(
θ f , Xi

S

)
χi

T = G1

(
θ f , Xi

T

) (15)

• Calculate the n× n cost matrix A between the high-level features from source and target
domains (Equation (16)).

A[i, j]← C
(
χi

S,χj
T

)
f or iε[1, N], jε[1, N] (16)

• Use the K-M algorithm in Table 2 to address the assignment problem of cost matrix A.

Input: bipartite graph G =
(

XS, E, XT = χi
T

)
,


XS =

{
χ1

S,χ2
S, . . . ,χn

S
}

XT =
{
χ1

T ,χ2
T , . . . ,χn

T
}

E = A

(17)

Output: permutations S.
After obtaining optimal permutations S = {S1, S2 . . . Sn}, calculate Wasserstein distance `d:

`d ←
n

∑
i=1

A[i, Si] (18)

• Calculate cross-entropy classification loss on the source domain.

`c ←
1
n

n

∑
i=1
− log

(
so f tmax

(
G2

(
G1

(
xi

S, θ f

)
, θg

))[
yi

S

])
(19)

• Calculate cross-entropy loss on the source domain.
• Calculate loss.

` = `c + `d (20)

• Backward propagation of `, getting the gradients of parameters and updating the parameters
θ f , θg.
end

4. Case Study and Experiment Result

In this section, experiments and analyses of the model that were carried out are shown.
In order to verify the generalization of the proposed method, we separately investigated
transfer scenarios on different mechanical parts, bearing and ball screws. WDA was written
in python 3.6, Pytorch 0.4.1 training with Intel i3-8100 CPU, and a GTX1070 GPU.

4.1. CASE I: Bearing Fault Diagnosis

In this section, the proposed method was trained and tested on three different domains.
There were three datasets named IMS dataset (α), self-collected bearing dataset (β), and
CWRU bearing dataset (γ). We first give a brief introduction to those three datasets. Then,
we present the data preprocessing procedures with implementation details and finally
discuss the experimental results.
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4.1.1. α: IMS Bearing Dataset

The data were generated by the NSF I/UCR Center for Intelligent Maintenance
Systems (IMS) [46]. These sets of data contain four bearings that were run to failure
under a constant load as shown in Figure 5a,b. Every 10 min, 1 s vibration signals were
collected and saved into a file that contains 20,480 points for each bearing. IMS contains
four different conditions: health, inner fault, rolling elements fault, and outer fault. Radial
load is 6000 lbs., and rotation speed is kept constant at 2000 RPM under all conditions.
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Figure 5. (a) Test rig of IMS dataset. (b) Illustration of IMS test rig.

4.1.2. β: Self-Collected Bearing Dataset

The second dataset was collected by the test rig shown in Figure 6. It contains an
induction motor, an accelerometer, and a rotation shaft with two bearings for support.
Bearing is in the type of 6204. The dataset contains three different health conditions: health,
inner fault, and outer fault as shown in Figure 7. The dataset includes artificial defects,
which are shown in Figure 6. Different rotation speeds were also collected, including
900 RPM, 1020 RPM, 1140 RPM, 1260 RPM, 1380 RPM, and 1500 RPM, while the sample
rate was 48 kHz.
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4.1.3. γ: CWRU Bearing Dataset

Data from dataset γ were collected from Case Western Reserve University [47], whose
test rig is shown in Figure 8. All faults in the dataset arise in the form of EMD. The experi-
mental setup mainly contained an induction motor, an accelerometer, testing bearings, and
a loading motor.
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Each bearing was tested under four different loads (1, 2, and 3 hp). In addition,
damages caused by EMD lie in the outer race, inner race, or rollers of the bearings with
fault diameters of 0.007, 0.014, and 0.021 inches (1 in. = 25.4 mm), respectively, which
means that the number of categories under each load is 10. All of the information is listed
in Table 3.

Table 3. The working condition of different loads.

