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Abstract: In this paper, we addressed the problem of controlling the position of a group of unicycle-
type robots to follow in formation a time-varying reference avoiding obstacles when needed. We
propose a kinematic control scheme that, unlike existing methods, is able to simultaneously solve
the both tasks involved in the problem, effectively combining control laws devoted to achieve
formation tracking and obstacle avoidance. The main contributions of the paper are twofold: first,
the advantages of the proposed approach are not all integrated in existing schemes, ours is fully
distributed since the formulation is based on consensus including the leader as part of the formation,
scalable for a large number of robots, generic to define a desired formation, and it does not require
a global coordinate system or a map of the environment. Second, to the authors’ knowledge, it is
the first time that a distributed formation tracking control is combined with obstacle avoidance to
solve both tasks simultaneously using a hierarchical scheme, thus guaranteeing continuous robots
velocities in spite of activation/deactivation of the obstacle avoidance task, and stability is proven
even in the transition of tasks. The effectiveness of the approach is shown through simulations and
experiments with real robots.

Keywords: formation control; consensus; multi-agent system; hierarchical task-based control;
unicycle-type robots

1. Introduction

Wheeled mobile robots have been one of the most studied robotic platforms due
to their applicability and motion capabilities. In the field of multi-agent systems (MAS),
control schemes for collaborative wheeled robots have been developed for environmental
sensing [1], task allocation for search and rescue [2], coverage control for precision agricul-
ture [3] and object transportation [4], among others. For such applications, different control
protocols have been reported in the literature, using centralized methods that depend on a
global coordinate system as a first attempt, e.g., [5,6]. In these works, a virtual structure
approach is used, where the complete formation is treated as a single rigid body and the
motion of the formation is prespecified, i.e., given the trajectory of the formation centroid in
global coordinates, the desired motion of each robot is obtained and an individual feedback
controller corrects deviations.

Decentralized or distributed control methods are more robust to failures since only
local interactions between agents of a network are required [7,8]. Consensus theory has
become an essential tool to develop distributed control protocols [9]; the control laws
based on consensus rely on the relative state of connected agents (neighbors) in a network.
The problem of formation control aims to drive multiple agents to achieve prescribed con-
straints on their states [10]. In distributed approaches, the formation control is addressed
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by using relative measurements without relying on global coordinates. Several works have
addressed the formation control for a group of nonholonomic mobile robots as a consensus
problem by introducing some constant deviations for the relative states. For instance,
distributed control schemes to stabilize a group of robots to achieve the desired formation
in both position and orientation simultaneously are proposed in [11,12]. A control scheme
that generates circular motion around virtual positions to define the desired formation is
proposed in [13].

The formation tracking problem for nonholonomic robots has also been addressed
using distributed schemes following the same approach based on consensus [9,14]. The aim
is that the group of robots moves synchronized by tracking a reference trajectory, usually
time-varying [15]. The leader-following configuration is common in the formation tracking
problem, where one of the agents acts as a leader [16] or a virtual leader can be defined [17].
Due to the nonholonomic motion constraints of unicycle-type robots, dynamic feedback
linearization of the kinematic model has been used to propose nonsingular control laws
for the robot position, for instance, in [18]. This kind of linearization has the issue that
all the robots’ linear velocities must be non-null. The forward motion of a formation has
also been treated in [19] using a two-stage approach. Formation tracking of both position
and orientation has been proposed to achieve asymptotic convergence in [20] or globally
uniformly ultimately bounded stability in [21]. Other works, as [22,23], have proposed
a state transformation to linearize the model of the robots and a distributed observer to
estimate the leader’s trajectory. Then, each follower tracks the estimated trajectory using
an individual controller. All the previously referred works assume that the group of robots
moves in an environment without obstacles and that collisions between agents do not occur.

The capability to deal with fixed obstacles and avoid collisions is essential during the
motion of a formation of nonholonomic robots [24]. A distributed collision-free formation
control scheme for nonholonomic robots based on potential fields is proposed in [25].
The same problem of formation and the heading consensus is addressed in [26] using a
hybrid switching control law. In general, both collision and obstacle avoidance capabilities
become more important when the whole formation moves tracking the desired trajectory
imposed by a leader. In the work [27], a rotational and repulsive force-based approach is
proposed, which is evaluated in V-shape and circular formations. The work [28] addresses
formation tracking with multiple leaders, where the team of leaders and followers are fully
independent, and only the followers have collision avoidance capability. A control law
with prescribed transient and steady-state performance is proposed in [29]. The collision
avoidance between the followers is introduced as inequality constraints in the prescribed
performance controller. These kinds of constraints are typically used in model predictive
control to avoid collisions, which has also been used in formation tracking [30], with the
disadvantage of the computational cost to solve the optimization problem. Other works,
such as [31], focus on maintaining a rigid formation, for instance, a regular polygon, and the
formation is scaled to navigate in an environment with obstacles.

