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Abstract: The Industrial Internet of Things (IIoT) could enhance automation and analytics in indus-
trial environments. Despite the promising benefits of IIoT, securely managing software updates
is a challenging problem for those critical applications. This is due to at least the intrinsic lack of
software protection mechanisms in legacy industrial systems. In this paper, to address the challenges
in building a secure software supply chain for industrial environments, we propose a new approach
that leverages distributed watchdogs with blockchain systems in protecting software supply chains.
For this purpose, we bind every entity with a unique identity in the blockchain and employ the
blockchain as a delegated authenticator by mapping every reporting action to a non-fungible token
transfer. Moreover, we present a detailed specification to clearly define the behavior of systems and
to apply model checking.

Keywords: IIoT; software update; blockchain

1. Introduction

The Industrial Internet of Things (IIoT) has emerged as a new technology that adopts
the Internet of Things (IoT) for industrial applications. IIoT has a similar configuration to
the IoT. Numerous IoT devices continuously monitor industrial areas and regularly report
the sensing data to a sink node, which is designated to collect data. Industrial automation
and analytics could benefit from using the collected data in IIoT [1]. Thus, many companies
are actively working on building the new IoT ecosystems [2].

One of the traditional concerns for industrial devices has been an operational failure,
referred to as a crash. To deal with this problem, a watchdog timer circuit was developed
to check whether the devices are working properly or not, by regularly sending a query
signal and monitoring the output signals [3,4]. However, the crash of industrial devices is
getting more complicated because smart industrial devices have become reprogrammable
via software updates. This tendency has led to the evolution of the crash failure model to
the Byzantine failure model, wherein industrial devices may be compromised and made to
behave maliciously by remote attackers.

The software updates are delivered through the software supply chain. Recently, Over-
The-Air (OTA) software updates based on wireless communications have been widely
adopted in IIoT environments [5] consisting of a number of small devices, such as wireless
sensors. The OTA update is an appropriate way to manage such a large number of devices.
Large and scalable IIoTs are usually based on mesh or ad hoc networks, and their external
connections are restricted only within a time window [6].

Unfortunately, securing OTA software updates in IIoT environments is a challenging
problem. The security concerns of the software update are recurrently addressed in a
variety of literature [7–9]. NIST published a technical paper on secure software updates [10]
and analyzed the incidents and attack models of software supply chains. The attackers
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could hijack software updates and abuse the code signing. Attackers could resend old
software updates or make them be delivered to the wrong targets. In the latter cases,
although the update package is still legitimate, the targets could be put in danger. In 2017,
mismatched software updates were installed on hundreds of IoT smart-lock devices, which
caused the failure of some automatic check-in services of Airbnb [11]. The illegitimate
software updates can harm the system itself. San et al. [12] showed that the attackers
could stealthily inject instructions into Field Programmable Gate Array (FPGA) firmware
to intrude hardware systems.

Software updates should be protected by carefully dealing with the software supply
chain in IIoT systems. Current protection mechanisms using end-to-end means, such as
code signing [13,14], have been rigorously tested, but basic protection mechanisms are still
insufficient in the industrial environments [15]. Industrial devices should also be protected
from internal attacks [15] launched by compromised nodes that are only discoverable by
Internet scanning or pre-scanned databases (e.g., Shodan) [16].

Watchdog. Advanced watchdog approaches [17–20] in the Byzantine failure model
are well known Intrusion Detection Systems (IDS). A watchdog observes the behavior of
the target devices. Once a watchdog observes that one of a number of predefined behavior
patterns is happening, it reports that event to a centralized entity or shares it with others
in a distributed manner for further actions. The watchdog approach has been widely
adapted. A host-based watchdog monitors a local system, and a network-based watchdog
analyzes network traffic [21,22]. In particular, the distributed and network-based watchdog
approaches are suitable for monitoring a number of devices in the new IIoT environment.

In the distributed watchdog system, all processes heavily depend on the majority
voting of the participating nodes. However, authenticating reports and votes has been
a long-standing and hard challenge [23] in distributed watching models. To solve this
problem, blockchain-based approaches for Collaborative Intrusion Detection Systems
(CIDS) have recently been proposed in [23,24]. The blockchain [25] enables distributed,
immutable time-series records of validated transactions. Hence, it can be a solution for
sharing authenticated status/results for distributed watchdogs. However, most consen-
sus algorithms require a high level of computation or communicational overhead. The
blockchain approach must be carefully applied to power constrained IIoT devices.

Our Approach. To summarize, in building a secure supply chain of software updates,
we address the following problems: (1) we need a method to check the validity of the
software updates in both text (binary object) and context (trace and metadata); and (2)
we have to efficiently handle the data sharing and trust management of the distributed
watchdogs. To address these problems, we propose a new distributed watchdog method,
called “INDWATCH”. We leverage a blockchain and protect every entity and every action
by converting them into controllable, non-fungible entities in the blockchain system. We
assign an account (or an address) to all entities, from tangible entities (e.g., watchdogs)
to intangible entities (e.g., the binary objects). In addition, the actions of all entities are
mapped by transferring an event token from the initiator’s account to the target’s address.
For example, when a watchdog monitors its coverage area and detects one of the predefined
events on a binary object, it sends an event token to the address of the observed binary
object. The balance of the event tokens represents the reputation of the entity. When the
balance falls below a threshold, the entity (i.e., binary objects or relaying nodes) is isolated
from the software supply chain. Every transaction of the token transfer is checked by the
underlying blockchain system; thus, the originator is authenticated (a transaction requires
the owner’s valid digital signature) and authorized (one can transfer owned event tokens
only) simultaneously.

The tangible entities of INDWATCH are providers, watchdogs, and recipients. A provider
prepares a binary object for the software update. A binary object is also an independent
entity in INDWATCH. The provider creates an account in the blockchain system for the binary
object and securely binds the binary object to the account. The account can hold the context
data on the binary object. The context has an invariant part (e.g., binary object fingerprints)
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and a mutable part (e.g., delivery traces). A watchdog monitors all incoming and outgoing
binary objects and reports an event by sending an event token with the observed information
to the address of the binary objects. When the binary object finally reaches the recipient, the
latter validates it with the context and notifies of the arrival through the event token. The
authenticated information from the event token updates the balance of the targets. Based on
this balance, an agent called “judge” in the blockchain system detects corrupt binary objects
or compromised relaying nodes. The judge agent is also in charge of re-issuing event tokens.
When a watchdog has spent all its tokens, it requests new tokens from the judge. The judge
then evaluates the watchdog and decides how many tokens it will issue for it. In this way,
the reports of the watchdogs are accountable and authenticated, and the judge can control
the distributed watchdogs by adjusting the reissuing rate of the event tokens.

Contribution. We make the following contributions with this paper:

1. We address the importance of context in the software supply chain. We emphasize the
fundamental requirements that supply chain of binary objects should be followed as
the provider originally intended. That is, the delivered binary objects must be able to
prove the legitimacy of their delivery history as well as the integrity of their contents.

2. We leverage the blockchain as a faithful, delegated authenticator for the distributed
watchdog system. The blockchain system automatically authenticates every report
and authorizes the watchdogs. To do so, we map every action onto a non-fungible
event token in the blockchain.

3. We identify every instance of a binary object in the supply chain as a distinguishable,
traceable product. For this purpose, we propose an identity binding between a binary
object and a blockchain entity. Thus, a binary object is uniquely identified with its
own context and records. This is helpful to rapidly discover the product-wise problem
and spot corruption.