Index Supporting Speed (RPM) Loads (N.M)

ζ Fixed—floating 1500 × Sin(5t)/400/1500 0/10/35
η Fixed—none 1500 × Sin(5t)/400/1500 0/10/35

Data preprocessing and implementation details: In the proposed method, the short-time
Fourier transform is applied to the raw signals to obtain a time-frequency graph. For a
window sliding on the raw signals at the same stride, we obtained the signals in the window
and applied Fourier transform to it. With the above steps occurring, we could change a series
of time-domain signals to a graph that fuses both time and frequency features. In order to
reduce the accidental noise, we applied normalization to the time-frequency graph as:

x∗ =
x− µ

σ
(21)
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where x is input signals, and µ and σ are the average and standard deviation of the data,
respectively. Through zero-mean normalization, the effect of the noise and zero drift on the
data could be removed.

In Figure 9 and Table 2, different datasets contain different signals collected in different
sample rates. The sample rate greatly affects the characteristics of signals. Moreover, it
is fixed for one dataset and artificially set. Thus, in the experiment, the signals were
resampled to be the same (1 Kh). Meanwhile, short time Fourier transformation (STFT)
was used as means of preprocessing. The kernel size of STFT was set to 128, and the stride
was 5. Moreover, the size of the output time-frequency graph (TFG) was 128× 63. Then
it was clipped to 63× 63 because TFG is symmetrical, and the first element was the dc
component. Thus, the length of raw signals of a TFG was 128 + 62× 5 = 438. Due to the
fault types of different datasets: β, γ contained four health conditions, α contained three
health conditions, and the number of samples in datasets was changed. The sample number
of each health condition was 5000, e.g., in the transfer condition γ→ α , the numbers of
samples in train and test domains both were 20,000; however, in α→ β , they were 15,000.
All the training and testing signals were randomly sampled from datasets.

During the training phase, we utilized the ADAM optimizer with the first and the
second momentums as 0.9 and 0.999, respectively. We trained it for 100 epochs with the
batch size set to 128. The learning rate was initialized to 0.003 and exponentially decayed
with a factor of 0.98 for each epoch to 0.00013. The comparison methods are listed in
Table 4. The detailed information of training process of different methods is presented
in Table 5. CNN denotes a simple convolutional network without any transfer learning
technique. SVM represents a support vector machine [48], which is also only trained on the
source domain. DDC [34] and DANN [36] are image-based transfer learning algorithms.
For fair comparison, we trained them with the time-frequency graph (TFG), which is
the same as the proposed method. DCTLN [17] is a transfer learning-based deep neural
network for bearing fault diagnosis. We trained those methods with the same protocols
and recommended hyper-parameters from the original paper for a fair comparison.
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Table 4. Accuracies of methods under different transfer conditions.

Method CNN SVM DDC DANN DCTLN WDA

ζ→ η 53.30% 48.78% 67.50% 58.10% 74.34% 89.13%
η→ ζ 47.41% 49.60% 63.20% 66.53% 73.25% 80.54%

Average 50.36% 49.19% 65.35% 63.32% 73.80% 84.84%

Table 5. Description of the training process of different methods.

Name Property Input Type

CNN Supervised (only source
domain) TFG

SVM Supervised (only source
domain) TFG

DCC Transfer learning TFG
DANN Transfer learning TFG
DCTLN Transfer learning Time frequency signals
WDA Transfer learning TFG

The experiment results in Figure 10 and Table 6 show the excellent performance of the
proposed method. No matter the traditional machine learning method or deep learning
method, it is easy to obtain semi-supervised methods that could achieve better performance
than supervised methods. DCTLN as a transfer learning method designed for fault diagnosis
showed its superiority over general transfer learning algorithms such as DCC and DANN.
However, proposed WDA exceeded DCTLN in most conditions, especially conditions γ→β

(from 80.60% to 98.96%). Although DCTLN achieved 89.70% on the γ→ α , it only exceeded
1.67% to WDA. Moreover, WDA finally achieved an average accuracy of 93.72%, more than
7.79% of DCTLN, and 16.45% and 22.87% of DANN and DCC, respectively.
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Table 6. Results of different transfer result.