The formation tracking control with obstacle avoidance can be seen as a two-task
problem. Most of the described literature addresses the problem by switching between
two control laws, one dedicated to the formation task and the other committed to avoiding
collisions/obstacles. In [32], a multi-region control scheme for formation tracking with
obstacle avoidance and connectivity preservation is proposed. In that work, a different
control law is applied depending on the detection of an obstacle within concentric regions
around each agent. Therefore, only one task/objective is taken into account at each time
instant. In robotics, it is known that the task-function approach [33] allows the design of
control laws to deal with problems involving several contradictory objectives. Although the
task-function approach has been mainly used for the control of robot manipulators [34],
there are examples of its application for triangular formation control of 3D vehicles [35]
and formation control of unicycle-type robots [36–38]. Nevertheless, all the aforementioned
works that have used null-space projectors to solve the formation control of nonholonomic
robots are centralized control schemes relying on global measurements. We have presented
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preliminary results of a priority task-based distributed formation control (without tracking)
to deal with obstacles for holonomic robots in the conference work [39].

In this paper, we propose to tackle the two-tasks problem of distributed formation
tracking control and obstacle avoidance for unicycle-type robots, in particular differential-
drive robots, in the framework of a hierarchical task-based control approach. Static feedback
linearization is used to compute the robot velocities for each robot from the motion of a
control point. The distributed formation control is addressed as a consensus problem of
virtual agents, related to the real agents’ position by desired displacements, such that if
the virtual agents achieve consensus, the real agents reach the desired formation. Obstacle
avoidance becomes the task with higher priority when an obstacle is within a given security
distance. An obstacle can be another agent, such that collisions between agents are avoided,
or a fixed object in the environment. Since a security radius is defined for the nearest
obstacle to each agent, the method assumes that the obstacles are convex and it is able to
deal with polygonal obstacles. The main contributions of this work are the following:

• The proposed control scheme is fully distributed since it is based on consensus,
valid for connected communication topologies, scalable for a large number of robots,
and generic to define the desired formation. The computation of the robots’ velocities
depends only on relative information of neighboring agents and local measurements
to avoid obstacles. Neither a global coordinate system nor a map of the environment
is required. The leader is able to track any smooth time-parameterized reference, also
avoiding obstacles if needed. The leader is part of the formation, interacting with all
the followers, with the advantage that the leader also adapts its motion if the followers
perform avoidance actions. Existing approaches of formation tracking with obstacle
avoidance are valid for specific formation shapes [27]; the leaders and followers are
independent and only the followers can perform collision avoidance [28,29]; some
methods focus on rigid-body formation by scaling it to avoid obstacles [31]; and some
approaches are computationally costly [30].

• A task function is proposed for the distributed formation tracking, and it is combined
with an obstacle avoidance task using a hierarchical scheme to solve both tasks
simultaneously, which to the authors’ knowledge has not been done before in a
distributed scheme. The proposed scheme guarantees continuity of the robots’ control
inputs when both tasks transit to be activated or deactivated. The stability of both task
function errors is proven even in the transition of tasks. Given that the control law’s
design is based on the kinematics of a control point for each agent, the proposed control
scheme can be easily extended for formation tracking of holonomic agents as UAVs.
Existing approaches that are based on the hierarchical task-based approach tackle
only the formation control (without tracking) [39] in a centralized fashion [36–38].
Moreover, most of the formation schemes with obstacle avoidance are discontinuous
switching approaches, e.g., [24,26,32], or require a careful tuning of the weight of the
different terms of both tasks [25,27].

• The proposed approach is evaluated through realistic simulations using a dynamic
simulator in environments with obstacles and in real experiments with differential-
drive robots. Few works on distributed formation control of nonholonomic robots
have reported results in real robots, e.g., [5,13,22], but none of them solve the formation
tracking with obstacle avoidance.