2. Background and Related Work
2.1. Collaborative Intrusion Detection Systems

The basic model for distributed watchdogs is the Collaborative Intrusion Detection
System (CIDS). In CIDS, the information of the network is gathered by distributed monitors
or watchdogs. Each monitor logs the information and generates an alert when observing
any misbehavior. Note that the misbehavior can be defined by a signature or a profile.
Ioannis et al. proposed a distributed IDS for WSNs [18]. A watchdog monitors nearby
nodes and locally detects malicious actions, to broadcast the reports to adjacent watchdogs.
In the distributed manner, watchdogs then cooperatively decide which are malicious
nodes through majority voting. Chen et al. also presented a watchdog-style approach for
identifying malicious or faulty sensors [19]. In the proposed work, sensor nodes actively
participate to keep the network healthy. A sensor node monitors the received measurement
value from the neighbor sensor nodes. If the value is out of predictable range, the sensor
node reports the fault result. Majority voting is also employed to decide whether a sensor
node is faulty. In [20], Cho et al. systematically described the possible problems in the
trust mechanisms, which mostly have to do with the reputation scoring, and suggested
improvements for the monitoring and evaluation of malicious sensors. Cervantes et al.
also used the distributed watchdogs to identify the sinkhole attacks in 6LoWPAN IoT
networks [26]. The watchdogs analyze the nearby nodes and use reputation scores as
accumulated reports for misbehavior. The malicious or erroneous behavior of intermediate
nodes is monitored by the sensor nodes in the work of Pu et al. [27]. In the proposed
protocol, a sensor node also operates as a watchdog for checking forwarding behaviors.

The majority voting on which distributed watchdogs is heavily dependent also has
authentication issues. In INDWATCH, we use reputation scoring and employ the blockchain
to automatically authenticate all changes and to secure reputation scores.
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2.2. Blockchain

Blockchain is a decentralized ledger system that is maintained without a central
authority. According to its configuration, the blockchain system is categorized into public
and private blockchains. However, both blockchain systems enable the same function:
the authenticated ledger. Whenever a transaction is submitted to the blockchain system,
self-interested authenticators, called “miners”, check the validity of the transaction and
confirm the changes as “blocks”. For this purpose, distributed consensus mechanisms,
e.g., proof of work and proof of stake, are used and provide an append only, verifiable
record. Owing to the security of the blockchain system, crypto-currency systems employ
blockchain as their infrastructure [28–30]. It is also being used in many other applications,
e.g., financial transactions [31], proof of validity of documents [32], and IoT [33].

Among the systems based on the blockchain infrastructure, Bitcoin [28] and Ethereum [29]
are the most popular. The fundamental elements of these blockchain system are the address
and the transaction. A transaction is used to transfer money from an address to another
address. That is, a transaction represents the state change involving the corresponding
addresses. It may contain programmable trigger conditions, which are called “smart
contracts”. A smart contract is operated as a program code that can be executed by itself on
top of the blockchain systems. Depending on the blockchain system, the implementation
and capability of smart contracts differ. In particular, Ethereum provides more generalized
smart contracts. It has an execution model for smart contracts and each smart contract
resides on a blockchain, meaning that is has an independent account of its own address.

3. INDWATCH

3.1. Motivations

The distributed watchdog system compensates the limited coverage area by collab-
orative report sharing and majority voting. However, watchdogs may also be faulty or
compromised, and authenticating every watchdog in a distributed setting is still challeng-
ing. The main challenges are twofold [23]: (1) data sharing; and (2) trust management.
Secure data sharing requires that all participants needs to trust each other, and, with the
risk of insider attacks by compromised watchdogs and servers, maintaining trustworthy
results is hard for large organization such as smart factories.

The goal of the software supply chain protection is to ensure that the binary objects of
the software updates are delivered along the supply chain as per the provider’s intention.
The provider’s intention can be represented as: (1) target configuration; (2) delivery trace
(time and segment); and (3) the integrity of the binary object. The first two factors are
formed into the context. Recent accidents caused by forged or mismatched software
updates [11] show that secure context management is an important factor for operating an
entire industrial system correctly. Thus, a software patch must be applied to the device
with the correct target configuration and in the order specified. However, a conventional
software update is focused on the integrity of the binary object (text) itself.

Blockchain enables a mutually agreed state among distrusting participants. Due to
this feature, blockchain fits the base system for distributed watchdogs as in [24]. However,
using an IIoT node as a fully functioning node (or block producing node) is impractical
because of high communicational cost for peer-to-peer communications. Therefore, as an
alternative approach, we use the blockchain as an automated authenticator of participants
and a publicly verifiable recorder of malicious nodes.

In INDWATCH, a report from watchdogs is processed as a transaction to be authenti-
cated and verified. For this purpose, every participant has dual identity: one in the IIoT
network and the other in the blockchain network (i.e., address space). Additionally, the
two identities must be mutually paired to authenticate their relationship. We refer to this
as “identity binding”.
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We summarize the requirements for distributed watchdog systems as follows:

R1 Identity binding: An entity specified in the system should have a dual identity, respec-
tively working in IIoT networks and blockchain networks. The one-to-one mapping
between the two identities should be verifiable.

R2 Authenticated reports: The reports from evaluators, watchdogs, and receivers are
authenticated in terms of the origin and the integrity.

R3 Joint decision: An individual watchdog monitors the behavior of nodes and solely
decides on the occurrence of a local event. However, to identify malicious nodes,
multiple watchdogs should collaborate with each other in the same region.

R4 Distributed management of the software supply chain: In covering IIoT networks,
the distributed approach is effective, but each entity cannot cover the whole area alone.
Thus, distributed watchdogs must verify the end-to-end integrity of binary objects
and identify misbehaving nodes on the software supply chain.

R5 Trustless watchdogs: The watchdog is also a node that can malfunction or be com-
promised. Thus, the regulation is required for the evaluation process, in addition to
the authenticated reports.

3.2. Blockchain-Based Reputation System

To satisfy the requirements mentioned in Section 3.1, we employed a blockchain as a
delegated record keeper and inspector. A blockchain maintains a single global state for all
the entities in distributed systems. Every action of change in the global state of a blockchain
is formed as a transaction and every transaction is validated by the block producers (i.e.,
miners). To apply the blockchain system to IIoT, we define two name spaces, Nd and
Nb , for the IIoT network and blockchain, respectively. We define the one-to-one mapping
relation between two name spaces as follows:

Definition 1 (Identity Binding). The function Mb shows one-to-one mapping from Nd to Nb ,
i.e., Mb : Nd → Nb . Likewise, Md is a mapping from Nb to Nd , i.e., Md : Nb → Nd .

We classify entities based on the capacity of making transactions into active entities
(e.g., watchdogs and receivers) and passive entities (e.g., binary objects). An active entity
can prove its binding interactively. Since the blockchain transactions contain a digital
signature by default, only the owner of an address can make legitimate transactions from
it. Thus, by interactively challenging, such as requesting to make a transaction from the
given address, the identity binding to the blockchain address is verifiable. In addition, the
token system can exclude reports from unregistered watchdogs since it has control over
initial token balances.

The passive entities cannot use the interactive approach, and thus we imprint the
blockchain address to produce the one-to-one mapping. A binary object does not need
to create a transaction from it, but its balance needs to manage. The provider creates a
legitimate address derived from the hash of the binary object and imprints the address
inside of the binary object. Subsequently, the fingerprint of the binary object is created from
the imprinted binary object and then managed in the context.

We also define two types of tokens: RepoToken to report an event and PenToken to
penalize a target for its bad behavior. A manager in a blockchain, called “judge”, mints
the tokens and provides them to the evaluators (watchdogs and recipients). The evaluators
have actionable accounts in the blockchain. In other words, they generate transactions
originating from the accounts. They can transfer their own tokens to other accounts. By
contrast, the binary objects and the segments have non-actionable accounts; they receive
the tokens but cannot transfer them to others. We call the tokens in an actionable account
“spendable”, or otherwise “unspendable”. The balance of spendable and unspendable
tokens are denoted by BS

t (a) and BU
t (a), respectively, where t is a token type and a is the

address. Then, we define the reputation score as follows:
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Definition 2 (Reputation score). The reputation score of a node n , S(n), is calculated as: S(n) =
I(Mb(n))− BU

PenToken(Mb(n)), where I(a) is the initial balance of the address a given during
the registration. Based on the tokens, the evaluation process is defined as a transaction that transfers
a token from an evaluator’s address watchdog to a target’s address.