Method α→β β→α α→γ γ→α β→γ γ→β Average

CNN 75.95% 67.78% 52.83% 73.01% 70.34% 70.35% 67.98%
SVM 60.72% 73.52% 61.35% 66.75% 73.65% 77.13% 68.85%
DDC 74.56% 72.71% 75.45% 73.87% 69.91% 58.61% 70.85%

DANN 78.80% 85.27% 81.80% 78.76% 73.72% 64.70% 77.18%
DCTLN 87.98% 85.04% 89.90% 89.70% 82.36% 80.60% 85.93%
WDA 94.89% 93.80% 97.96% 88.06% 88.64% 98.96% 93.72%
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4.2. CASE II: Ball Screw Fault Diagnosis

In order to further investigate the domain adaptive ability of the proposed method,
we set up a test rig for ball screw fault diagnosis, and some vibration signals were collected
from the machine, which is shown in Figure 11.
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Figure 11. Test rig for ball screw fault diagnosis.

In order to simulate different working conditions, we collected the vibration signals
of the ball screw under different forms of end supports. As shown in Table 4, there WERE
two ball screw supporting forms: fixed-floating (ζ) and fixed-none (η). In the ζ set, the ball
screws were fixed in one end and supported in a floating form on the other end. In the η

set, the ball screws were fixed on one end and had no support on the other end.
As seen in the Figure 12, all the transfer learning methods surpassed the traditional

methods, showing that transfer learning is essential and effective to bridge the gap be-
tween different domains. Moreover, the experiment result shows that WDA had better
performance than other state-of-the-art transfer learning methods. Compared to DCTLN,
WDA improved about 11.04% more than DCTLN and 21.52% more than DANN. In the
condition (‘ζ→ η ’), WDA reached an accuracy of 89.13%, greatly surpassing other meth-
ods. All this evidence shows that WDA as a transfer learning method has superiority over
state-of-the-art methods.
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4.3. Feature Visualization

To further investigate the inner mechanism of the proposed method, we applied
the feature visualization to output features of CNN from both source and target domains.
Different colors represent different features from different health conditions, and the shapes
of feature points represent different domains.

In the feature visualization of Figure 13, the features in the whole training process of
WDA are shown. Figure 13a–f indicates the visualizations of intermedia feature maps by
PCA with the proposed fault diagnosis method from 0 to 100 epochs. The features in the
training process gradually gathered into several lines, as in the WDA, cosine similarity was
chosen to measure the differences of features from different do-mains. In addition, under
the restriction of cosine similarity, features with the same characteristics (e.g., within the
same category) turned to keep in the same line rather than a point, although there were
some features that did not get in the same line with other features. However, this had little
effect on the prediction accuracy of the proposed method. Moreover, we could see that
with the training process going on, the source domain features were gradually grouped in
several lines with target domain features.
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5. The Limitation and Future Works

The proposed method utilized the labeled source domain signals with unlabeled
target domain signals for joint training. However, signals from target domains were still
class-balanced, which is the limitation of the proposed method. In future works, we will
continue to work on the transfer learning task to improve its practicability on the class-
unbalanced signals. Moreover, we also want to popularize this method into other transfer
learning background problems.

6. Conclusions

In order to produce a more accurate fault diagnosis in unlabeled data, we proposed a
Wasserstein distance-based transfer learning fault diagnosis method called WDA. In WDA,
the K-M algorithm was introduced to directly calculate the Wasserstein distance. Unlike
other methods that use L2-norm measuring the Wasserstein distance, in our methods,
cosine similarity was used instead. Moreover, the conception of transfer learning and
Wasserstein distance were well explained. Experiments showed that: (1) WDA had better
performance than state-of-the-art transfer learning fault diagnosis methods and reached
average accuracies of 93.72% and 84.84% on different mechanical parts transfer learning;
(2) feature visualization also demonstrated that cosine similarity is efficient to group
features from different domains; and (3) the proposed methods could make use of available
labeled signals to help unlabeled data classification, thus addressing the problem of the
high cost of data labeling and insufficient labeled data. In the age of big data, with the cost
of data labeling going up, making use of unlabeled data has become a hot research topic.
Thus, transfer learning fault diagnosis requires more attention in research.
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