As a summary, we highlight some advantages of the proposed scheme with respect
to different existing approaches. One classical approach is the artificial potential-based
approach, which is used in [25]. With respect to that work, our approach does not require
to predefine the desired position or trajectory of the whole team of robots, nor to know a
map of the environment to build the potential functions. Our control law is not a direct sum
of controllers for each task that might cancel in the case of conflicting tasks, but a convex
combination of control laws for each task is proposed in our control scheme. Another kind
of approach is the formulation of a consensus problem to solve the formation problem as
in [26]. We also formulate the formation control as a consensus problem, but we extend
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the formulation to formation tracking where the group of robots is guided by a leader.
In our case, heading consensus is naturally achieved because the group of nonholonomic
robots follows a common trajectory. The main advantage of our approach is that we
integrate the obstacle avoidance task using priorities and smooth transitions to avoid a
hybrid switching control law, guaranteeing stability of both tasks and continuity of the
robot velocities. A third kind of approach is the one based on optimization methods,
as the model predictive control in [30]. Unlike that work, our approach relies on consensus
using relative information between agents and is not needed to precompute the reference
trajectory of each follower from the one of the leader. We provide a formal stability proof for
both formation and obstacle avoidance tasks, which is not trivial in an optimization-based
formulation. We also use feedback linearization of a control point, which has no singularity
issues in comparison to a dynamic extension where the control law becomes singular when
the robot has null translational velocity. Besides, the MPC-based approach implicitly has
a computational cost to solve a quadratic programming problem in a preview horizon.
In the same vein, works as [40], that uses distributed optimization for a split and merge
strategy of a formation in dynamic environments, suffer from the computational burden.
In that strategy, the robots compute locally optimal parameters for the formation to remain
within the convex neighborhood of the robots via sequential convex programming. A low
level local planner is used to generate the individual robot motion. With respect to that
work, the novelty of our approach is that it directly provides the robot velocities without
relying on a high level planning strategy. The control scheme presented in [41] is close
to ours, however, that work addresses the rendezvous problem in environments with
obstacles unlike the formation tracking that we tackle. Besides that important difference,
the referred approach consists of a high level strategy that is executed relying on a low level
control law and ours directly provides the robot velocities. Moreover, the novelty of our
approach with respect to that method is the guarantee of continuity of the robot velocities,
which is not the case of the referred work since sudden changes of orientation might occur
in the robot trajectories. We consider the generation of smooth velocities important to
improve the accuracy of the position control when the robots are modeled at kinematic
level. Due to robot and actuator dynamics, discontinuous velocity commands cannot be
exactly realized by a vehicle. Moreover, the transient to converge to the new command
may lead to collisions. Sudden fast motions are not convenient in practice since the sensing
capabilities of the robots might deteriorate, in our case the distance measurement might
introduce noise for sudden motions.

The rest of the paper is structured as follows. Section 2 describes the model of a
unicycle-type robot, and some considerations to control it. It also recalls some results on
graph theory and the task-function approach. In Section 3, the problem of formation track-
ing for differential-drive robots with obstacle avoidance is formulated, and the proposed
control scheme is detailed. Section 4 presents the performance of the proposed approach
through simulations and real experiments. Finally, some concluding remarks and future
work ideas are presented in Section 5.

2. Preliminaries

In this section, we will present the model considered for each agent of the network
of robots and the basics on graph and consensus theory that are used in the control
law’s design.

2.1. Model of the Robots

Let N = {R1, R2, . . . , RN} be a set of unicycle-type robots, in particular differential-
drive robots (DDRs), moving on the xy-plane with pose qi = [xi, yi, θi]

T , i ∈ {1, . . . , N}.
The kinematic model for each robot, according to Figure 1, is given by:ẋi

ẏi
θ̇i

 =

cos (θi) 0
sin (θi) 0

0 1

[vi
ωi

]
, i ∈ {1, . . . , N}, (1)
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where [xi, yi] are the coordinates of the position of the center of rotation of the i-th robot,
θi the orientation with respect to the x-axis, vi is the translational velocity and ωi the
angular velocity.

Figure 1. Scheme of a differential-drive mobile robot and definition of the control point α.