In this way, the actions and results of the evaluation of the watchdogs are recorded
within the blockchain, where every change is validated. If the identities of Nd and Nb
are bound (R1), then we can ensure that the reputation score based on the blockchain
is verified and only authorized entities can update the reputation score (this satisfies
R2). In addition, we can determine the global state of the reputation score from the
blockchain system (R3). During monitoring, watchdogs collaboratively find misbehavior
and inconsistencies of packets along the software supply chain. The blockchain system
plays a role as an aggregator of authenticated monitoring reports from watchdogs (R4).
The judge can regulate misbehaving watchdogs by adjusting the issue rate (R5), and its
core part is implemented in a smart contract, whose executions are publicly verifiable, in
the blockchain system.

3.3. Overview

Participants and Definitions. In INDWATCH, we assume that a software update
supply chain has the following participants: providers, watchdogs, segments, recipients,
and judges. The software update supply chain is a route in the wireless network from
a provider to a recipient. The goal of the supply chain is to deliver a binary object for
updating the software of the recipient’s industrial device. The binary object is in the form
of a patch or an executable. A set of sequential nodes within the coverage of a watchdog is
modeled as a “segment”. Watchdogs monitor the packets in the supply chain and report
the event they observed to the judge. The judge can be implemented as smart contracts
and supporting modules on the blockchain systems.

Process. Figure 1 shows the overall process of INDWATCH. Every participant, except
for the judge has a dual identity in the name space of the IIoT data network (Nd ) and
blockchain (Nb) and its correspondence is shown as a dashed line in Figure 1. The binary
object also has its account in Nb . The account has the information on the token balance
and the context of the binary object. The provider prepares a binary object and creates a
blockchain address for it. The provider then sets an identity binding between the binary
object and the account and sends the binary object through nodes. A watchdog monitors
the delivery of the binary object at every segment. The watchdog reports the event from
the observation of the binary object by sending an event token containing the observed
information to the account of the binary object. While processing the token, the judge
updates the balance and context of the binary object and decides whether the binary object
is corrupted or not, if the balance goes zero. The judge then notifies network operators
of the event. Similar to the binary object, when the balance of a segment is negative, the
judge labels the segment as corrupted, and the network operator excludes the part from
the supply chain.

Balance and Reputations. When an entity is initialized, it registers itself to the blockchain
and claims the initial balance of the event tokens. For the entities of non-actionable accounts,
the balance of the token represents their initial credit. The initial balance is decided by an
evaluation process. For the entities of actionable accounts, the initial balance represents how
many reports the entity can generate by default.
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Figure 1. Overall process of INDWATCH. Every entity has a dual identity in the blockchain and the IIoT network.

4. Design

In this section, we present detailed explanations on the process of INDWATCH and any
design considerations for the realization of INDWATCH in an existing blockchain system,
such as Ethereum.

4.1. Token System

At the core of INDWATCH is a token system within the blockchain system to authen-
ticate every event and to control the evaluators. We define two types of event tokens:
RepoToken and PenToken. The event tokens are used to report updated data. In the
blockchain, a token system consists of the balances of all the participants and the methods
to securely handle the balance, such as token transfers between addresses. Thus, the token
system can be implemented as a smart property (e.g., Colored coin [34] in Bitcoin) or as an
independent smart contract extended from the standard token system (e.g., ERC-20 [35] or
ERC-721 [36] in Ethereum).

Each entity in INDWATCH has its own balance in the token system. Whenever the
balance is updated, the judge in the token system investigates the change to discover
corrupted binary objects or segments, a process which is described in Section 4.5.

When an evaluator reports an event, it transfers the tokens from its address to the
target’s address. Miners then validate the transactions before including them into a working
block. During the validation, a miner checks: (1) that the transaction sender is the valid
origin of the transaction; (2) that the recipient address is valid; and (3) that the sender has
sufficient tokens for the transfer. If any of these conditions is not satisfied, the transaction
is rejected and the reputation of N (i.e., balance) is unchanged.

Interestingly, the tokens for watchdogs can provide the following features in IND-
WATCH. First, every token transaction shows who gives which token to whom. Second,
each entity has a limited quantity of tokens. Thus, we can also evaluate the evaluators.
Malfunctioned evaluators are easily detected since every evaluator leaves immutable token
records on the blockchain. Once all tokens are used, it can recharge the tokens; however,
the number of renewed tokens depends on the judge.

4.2. Provider

The provider generates the binary object for deliver and creates a context for it. The
context of the binary object consists of: (1) a fingerprint (hashed value) of a bound binary
object; (2) a target specification; and (3) delivery traces (time and segment). The first two
elements are invariant for the delivery and the last element is updated during the delivery.
The context information can be stored as collocated variables in a smart contract or as
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distributed transactions on the address. For simplicity, we assume that the context is stored
in a smart contract in this study.

For a new binary object, the provider creates an address based on the hash value of
the binary object. The account is used to store the context information and identify the
uniqueness of the binary object. To bind the addresses and binary objects, we let the two
entities mutually hold the information of each other. More formally, the provider prepares
the context (C(·)) for the binary object (O) as follows:

1. Create an address for O, a , based on the hash value of O.
2. Assign the address to O: Mb(O)← a .
3. Insert address a into the binary code of O. To do this, the provider could use a method

for code marking, such as using side-effect-free instructions described in [37,38].
4. Calculate the fingerprint (i.e., hash value) of the address-imprinted binary object.
5. Put the fingerprint into the context of the binary object, C(a).

The provider then transmits the prepared binary object through relaying nodes.

4.3. Watchdog and Segment

A watchdog operates in the promiscuous mode to overhear packet transmissions within
the wireless communication range. We may consider the nodes by the unit of segments. In
static networks, the supply path of binary objects may consist of fixed segments between the
provider and the recipients, and so the watchdog manages the fixed segments. In dynamic
networks, a segment is a set of nodes located within a watchdog’s wireless coverage.

A watchdog overhears the incoming and outgoing binary objects of all nodes in a
segment and reports an event by sending an event token to the address of the binary object.
The event of malicious behavior is defined as the violation of the Reliable Forward property,
which is defined as follows:

Definition 3 (Reliable Forward). A binary object should be forwarded by a relaying node: (1) in
a reasonable time (i.e., no intentional packet drop); (2) without any modification on the payload; and
(3) to the proper next node in the route.

The watchdogs check the three conditions of Reliable Forward. To verify the condi-
tions, a watchdog tracks the arrival and departure of each packet at all nodes in the covered
segment. When a watchdog observes a new unseen packet, it creates an entry to store
the fingerprint of the payload and the arrival and departure times. The entry is updated
whenever a watchdog observes a packet transmission. Watchdogs maintain timers. If
any received packet is not forwarded within the predefined time, it is considered as an
abnormal packet drop or delay, which means the violation of the first condition of Reliable
Forward. Since the entries also have the payload fingerprints, a watchdog can verify that
incoming and outgoing payloads are identical for a node. Otherwise, it is the violation of
the second condition. Lastly, a watchdog checks the delivery routes of binary objects. A
software supply chain consists of directional delivery channels, which are used repeatedly.
Hence, a watchdog can clearly identify the immediate next nodes in a segment or imme-
diate next segments of software update packets. The third condition of Reliable Forward
is verified with the knowledge about a topology near watchdogs. In this way, routing
attacks, such as loophole attacks, can be detected. Note that the surveillance of watchdogs
is also effective on encrypted software payloads. The Reliable Forward conditions are still
applicable without inspecting the contents of payload. The payload modification can also
be checked through the stored entries in watchdogs. However, with the encrypted binary
objects, the identity binding cannot be verified at watchdogs since the embedded address
is visible only in plain-text binary objects. It can be verified at the final recipient where the
binary object is decrypted.

When observing the violation of Reliable Forward, a watchdog transfers a PenToken
to the address of the binary object or the segment to decrease the reputation score. Each
event token also contains the tuple of: (1) the fingerprint of the observed O; (2) the delivery
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time; and (3) the delivery segment ID. Depending on the cause of violations, a watchdog
sends PenToken to the address of binary objects or segments. When a delayed forward and
route attack is the cause, the watchdog sends PenToken to the address of the segment. As
for the packet modification, the watchdog sends PenToken to both the segment and the
binary object. The judge can mark the binary object as corrupted if the invariant part (code
and specification) is modified. The delivery time is doubly secured by the block creation
time of the transaction for the token transfer since the block creation time can be used as a
secure timestamp for the occurrence of the transaction.

4.4. Recipient

When a binary object O arrives at the final destination, the recipient first queries the
validity of the binary object to a judge. The judge then replies to it by sending the context
of the binary object, C(O). Once the binary object is decided as invalid (i.e., non-positive
reputation score), the recipient cannot get a legitimate context for the binary object. Since
the size of the context is much smaller than the binary object, we assume that the recipient
can retrieve the context independently and the recipient can authenticate the response from
the judge on blockchain. Before applying the received binary objects, the recipient finally
checks the following conditions with the context:

1. Is the identity binding valid? The recipient checks whether the embedded address of
the received binary object O and the address of the context are the same. If the binary
object is encrypted, the recipient first decrypts it to get the binary in plain text.

2. Is the integrity of the binary preserved? The recipient matches the fingerprint of the
received binary object and that in the context.

3. Does the specification in the context show that the binary object is applicable to the
recipient’s system? The specification may have an expiration time.

4.5. Judge

The judge is the final evaluator regarding both binary objects and segments. It is
implemented as smart contracts on the blockchain and triggered when the balance of
the participants is updated. To distinguish unauthorized actions, the judge manages the
following tasks:

Context building. The judge stores the initial context of the binary objects in the
blockchain and updates the context from the received information via transactions. It also
controls the token system to manage the event tokens from watchdogs and recipient nodes.
The transfer and context records stored in the blockchain forms a verifiable trace of the
binary objects.

Reputation Score. As mentioned in Section 3.2, the reputation score is defined for
binary objects and segments. If the reputation score goes below zero (negative), the judge
marks it as invalid. An invalid binary object cannot be used since the judge refuses
to provide its context. On identifying a corrupted binary object, a watchdog transfers
PenToken to the address of the binary object or segment indicated in the token if the
segment is responsible for the corruption. Once the reputation score of the segment is less
than zero, it is considered to be compromised and then informed through the blockchain
system. (For example, Ethereum provides Events and Logs methods for this purpose.)
Further actions on the malicious node would be dependent on the service providers and
the network operators, such as isolating the corresponding routes.

Integrity check. The judge performs a network-wide integrity check with the finger-
print in the context. Due to the nature of in-network monitoring, it is hard for distributed
watchdogs to cover a whole area without any shadows. The judge can help to find unno-
ticeable modification once the fingerprint is registered by benign watchdogs.

Evaluator review. Another important role of the judge is to check whether an evalua-
tor improperly reports events. The misbehavior of an evaluator can also be modeled as
that of a node. The judge checks that, if an evaluator reports twice as often as the average
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of other evaluators, we reduce the token issuing rate of the evaluator by half. The issuing
rate gradually increases if the evaluator does not preform the suspicious reports anymore.

5. INDWATCH Model

We describe our design in the TLA+ [39] specification language. In the distributed
systems, the specification using TLA+ is advantageous for checking safety conditions
of the distributed systems and algorithms [40,41], and it is also effective for blockchain
protocols and applications. Thus, TLA+ is being actively used in academia [42–44] and
industry [45,46].

We express the specification of INDWATCH in Temporal Logic, which is used to specify
the behaviors of the system in TLA+ [47]. We simplified the specification by replacing
a complicated formula with a text description (e.g., Next state is NN ormalSend ). In this
way, we can more exactly describe the model itself without losing the readability because
of expressing the model at the simpler first-order logic level. Readers are referred to
Appendix A for the whole specification of INDWATCH. (Detailed information on TLA+ can
be found in [39]. We briefly describe the core part of the specification in this section but
understanding the entire specification is helpful to gain a comprehensive grasp.)

A state is a set of assignments for all (state) variables. We then describe the possible
state transitions from the initial states. The main state transition is expressed as: Spec ∆

=
Init ∧2[Next ]vars , where Init and Next are the formulas for the initial state and the state
transitions, respectively. The transitions are described in the formula Next . The transition
usually consists of two parts: enabling conditions and actions. The former is the conditions
that must be satisfied to go into the step. An action is a formula that shows the state
changes; primed and unprimed variables stand for the state before and after, respectively.
The logical operations ∧ and ∨, respectively, stand for conjunction (logical AND) and
disjunction (logical OR) of the terms. The operator 2 is a temporal operator for ‘always
true’ and the action operator [A]e indicates that A is true or e is not changed (i.e., e ′ = e).
Thus, 2[Next ]vars means the state transitions described in Next happens or the system
stays at the current state.

Next can be represented as a disjunction of the possible next moves. In the following
formula, one of the seven possible state transitions can be selected if only the enabling
condition is satisfied. The possible actions for an entity of Segment , Receiver , and Watchdog
are also described. The action for blockchain and the judge are specified in ConfirmTx .
Finally, Termination indicates the termination conditions without any prime variable.

Next ∆
=
∨PacketGen
∨ ∃n ∈ Segment : SegmentRecv(n) ∨ SegmentNormalSend(n)

∨ SegmentPacketDrop(n) ∨ SegmentModification(n)
∨ SegmentOnOffForwarding(n)

∨ ∃ r ∈ Receiver : ReceiverRecv(r)
∨ ∃w ∈Watchdog : WatchdogSeen(w) ∨WatchdogCheck(w)
∨ (AllProcessed ∧ ∃w ∈Watchdog :

wBuffer [w ] 6= {} ∧WatchdogReview(w))
∨ConfirmTx
∨Termination

5.1. Segment

In the model, we abstract each node as a segment. The actions of segments are
straightforward. A segment receives a packet if its immediate destination, idst , indicates
the segment and stores it in its buffer, nBuffer , at the SegmentRecv step. Then, at the next
step of the node, SegmentNormalSend can be triggered. To model random processing times
and malicious nodes, the behavior of the segment is separated into two steps (we add
malicious node types, such N PacketDrop, N Modification, and N OnOff in Section 6.1
and use them alternatively for SegmentNormalSend ). The segment sends the packet to the
next segment (or receiver) according to its routing table, RT , which is an external oracle of
the model (given as a parameter during the model checking). The operator Send sends the
packet to a shared channel, channel .
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SegmentRecv(n) ∆
=

∧ nState[n ] = N Wait
∧ ∃p ∈ channel :

∧ p.idst = n
∧Receive(p)
∧ (Store the packet to its buffer in nBuffer)
∧ (Next state is N NormalSend)
∧ UNCHANGED 〈(all the other variables)〉

SegmentNormalSend(n) ∆
=

∧ nState[n ] = N NormalSend
∧ LET

p ∆
= (Get a packet from its nBuffer)

np ∆
= (Update packet’s information)

IN Send(np)
∧ (Remove the processed packet from its nBuffer)
∧ (Next state is N Wait)

∧ UNCHANGED 〈(all the other variables)〉

5.2. Evaluators

The specification for evaluators has two common parts, First, it monitors the behaviors
of segments. Second, when an event occurs, it generates a transaction to transfer a token.
Since INDWATCH adds the protection by overlaid entities, we give most features to the
watchdog and blockchain parts and add a simple function only for the recipient.

A recipient receives a packet at ReceiverRecv and stores it to the buffer in rBuffer .
Then, it sends a RepoToken to the address of the received packet (binary object) with the
mark of the packet’s fingerprint.

ReceiverRecv(r) ∆
=

∧ rState[r ] = R Wait
∧ ∃p ∈ channel :

∧ p.idst = r
∧Receive(p)
∧ (Store the packet to its buffer in rBuffer)
∧ (Transfer RepoToken to the received packet)

∧ UNCHANGED 〈(all the other variables)〉

Whenever a watchdog finds a packet is in transit within its coverage, it stores the
packet in the buffer wBuffer at WatchdogSeen . With the stored packets, it evaluates the
behaviors of nearby segment (nodes) at WatchdogCheck , which can be triggered whenever
there is a matching pair of packets in wBuffer . ReliableDelivery at WatchdogCheck inspects
whether the pair of packets have unchanged payloads and have been transmitted within
the predefined threshold, NormalTxTime.