We are interested that the team of robots can achieve formation just for position, not
orientation. It is known that is not possible to control the robot position pi = [xi, yi]

T ,
seen as output vector, using an static feedback linearization [42]. Then, we will consider
αi as control point, which is a point out of the wheels axis as in Figure 1. For simplicity,
the point αi is chosen shifted by a distance d > 0 along the longitudinal axis passing over
point pi of the robot. The distance d is such that the point αi is inside the robot periphery.
The coordinates of the point αi are given by

αi =

[
αxi

αyi

]
=

[
xi + d cos (θi)
yi + d sin (θi)

]
. (2)

The time-derivative of the point αi (2) is as follows[
α̇xi

α̇yi

]
= Mi(θi)

[
vi
ωi

]
, (3)

where the decoupling matrix Mi(θi) is given by

Mi(θi) =

[
cos (θi) −d sin (θi)
sin (θi) d cos (θi)

]
, (4)

and for each robot Ri is not singular, since det(Mi(θi)) = d 6= 0. Then, the control point
coordinates can be driven as desired by the robot velocities and the orientation angle
remains as zero-dynamics of the system (1). However, it is known that such dynamics
is stable when the control point is driven to a constant position or tracks a time-varying
reference [42].

2.2. Graph and Consensus Theory

In this section, we present some notations and preliminaries about graph and consen-
sus theory that is extensively presented, for instance, in [7,9].

In a network of agents, consensus means to reach an agreement on a certain quantity
of interest that depends on the state of all agents in the network. In consensus theory,
a network of agents is typically modeled as a graph G, which consists of a vertex set V(G)
and an edge set E(G). An edge is denoted by ij and j ∼ i denotes that the vertex i and
vertex j are neighbors. The neighbors of vertex i in a graph G is denoted by Ni(G) = {j :
ji ∈ E(G)}.

The adjacency matrix A = [aij] ∈ RN×N of a graph with N vertices is a square matrix
with entries aij corresponding to the weight of the edge ij; when i is not adjacent to j then
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aij = 0. The Laplacian matrix of G is L(G) = ∆ − A where ∆ = diag(d1, · · · , dN) with
di = ∑N

j=1 aij.
A graph G is connected if there is a path between any two vertices, otherwise it is

disconnected. If the graph G is connected, then the Laplacian matrix has an eigenvalue
λ1(L) = 0 with algebraic multiplicity one, associated to the eigenvector 1N = [1 · · · 1]T ,
i.e., ker(L(G)) = {x : x1 = . . . = xN}. For undirected graphs the Laplacian matrix L is
positive semidefinite and symmetric.

In this work, we will consider a multi-agent system (MAS) composed of N differential-
drive robots (DDRs) modeled as in the previous section and with an associated graph
G modeling the network’s connectivity. Given the expression of the dynamics to be
controlled (3), it can be treated as decoupled single-integrator dynamics expressed in
general form as

ẋi(t) = ui, i ∈ {1, . . . , N}, (5)

where xi, ui(t) ∈ R2 are the state and auxiliary control input of agent i, respectively.
The network dynamics for the agents (5) can be written in vector form as

ẋ(t) = u(t), (6)

with x(t) = [x1(t)T , . . . , xN(t)T ]T ∈ R2N and u(t) = [u1(t)T , . . . , uN(t)T ]T ∈ R2N .
According to [7], the consensus error for agent i with respect to its neighbors is

defined as
eci (t) = ∑

j∈Ni

aij(xj(t)− xi(t)), i ∈ {1, . . . , N}. (7)

If this error is zero for all the agents, it is accomplished that xi = xj for all i,j ∈ E(G),
i 6= j. The individual consensus error (7) can be expressed in matrix form as

ec(t) = [ec1(t)
T , . . . , ecN (t)

T ]T = −(L⊗ I2)x(t) ∈ R2N , (8)

where ⊗ denotes the Kronecker product and I2 is the identity matrix of size 2.