WatchdogSeen(w)
∆
=

∃p ∈ channel :
∧wState[w ] = W Working
∧ p /∈ wProcessed [w ]
∧ (Packet transmission is within the communication range )
∧ (Store the packet to its buffer wBuffer)
∧ UNCHANGED 〈(all the other variables)〉

WatchdogCheck(w)
∆
=

∃p1 ∈ wBuffer [w ] : ∃p2 ∈ wBuffer [w ] :
∧ p1 6= p2
∧ p1.idst = p2.isrc
∧ReliableDelivery(p1, p2)
∧Transfer(w , p1.idst , RToken , 1, GetFingerprint(p2))
∧ (Remove p1 and p2 from wBuffer)
∧ (Add p1 and p2 to wProcessed)
∧ UNCHANGED 〈(all the other variables)〉

WatchdogReview(w)
∆
=

∃p ∈ wBuffer [w ] :
∧ IF p.idst ∈ Node

THEN Transfer(w , p.idst , PToken , 1, GetFingerprint(p))
ELSE UNCHANGED txPool

∧ (Remove the packet p from wBuffer)
∧ (Add p to wProcessed)
∧ UNCHANGED 〈(all the other variables)〉

When nodes in a segment relay a packet, the watchdog can see a pair of incoming
and outgoing transmissions. If a watchdog monitors any incomplete pairs for a packet,
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it can be a clue for packet drops or fabrication. Thus, a watchdog regularly performs
WatchdogReview , where it marks it as a misbehavior and sends a PenToken to the node.
However, for simplicity of the model, we assume that the review process is performed
whenever all packets are processed (AllProcessed in Next).

5.3. Blockchain System (Token and Judge)

The token system on the blockchain is also an independent entity and its actions are
triggered whenever the enabling conditions are satisfied. The main action in ConfirmTx is
to validate incoming transactions. For every incoming transaction in txPool , the miners
(verifier) of the blockchain check whether the transaction is valid. Since every miner has
the same criteria for the valid transaction, we can remove the transaction from txPool once
it is processed regardless of its validity. If the transaction is valid, it is moved to txBlock .
The token system then applies the change to itself and triggers the decision process of J
described in Section 4.5.

ConfirmTx ∆
=

∃ tx ∈ txPool :
∧ txPool ′ = txPool \ {tx}
∧ IF CheckBalance(tx .from , tx .token , tx .value) THEN

LET e ∆
= tx .from n ∆

= tx .to IN
∧ txBlock ′ = txBlock ∪ {tx}
∧ (Move tx .token from tx .from to tx .to)
∧ (Register the fingerprint of a newly observed packets to fPrint )
∧ IF n ∈ Segment ∪PacketObject ⇒ ∧ JudgeDecision(n)

∧ IntegrityCheck(tx .fingerprint)
THEN DecideBenign(n)
ELSE ∧DecideMalicious(n)

∧ (Mark the packet malicious)
∧ e ∈ Evaluator

∧ balance[e][tx .token ] ≤ TokenMin
⇒ EvaluatorReview(e, tx .token)

ELSE UNCHANGED 〈txBlock , balance〉
∧ UNCHANGED 〈(all the other variables)〉

A valid transaction changes the balance of the evaluator (tx .from) and the segment
or the binary object (tx .to) and updates the information for decisions and integrity checks
(fPrint). Based on the information, J decides whether the segment or the packet is ma-
licious or not. JudgeDecision checks whether the calculated reputation score is below
zero. IntegrityCheck checks whether the fingerprint of the packet is the same as that in the
registered fingerprint in fPrint .

6. Evaluation

In the evaluation, we aim to answer the following research questions:

• Is this system correctly designed for distributed environments (Section 6.1)?
• Can this system securely deliver software to IIoT devices (Section 6.2)?
• Is this system efficient (Section 6.3)?

For the first question, we use model checking to evaluate the correctness of the design
in Section 4. The latter two questions can be answered by experiments: we performed
simulations that were implemented on top of the Ethereum system.

6.1. Correctness of the Design

The correctness is critically evaluated for the distributed system. It can be evaluated
in two aspects: liveness and safety. Liveness guarantees that the desired features will
eventually happen. Otherwise, safety guarantees that the system will not go into the
erroneous (or bad) states. To check the eventual behaviors, we use model checking. The
model checker traverses all possible states of the given model. Thus, we can verify that the
system will reach the desired state and will not violate the predefined security conditions.
We already employed the model checker while developing the specification in Section 4
and removed dead lock cases.



Sensors 2021, 21, 4393 13 of 23

Liveness. Eventually, all software updates should be delivered to their destination if
there is no attack. SuccessfullyDelivered indicates the liveness condition and checks whether
all outstanding packets arrive at destination without any modification as follows:

SuccessfullyDelivered ∆
=

∧ ∀ r ∈ Receiver :
∀p ∈ {rBuffer [r ][x ] : x ∈ DOMAIN rBuffer [r ]} :

checksum [p.cksum ] = 〈r , p.data〉
∧ ∀ sentPacket ∈ PreGenPackets \pendingPackets :
∃ r ∈ Receiver :

sentPacket .payload ∈
{rBuffer [r ][x ].data : x ∈ DOMAIN rBuffer [r ]}

In the presence of attacks, the system filters out illegitimate updates. To successfully
identify them, the packet should be registered to the judges properly via benign watchdogs.
We set a property, WorkingProperly , to define the condition where all transmitted packets (in
sentPackets) are delivered or classified as malicious packets (in malPackets). The condition
that a packet is registered by benign watchdogs is represented as IsPacketSeenFirst and
the delivery of the packets is checked by IsSecurelyDelivered .

IsPacketSeenFirst(p) ∆
=

∧ ∃w ∈Watchdog : p ∈ wBuffer [w ]
∧ ∀n ∈ Node : p /∈ {nBuffer [n ][np] : np ∈ DOMAIN nBuffer [n ]}

IsSecurelyDelivered(p) ∆
=

∃ r ∈ Receiver : 〈p.id , p.data〉 ∈ {(Receiver Buffer)}

WorkingProperly ∆
=

∀p ∈ sentPackets :
IsPacketSeenFirst(p) ; ∨ p.id ∈ malPackets

∨ IsSecurelyDelivered(p)

Safety. First, we check whether the unintended evaluation is done by other than the
judge entities. The erroneous condition is represented as tokens minted or burned by
unauthorized attackers. It causes the changes of total balance for all participants. Thus,
we set an invariant property, which must always be true, to see that the total balance is
preserved. It is referred to as TokenBalance and defined as follows:

TokenBalance ∆
=

LET totalBalance ∆
= InitialBalance ∗Cardinality(Participant)

IN Sum(balance, DOMAIN balance) = totalBalance

We use the TLC model checker for TLA+ for the liveness and safety properties.
To setup attacks for model checking, we define four node types: N NormalSend for a
benign node, N PacketDrop for a packet-dropping node, N Modification for a payload-
modifying node, and N OnOff ) for an (on–off) selective-forwarding node. We repeated
model checking by adding node of different types.

As a result, the TLC model checker visited 5,100,345 distinct states from our model.
We could verify that all the liveness and safety properties are satisfied. In other words, we
could confirm that the specification of INDWATCH works correctly for the given properties.