2.3. Hierarchical Task-Based Control Approach

Let us consider one agent of the form (5) with state q ∈ Rn and a differential mapping,
denoted by X (q) ∈ Rm, between a task space and the state space, which models a task to
be performed by the agent. When addressing a regulation problem not a tracking one, it is
desired that the task reaches a constant value X d by enforcing the convergence to zero of
the error function

e(q) = X (q)−X d ∈ Rm. (9)

The time-derivative of (9) is given by

ė = J(q)q̇, (10)

being J(q) ∈ Rm×n a Jacobian matrix. In (10), q̇ can be seen as the vector of control inputs,
and to find it out, the Moore–Penrose pseudoinverse of the Jacobian matrix can be used
as follows

q̇ = J+(q)ė, (11)

with J+(q) = JT(q)(J(q)JT(q))−1 ∈ Rn×m. The task space control approach is valid if the
dimension of the task space is less than or equal to the dimension of the state space of the
agent m ≤ n [43]. The desired dynamics of the task error function is as follows

ė = −λe, (12)
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with λ > 0, such that exponential convergence of the task function to its desired value is
guaranteed by using the vector of control inputs

q̇ = −λJ+(q)e(q). (13)

Since we address the problem that a group of DDRs reaches a desired formation
avoiding collisions/obstacles when needed, two tasks must be carried out simultaneously.
The hierarchical task-based approach introduced in [33] allows two tasks to be solved as
good as possible, in the sense that the solution of the task with higher priority is guaranteed
and the solution of the task with lower priority is subject to the former [36,44,45].

The hierarchical task-space approach requires the formulation of some projectors.
Following [44], the null space projector of the i-th task, considered the priority task, is
computed as

Ni = In − J+i (q)Ji(q) ∈ Rn×n. (14)

As an example, consider two tasks X1 and X2, where X1 has the highest priority.
According [36,44], the total control action is given by

q̇ = q̇1 + N1q̇2, (15)

where q̇1 = −λ1J+1 (q)e1(q) ∈ Rn is the input computed individually from X1 and q̇2 =
−λ2J+2 (q)e2(q) ∈ Rn is the input obtained from X2.

It is common that initially a system only has to solve one task by using the control
inputs vector (13), and in some moment the system requires to solve more than one task.
Then, in the case of two tasks the control inputs vector must switch from (13) to (15) and
eventually the system returns to solve only the initial task.

3. Problem Formulation and Proposed Solution

Let N be a set of DDRs as described in Section 2.1. Consider that there exists a finite
set of obstacles in the environment. The agents themselves can be obstacles for the others
or there may be fixed obstacles in the environment.

The problem addressed in this work is to design a control law for each agent ui =
γ(αi,Ni), i = {1, . . . , N} to achieve:

• Asymptotic tracking of a predefined smooth trajectory m(t) by the leader, for instance,
considered as the robot R1

lim
t→∞

(α1(t)−m(t)) = 0, (16)

where α1(t) is the position of the control point of the leader.
• Asymptotic convergence to a desired formation by the follower agents, i.e.,

lim
t→∞

aij(αi(t)− αj(t)) = ∆ij= const., i, j ∈ {1, . . . , N}, i 6= j, (17)

where ∆ij denotes desired constant offsets between agents to make that the desired
formation has a fixed-predefined form.

• Obstacle avoidance between agents and with respect to any fixed object in the envi-
ronment, always maintaining a safety distance σ, i.e., the condition

‖αi − αi
o‖ > σ (18)

must be accomplished, where αi
o is the position of the nearest obstacle to the i-th agent.

To solve the enunciated problem, the following assumptions are considered:

• Each robot has omnidirectional capability to measure distance and only the nearest
obstacle is considered to avoid it at a time.
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• The obstacles are considered convex since a circumference that must not be trespassed
is defined around the nearest point on an obstacle from each robot.

• The communication topology for the group of robots is considered connected.
• The robots velocities are available for their neighbors and they are communicated

according to the communication topology.

The described problem requires to solve two tasks, the formation tracking and the
obstacle avoidance. We will use the hierarchical task-based formulation to guarantee that
both tasks are adequately accomplished. Most of the time, the formation tracking task is
active, but both task must be solved simultaneously when obstacles are close to an agent.
The formulation of each task is presented in the following sections.