6.2. Security Analysis
6.2.1. Setup

We evaluated INDWATCH against possible attacks with experiments. We simulated
the IIoT network with the implementation of the token system and the judge in the smart
contract. The judge operation is triggered when the token balance is changed (i.e., on
token transfer events by watchdogs.) If the judge finds a malicious node, it generates an
Ethereum event to notify the malicious node publicly. The IIoT nodes were simulated
in Python. The watchdogs interact with blockchain entities by using the web3py module.
The Ethereum blockchain part uses the geth (v1.9.25) client and we set up a two-node
private Ethereum network with nodes of Intel i9-9900K with 32 GB Ram. As for the block
producing setting, we used PoA (Proof of Authority) rather than PoW (Proof of Work)
to control the experiment environments more easily (which was used in the experiments
on performance). The IIoT network was simulated by randomly distributing nodes and
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watchdogs in a field of 1000 m × 1000 m area. The provider is located at the center of the
field while the receivers are located randomly in the area. The behavior of each node is
implemented based on the model in Section 5.

6.2.2. Attack Models

In simulation, we consider the following attack models for a software supply chain by
compromised nodes:

1. Payload modification is a traditional attack that modifies the contents of the binary
objects. We model it as flipping random bits of the contents.

2. Target mismatching is an attack that delivers legitimate binary object to wrong target
devices in order to cause malfunction of the victims. We model this as replacing a
receiver (each receiver is a unique target in the simulation).

3. Out of order delivery is similar to the target mismatching attack: the attacker sends
a legitimate binary object to a matched target but swaps it with old one. The old
software updates may contain disclosed vulnerabilities that the attacker will use. We
model this as replacing the binary object with the previously delivered binary object.

4. Delayed delivery is an attack that delays software update deliberately to increase attack
time windows for the old vulnerabilities. We model it as delaying for pre-defined time
(which is effectively similar to packet dropping due to the timeout of watchdogs).

In distributed monitoring, a watchdog is another attack surface. Physical attacks such
as node capture attacks to extract private keys from the watchdog devices, can be prevented
by tamper-proof hardware. However, we consider that unauthorized watchdogs can be
added to the IIoT network. The previous CIDS approaches with majority voting should
be vulnerable to the attacks from malicious (or compromised) watchdogs if they do not
have proper authentication mechanisms. Since the blockchain in INDWATCH authenticates
messages from all entities, unauthorized reports from malicious watchdogs are filtered out.
The influence by malicious watchdogs is analyzed in Section 6.2.4. Additionally, we could
assume that a judge is not compromised. The core logic of the judge is implemented as
a smart contract and operates on the blockchain. Thus, the behavior of judge is publicly
verifiable and cannot be altered.

6.2.3. Attack Detection Rate

We implemented the attack model regarding malicious nodes for our simulation.
For 500 randomly selected sessions, Figure 2a depicts the attack detection rate with a
varying number of watchdogs when the number of deployed nodes is 100. The payload
modification attack has the highest detection rate because it can be detected by the receiver
and the intermediate nodes at the same time. In INDWATCH, the blockchain is used for
both registration and final decision—unauthorized modifications are easily detected. Thus,
the target mismatching is also eventually identified if only the update package is properly
registered. However, the delivery attacks (i.e., out-of-delivery and delayed delivery) are
mostly detected by the in-network watchdogs, thus their attack detection rates are more
sensitive to the change of watchdogs. Thus, we can classify the attack models into two
classes by the dependency on watchdogs: Packet modification and out-of-order delivery
are representative models for each category that we use in the later results.

We can find similar trends in Figure 2b. The first two attacks, packet modification
and target mismatching, are well detected (higher than 0.9) regardless of the number of
malicious nodes. However, the detection rate of the latter two attacks, out-of-order delivery
and delayed delivery, rapidly decreases as the ratio of malicious nodes increases. Thus,
depending on attack type, keeping a certain level of watchdogs is important in INDWATCH.

Figure 3a shows the influence of watchdogs and malicious nodes together. We checked
the two representative attack models by varying the number of watchdogs and malicious
nodes. Figure 3a shows that, even in the hostile environments, where the ratio of malicious
nodes is high, increasing the number of watchdogs is effective for both attack classes.
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Figure 2. Attack and malicious node detection rate: (a) number of watchdogs vs. attack detection rate; and (b) number of
malicious nodes vs. attack detection rate.

6.2.4. Comparison to CIDS

The blockchain is widely applied to IIoT but an in-network protection mechanism,
such as a watchdog, still relies on the distributed approaches adopted from wireless sensor
networks [48]. The distributed approaches, referred to as CIDS [18,19], are based on the
majority voting of local watchdogs. When a malicious action is detected by multiple nearby
watchdogs, the majority of the nearby voting members (i.e., watchdogs) have to confirm
that the action is malicious.

Figure 3b compares the attack detection rate between INDWATCH and the majority-
voting approaches. Malicious watchdogs disturb the consensus of majority voting to reach
valid agreements. In Figure 3b, as the portion of malicious watchdogs increases, the attack
detection rate is rapidly going down for the majority voting scheme. The decrement is more
severe when quorum is high since the decision is influenced by more nodes. INDWATCH

can authenticate the malicious watchdogs by checking digital signatures in transactions,
and thus it can keep a high detection rate regardless of malicious watchdogs.

6.3. Performance

Blockchain enables message authenticity and public verifiability but it has a limitation
regarding its performance overhead. Transactions can be applied to the system only when
it enters into a block, which is created regularly in most of the blockchain [29]. The interval
between block creations is called “block time”. The block time in Ethereum is in the order
of magnitude of seconds. Furthermore, since the size of a single block is limited (or in
terms of execution fee, i.e., gas), the throughput is also limited. Thus, the blockchain may
cause dominant latency of the whole process.

We measured the performance of INDWATCH through our experiments with local
blockchain. Publicly open (i.e., permissionless) blockchain systems are capacity-limited
and not suitable for intrusion detection for industrial applications. Thus, we built a
local Ethereum blockchain with parameter tweaks to improve the base performance for
industrial settings, achieving more than 950 transactions per second.
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Figure 3. Comparisons of attack detection rates. (a) Attack detection rate with different watchdog setting. PM and OO
indicate packet modification and out-of-order delivery, respectively. The number in parenthesis is the number of watchdogs.
(b) Comparison to other distributed watchdogs approaches.

In Figure 4, we check the confirmation latency with different blockchain settings. The
confirmation latency is the end-to-end delay from when packet delivery starts to when
the receiver concludes that the delivered packet is legitimate. We use the PoA (Proof-of-
Authority) block for blockchain since it is widely used in the enterprise blockchain setup
and eligible to control the experiment settings. Figure 4a depicts that, as the portion of
watchdogs increases, the confirmation latency increases. This is because more watchdogs
generate more reports. When the block time increase, the latency also rapidly increases.
The transactions accumulated by watchdogs take longer time to process in this restriction
of blocks. Figure 4b also shows the similar trends. As the number of malicious nodes is
getting higher, watchdogs could observe more malicious actions. However, compared to
Figure 4a, the latency is even higher than 20 s. Therefore, considering the limitations of
the current blockchain implementations, blockchain based approaches such as INDWATCH

should carefully choose application settings, e.g., target detection rate and latency.
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Figure 4. Confirmation latency: (a) number of watchdogs vs. confirmation latency; and (b) number of malicious nodes vs.
confirmation latency.
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7. Conclusions and Future Work

Since industrial environments lack decent protection for OTA software updates, in-
network protection is practical and applicable to legacy industrial systems. In this study,
we proposed a decentralized in-network protection method, INDWATCH, by employing the
blockchain system to authenticate reports and improve malicious node detection. Through
model checking and a simulation based on the existing system, we checked the correctness
and operability of INDWATCH. We expect that advances in IIoT will increase the demands
for secure OTA updates and network protection.
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Appendix A

This appendix contains the whole formal specification of INDWATCH. Readers are
referred to Section 5 for explanations.