3.1. Task of Obstacle Avoidance

Every robot Ri must avoid collisions with obstacles (either fixed obstacles or other
agents). This task is activated when ‖αi − αi

o‖ ≤ σ, such that the agents must always
maintain a safety distance σ to the obstacles and has priority over the formation tracking.
To meet this objective, the task xi

1 = ρ(αi) is defined as the relative distance from the robot
position αi to the position αo of the nearest obstacle as

ρ(αi) = ‖αi − αi
o‖ ∈ R. (19)

Given the assumption of sensing capabilities of the robots, the distance ρ(αi) can be
measured by each robot Ri and thus, the global position of the obstacle is not required.
Thus, the following error function is defined

eoi = ρ(αi)− σ ∈ R. (20)

The dynamics of the error is given by:

ėoi = Joi (αi)α̇i, (21)

where

Joi (αi) =
(αi − αi

o)
T

ρ(αi)
∈ R1×2. (22)

As desired dynamics for (21) we want to have

ėoi = −λeoi , (23)

with λ > 0. Solving for αi, the feedback control law for obstacle avoidance is given by

α̇i = −λJ+oi
(αi)eoi , (24)

where J+oi
(αi) = JT

oi
(αi)(Joi (αi)JT

oi
(αi))

−1.

3.2. Task of Agents’ Formation

The formation control problem is addressed in this work as a consensus problem
in order to achieve a distributed and scalable formulation. Consider a set of N DDRs
connected through a communication network such that each one exchanges information
with a set of neighbors. We will consider dynamics for each DDR as in (3)

α̇i = Mi(θi)ui(t), i ∈ {1, . . . , N}. (25)

Agents’ formation can be achieved by consensus of a virtual network [26]. We will
specify the desired formation as a set of fixed translation vectors zi ∈ R2 with respect to an
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arbitrary common reference frame, thus the position αi of the i-th agent is related to the
position αvi of the virtual agent by

αvi = αi + zi,∈ R2, i ∈ {1, . . . , N}, (26)

such that if the virtual agents reach the same value, i.e., α∗vi
= α∗v ∈ R2, i ∈ {1, . . . , N}, then

the real agents will reach the desired formation given by the vectors zi. Notice that the
network of virtual agents has the same Laplacian matrix than the original network and the
virtual agent’s dynamics is given by

α̇vi = α̇i = Mi(θi)ui(t). (27)

The consensus error for the virtual agent i with respect to its neighbors is

evi = ∑
j∈Ni

(aij(αvj − αvi )) ∈ R2, (28)

and the consensus error vector is

ev =
[
eT

v1
, eT

v2
, . . . , eT

vN

]T
= −(L⊗ I2)αv ∈ R2N , (29)

with αv = [αT
v1

, αT
v2

, . . . , αT
vN
]T . Applying control inputs of the form ui(t) = M−1

i (θi)evi to
the systems (25), the virtual agents will reach consensus and consequently the real agents
will reach the desired formation specified by the vectors zi.

As consensus can be reached for the virtual agents’ state, such that each virtual agent
reaches the position α∗v, this allows us to formulate a secondary task xi

2 = αvi in the
hierarchical task-based approach to solve the formation control with obstacle avoidance.
Thus, the error of the consensus task (29) can be rewritten as

ev = αv − (1N ⊗ α∗v) ∈ R2N . (30)

Thus, the corresponding time-derivative of the consensus task is given by

ėv = Jv(αv)α̇v, (31)

where Jv(αv) = IN ⊗ Jvi (αvi ). Since Jvi (αvi ) = I2, then the whole Jacobian matrix of the
consensus task is Jv(αv) = I2N ∈ R2N×2N . In the sequel, we will not denote the dependence
of the Jacobians from αv. In the following sections, we will use this formulation of consensus
of virtual agents to propose a formation tracking control law for a group of DDRs.

3.2.1. Formation Tracking Control Law

Let us address the problem where a leader robot R1 have to track a predefined time-
varying trajectory m(t) and the followers must follow the leader in formation (equivalently
the virtual agents follow the leader in consensus), first assuming that no avoidance actions
are required. The following distributed control protocol is proposed to solve this problem:

u1 = M−1
1 (θ1)

[
−γ(α1 −m) + ṁ− k ∑

j∈N1

a1j(αv1 − αvj)

]
, (32)

ui = M−1
i (θi)

{
1
|Ni| ∑

j∈Ni

aij

[
α̇j − k(αvi − αvj)

]}
, i ∈ {2, . . . , N}, (33)

where M−1
i (θi) is the inverse of the decoupling matrix associated to each robot, ṁ is the

velocity of the desired trajectory, γ is the tracking control gain and k is the formation
control gain.
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The vector of position error for the whole MAS, seen as a new task function error, is
given by

er = αv − r ∈ R2N , (34)

where r =
[
(m + z1)