MODULE AuthRepSys
EXTENDS Integers , TLC , Sequences , FiniteSets

CONSTANT Provider
CONSTANT Segment
CONSTANT Miner
CONSTANT Receiver
CONSTANT Judge
CONSTANT Watchdog

CONSTANT PreGenPackets
CONSTANT PacketObject

CONSTANT RToken , PToken
CONSTANT InitialBalance
CONSTANT RegenTokenMin
CONSTANT TokenMin

CONSTANT N Wait , N NormalSend
CONSTANT N PacketDrop, N Modification , N OnOff
CONSTANT R Wait , R Eval , R Done
CONSTANT W Working
CONSTANT RT
CONSTANT Coverage

CONSTANT PacketMod

VARIABLE nState, rState, wState
VARIABLE nBuffer , rBuffer , wBuffer
VARIABLE wProcessed
VARIABLE channel
VARIABLE txPool , txBlock
VARIABLE pendingPackets , sentPackets
VARIABLE checksum , checksumId
VARIABLE pId
VARIABLE balance
VARIABLE malicious , benign , malPackets
VARIABLE fPrint

VARIABLE firstSeen

genVars ∆
= 〈pendingPackets , sentPackets , pId , checksum , checksumId〉

commVars ∆
= 〈channel〉

nodeVars ∆
= 〈nState, nBuffer〉

receiverVars ∆
= 〈rState, rBuffer〉

watchdogVars ∆
= 〈wState, wBuffer , wProcessed , firstSeen〉

blockchainVars ∆
= 〈txPool , txBlock , balance, malicious , benign ,

fPrint , malPackets〉

vars ∆
= 〈genVars , commVars , nodeVars , receiverVars , watchdogVars ,
blockchainVars〉
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RECURSIVE Sum( , )
Sum(f , S ) ∆

= IF S = {} THEN 0
ELSE LET x ∆

= CHOOSE x ∈ S : TRUE
IN f [x ] + Sum(f , S \ {x})

Send(p) ∆
= channel ′ = channel ∪ {p}

Receive(p) ∆
= channel ′ = channel \ {p}

Transfer(src, dst , ty , amount , f ) ∆
=

LET tx ∆
= [from 7→ src, to 7→ dst ,

token 7→ ty , value 7→ amount , fingerprint 7→ f ]
IN txPool ′ = txPool ∪ {tx}

CheckBalance(address , ty , amount) ∆
=

balance[address ][ty ] ≥ amount

Evaluator ∆
= Receiver ∪Watchdog

Participant ∆
= Segment ∪Evaluator ∪PacketObject

TokenType ∆
= {RToken , PToken}

NormalTxTime ∆
= 1 . . 10

GetFingerprint(p) ∆
= 〈p.id , p.dst , p.data , p.idst〉

InitPacketGen ∆
=

∧ checksumId = 1
∧ checksum = [i ∈ checksumId . .

(checksumId +Cardinality(PreGenPackets)) 7→ 〈〉]
∧ pId = PacketObject
∧ pendingPackets = PreGenPackets
∧ sentPackets = {}

InitSegment ∆
=

∧ nState = [n ∈ Segment 7→ N Wait ]
∧ nBuffer = [n ∈ Segment 7→ 〈〉]

InitReceiver ∆
=

∧ rState = [r ∈ Receiver 7→ R Wait ]
∧ rBuffer = [r ∈ Receiver 7→ 〈〉]

InitWatchdog ∆
=

∧wState = [w ∈Watchdog 7→W Working ]
∧wBuffer = [w ∈Watchdog 7→ {}]
∧wProcessed = [w ∈Watchdog 7→ {}]
∧ firstSeen = {}

InitBlockchain ∆
=

∧ txPool = {}
∧ txBlock = {}
∧malicious = {}
∧ benign = Participant
∧ balance =

[e ∈ Participant 7→ [ty ∈ TokenType 7→ InitialBalance]]
∧ fPrint = [id ∈ PacketObject , p ∈ Participant 7→ {}]
∧malPackets = {}

Init ∆
=
∧ InitPacketGen
∧ InitSegment
∧ InitReceiver
∧ InitWatchdog
∧ InitBlockchain
∧ channel = {}

PacketGen ∆
=

∃p ∈ pendingPackets : ∃n ∈ Segment : ∃pp ∈ pId :
LET msg ∆

= [
id 7→ pp,
isrc 7→ Provider ,
idst 7→ n ,
dst 7→ p.dst ,
data 7→ p.payload ,
elapsed 7→ 0,
cksum 7→ checksumId ]

IN
∧ pendingPackets ′ = pendingPackets \ {p}
∧ pId ′ = pId \ {pp}
∧ Send(msg)
∧ sentPackets ′ = sentPackets ∪ {msg}
∧ checksum ′ =

[checksum EXCEPT ! [checksumId ] = 〈p.dst , p.payload〉]
∧ checksumId ′ = checksumId + 1
∧ UNCHANGED 〈nodeVars , receiverVars , watchdogVars ,

blockchainVars〉

SegmentRecv(n) ∆
=
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∧ nState[n ] = N Wait
∧ ∃p ∈ channel :

∧ p.idst = n
∧Receive(p)
∧ nBuffer ′ = [nBuffer EXCEPT ! [n ] = Append(@, p)]
∧ nState ′ = [nState EXCEPT ! [n ] = N NormalSend ]
∧ UNCHANGED 〈genVars , receiverVars , watchdogVars ,

blockchainVars〉

SegmentNormalSend(n) ∆
=

∧ nState[n ] = N NormalSend
∧ LET

p ∆
= Head(nBuffer [n ])

et ∆
= CHOOSE x ∈ NormalTxTime : TRUE

np ∆
= [p EXCEPT ! .isrc = n , ! .idst = RT [n ],

! .elapsed = @ + et ]
IN Send(np)

∧ nBuffer ′ = [nBuffer EXCEPT ! [n ] = Tail(@)]
∧ nState ′ = [nState EXCEPT ! [n ] = N Wait ]
∧ UNCHANGED 〈genVars , receiverVars , watchdogVars ,

blockchainVars〉

SegmentPacketDrop(n) ∆
=

∧ nState[n ] = N PacketDrop
∧ nBuffer ′ = [nBuffer EXCEPT ! [n ] = Tail(@)]
∧ nState ′ = [nState EXCEPT ! [n ] = N Wait ]
∧ UNCHANGED 〈genVars , receiverVars , watchdogVars , commVars ,

blockchainVars〉

SegmentOnOffForwarding(n) ∆
=

∧ nState[n ] = N OnOff
∧ LET b ∆

= CHOOSE x ∈ {TRUE, FALSE} : TRUEIN
nState ′ = [nState EXCEPT ! [n ]

= IF b THEN N NormalSend ELSE N PacketDrop]
∧ UNCHANGED 〈genVars , receiverVars , watchdogVars , commVars ,

nBuffer , blockchainVars〉

SegmentModification(n) ∆
=

∧ nState[n ] = N Modification
∧ LET

p ∆
= Head(nBuffer [n ])

et ∆
= CHOOSE x ∈ NormalTxTime : TRUE

np ∆
= [p EXCEPT ! .isrc = n , ! .idst = RT [p.dst ],

! .elapsed = @ + et , ! .data = @ +PacketMod ]
IN Send(np)

∧ nBuffer ′ = [nBuffer EXCEPT ! [n ] = Tail(@)]
∧ nState ′ = [nState EXCEPT ! [n ] = N Wait ]
∧ UNCHANGED 〈genVars , receiverVars , watchdogVars ,

blockchainVars〉

ReceiverRecv(r) ∆
=

∧ rState[r ] = R Wait
∧ ∃p ∈ channel :

∧ p.idst = r
∧Receive(p)
∧ rBuffer ′ = [rBuffer EXCEPT ! [r ] = Append(@, p)]
∧Transfer(r , p.id , RToken , 1, GetFingerprint(p))

∧ UNCHANGED 〈genVars , nodeVars , rState, watchdogVars , txBlock ,
balance, malicious , benign , fPrint , malPackets〉

ReliableDelivery(p1, p2) ∆
=

∧ p2.elapsed − p1.elapsed ∈ NormalTxTime
∧ p1.data = p2.data

IsPacketSeenFirst(p) ∆
=

∧ ∃w ∈Watchdog : p ∈ wBuffer [w ]
∧ ∀n ∈ Segment : p /∈ {nBuffer [n ][np] : np ∈ DOMAIN nBuffer [n ]}

WatchdogSeen(w)
∆
=

∃p ∈ channel :
∧wState[w ] = W Working
∧ p /∈ wProcessed [w ]
∧ (p.isrc ∈ Coverage[w ] ∨ p.idst ∈ Coverage[w ])
∧wBuffer ′ = [wBuffer EXCEPT ! [w ] = @∪ {p}]
∧ IF IsPacketSeenFirst(p)

THEN firstSeen ′ = firstSeen ∪ {p} ELSE UNCHANGED firstSeen
∧ UNCHANGED 〈genVars , nodeVars , commVars , receiverVars ,

wState, wProcessed , blockchainVars〉

WatchdogCheck(w)
∆
=

∃p1 ∈ wBuffer [w ] : ∃p2 ∈ wBuffer [w ] :
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∧ p1 6= p2
∧ p1.idst = p2.isrc
∧ReliableDelivery(p1, p2)
∧Transfer(w , p1.idst , RToken , 1, GetFingerprint(p2))
∧wBuffer ′ = [wBuffer EXCEPT ! [w ] = @ \ {p1, p2}]
∧wProcessed ′ = [wProcessed EXCEPT ! [w ] = @∪ {p1, p2}]
∧ UNCHANGED 〈genVars , nodeVars , commVars , receiverVars ,

firstSeen , wState, txBlock , balance, malicious , benign ,
fPrint , malPackets〉

WatchdogReview(w)
∆
=

∃p ∈ wBuffer [w ] :
∧ IF p.idst ∈ Segment

THEN Transfer(w , p.idst , PToken , 1, GetFingerprint(p))
ELSE UNCHANGED txPool

∧wBuffer ′ = [wBuffer EXCEPT ! [w ] = @ \ {p}]
∧wProcessed ′ = [wProcessed EXCEPT ! [w ] = @∪ {p}]
∧ UNCHANGED 〈genVars , nodeVars , commVars , receiverVars ,

firstSeen , wState, txBlock , balance, malicious , benign ,
fPrint , malPackets〉

DecideMalicious(n) ∆
= malicious ′ = malicious ∪ {n}

DecideBenign(n) ∆
= benign ′ = benign ∪ {n}

Return false if the node is malicious
JudgeDecision(n) ∆

=
LET score ∆

= InitialBalance − balance[n ][PToken ]
IN
∧ (score ≥ 0)

IntegrityCheck(fp) ∆
=

LET id ∆
= fp[1] dst ∆

= fp[2] pfp ∆
= fp[3]

storedFp ∆
= fPrint [id , dst ] IN

storedFp 6= {} ⇒ pfp ∈ storedFp

RECURSIVE SumToken( , , )
SumToken(f , S , t) ∆

=
IF S = {} THEN 0 ELSE

LET x ∆
= CHOOSE x ∈ S : TRUE

IN f [x ][t ] + SumToken(f , S \ {x}, t)

EvaluatorReview(e, ty) ∆
=

∧ LET tTotal ∆
= SumToken(balance, Evaluator , ty)IN

IF (2 ∗ balance[e][ty ] ∗Cardinality(Evaluator) < tTotal)
THEN balance ′ = [balance EXCEPT

! [e] = [@ EXCEPT ! [ty ] = @ +RegenTokenMin ]]
ELSE balance ′ = [balance EXCEPT

! [e] = [@ EXCEPT ! [ty ] = @ + 2 ∗RegenTokenMin ]]

ConfirmTx ∆
=

∃ tx ∈ txPool :
∧ txPool ′ = txPool \ {tx}
∧ IF CheckBalance(tx .from , tx .token , tx .value) THEN

LET e ∆
= tx .from n ∆

= tx .to IN
∧ txBlock ′ = txBlock ∪ {tx}
∧ balance ′ = [balance EXCEPT

! [e] = [@ EXCEPT ! [tx .token ] = @− tx .value],
! [n ] = [@ EXCEPT ! [tx .token ] = @ + tx .value] ]

∧ LET id ∆
= tx .fingerprint [1] dst ∆

= tx .fingerprint [2]
sfp ∆

= tx .fingerprint [3]IN
IF fPrint [id , dst ] = {}
THEN fPrint ′ = [fPrint EXCEPT ! [id , dst ] = {sfp}]
ELSE UNCHANGED fPrint

∧ IF n ∈ Segment ∪PacketObject ⇒ ∧ JudgeDecision(n)
∧ IntegrityCheck(tx .fingerprint)

THEN DecideBenign(n) ∧ UNCHANGED 〈malicious , malPackets〉
ELSE ∧DecideMalicious(n)

∧malPackets ′ = malPackets ∪ {tx .fingerprint [1]}
∧ UNCHANGED benign

∧ e ∈ Evaluator
∧ balance[e][tx .token ] ≤ TokenMin

⇒ EvaluatorReview(e, tx .token)
ELSE UNCHANGED 〈txBlock , balance〉

∧ UNCHANGED 〈genVars , nodeVars , commVars , receiverVars ,
watchdogVars〉

SuccesfullyDelivered ∆
=

∧ ∀ r ∈ Receiver :
∀p ∈ {rBuffer [r ][x ] : x ∈ DOMAIN rBuffer [r ]} :
∨ checksum [p.cksum ] = 〈r , p.data〉

∧ ∀ sentPacket ∈ PreGenPackets :
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∃ r ∈ Receiver :
sentPacket .payload ∈

{rBuffer [r ][x ].data : x ∈ DOMAIN rBuffer [r ]}

AllDelivered ∆
=

∧ ∀ r ∈ Receiver :
∀p ∈ {rBuffer [r ][x ] : x ∈ DOMAIN rBuffer [r ]} :
∨ checksum [p.cksum ] = 〈r , p.data〉
∨ checksum [p.cksum ] = 〈r , p.data −PacketMod〉

∧ ∀ sentPacket ∈ PreGenPackets :
∃ r ∈ Receiver :

sentPacket .payload ∈
{rBuffer [r ][x ].data : x ∈ DOMAIN rBuffer [r ]} ∪
{rBuffer [r ][x ].data −PacketMod : x ∈ DOMAIN rBuffer [r ]}

AllProcessed ∆
=

∧ pendingPackets = {}
∧ ∀n ∈ Segment : nBuffer [n ] = 〈〉
∧ channel = {}

IsSecurelyDelivered(p) ∆
=

∃ r ∈ Receiver :
〈p.id , p.data〉 ∈
{〈rBuffer [r ][rp].id , rBuffer [r ][rp].data〉 : rp ∈ DOMAIN rBuffer [r ]}

WorkingProperly ∆
=

∀p ∈ sentPackets :
IsPacketSeenFirst(p) ; ∨ p.id ∈ malPackets

∨ IsSecurelyDelivered(p)

Termination ∆
=

∧ txPool = {}
∧ ∀w ∈Watchdog : wBuffer [w ] = {}
∧AllProcessed
∧ ∀ r ∈ Receiver : rState[r ] = R Wait
∧ ∀p ∈ firstSeen : p.id ∈ malPackets ∨ IsSecurelyDelivered(p)
∧ UNCHANGED vars

TokenBalance ∆
=

LET totalBalance ∆
= InitialBalance ∗Cardinality(Participant)

IN Sum(balance, DOMAIN balance) = totalBalance

Delivered ∆
=

∀p ∈ sentPackets :
ENABLED IsPacketSeenFirst(p)⇒ IsSecurelyDelivered(p)

Next ∆
=
∨PacketGen
∨ ∃n ∈ Segment : SegmentRecv(n) ∨ SegmentNormalSend(n)

∨ SegmentPacketDrop(n) ∨ SegmentModification(n) ∨ SegmentOnOffForwarding(n)
∨ ∃ r ∈ Receiver : ReceiverRecv(r)
∨ ∃w ∈Watchdog : WatchdogSeen(w) ∨WatchdogCheck(w)
∨ (AllProcessed ∧ ∃w ∈Watchdog :

wBuffer [w ] 6= {} ∧WatchdogReview(w))
∨ConfirmTx
∨Termination

Spec ∆
= Init ∧2[Next ]vars
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