T , 1
|N2| ∑j∈N2

a2jα
T
vj

, 1
|N3| ∑j∈N3

a3jα
T
vj

, . . . , 1
|NN | ∑j∈NN

aNjα
T
vj

]T
and z1

is the relative constant displacement vector assigned to the leader in the formation. The dy-
namics of the error (34) are given by

ėr = Jrα̇v − ṙ ∈ R2N , (35)

with ṙ =
[
ṁT , 1

|N2| ∑j∈N2
a2jα̇

T
vj

, 1
|N3| ∑j∈N3

a3jα̇
T
vj

, . . . , 1
|NN | ∑j∈NN

aNjα̇
T
vj

]T
and Jr = I2N ,

where for each agent Jri = I2.
Since the velocities of the virtual agents depend directly on the control input and the

decoupling matrix, we rewrite (35) as

ėr = M(θ)u− ṙ, (36)

with u = [uT
1 , uT

2 , . . . , uT
N ]

T and M(θ) = diag(M1(θ1), . . . , MN(θN)).

Theorem 1. Consider an MAS of N unicycle-type robots with position dynamics of the control
point as in (3), under a connected communication graph G, and related to the virtual agents’ position
according to (26). The leader robot knows a continuously differentiable reference trajectory m(t).
Then, for control parameters γ > 0 and k > 0 of the distributed protocol (32) and (33), each
component of the error function er (34) convergences asymptotically to zero. Therefore, the leader’s
position converges to the desired trajectory and the followers converge to the specified formation
around the leader.

Proof. First, we rewrite the control inputs (32) and (33) in terms of the errors as follows

• For the leader

u1 = M−1
1 (θ1)

[
−γer1 + ṁ− k ∑

j∈N1

a1j(αv1 − αvj)

]
.

• For the followers

ui = M−1
i (θi)

[
1
|Ni| ∑

j∈Ni

aijα̇vj − keri

]
i ∈ {2, . . . , N}.

Then, the control inputs in vector form are given by

u = M−1(θ)[−Ker + ṙ− d], (37)

where K = diag(γ, γ, k, k, k, . . . , k) ∈ R2N×2N and d = [k ∑j∈N1
a1j(αv1 − αvj)

T , 0, 0, . . . , 0]T

∈ R2N .
By introducing the control input (37) in the dynamics of the system errors (36) to get

the closed loop dynamics, it is obtained

ėr = −Ker − d. (38)

By expanding (38) we obtain the error dynamics of the leader and the followers

ėr1 = −γer1 + k ∑
j∈N1

a1j(αvj − αv1), (39)

ėri = −keri i ∈ {2, . . . , N}. (40)
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On the one hand, the second term of the leader’s error dynamics (39) is the consensus
error of the leader with respect to its neighbor followers, i.e., ev1 of (29). On the other hand,
the dynamics of (40) that represents the consensus errors for the agents {2, . . . , N} clearly
have asymptotic stability to zero. Then, according (34) and (29), at steady state we have

eri = evi = αvi − 1
|Ni | ∑

j∈Ni

aij(αvj) = 0 i ∈ {2, . . . , N}. (41)

Since ev1 depends on the first row of the Laplacian matrix as given by (29) and that
row is linearly dependent on the rest of rows of the matrix, evi = 0 for i ∈ {2, . . . , N}
implies that ev1 = 0. Therefore, the second term of (39) vanishes as the time elapses and
also the tracking error er1 converges asymptotically to zero. Then the virtual followers
achieve consensus, and consequently, the real robots achieve the desired formation defined
by the displacement vectors zi according (26), tracking the leader in formation.

The previous theorem demonstrates the stability of the multi-agent system in closed
loop with the control protocol that solves the formation tracking task. In the next section,
this result will be integrated into a protocol that also includes the obstacle avoidance task.

3.3. Hierarchical Combination of Formation Tracking and Obstacle Avoidance Tasks

The problem formulated in Section 3 can be addressed by following the task-based
approach described in Section 2.3. When an obstacle is detected, an avoidance action must
be performed with higher priority over the formation tracking, but taking into account
both tasks simultaneously. However, the direct switching between the formation tracking
control law ((32) and (33)) and a control law combining both tasks generates discontinuous
robot velocities. To alleviate this issue, we propose the use of a smooth transition as
presented in [45]. Then, the velocities for each robot that combines the obstacle avoidance
task, denoted by subscript o, as primary task, and DDRs formation tracking, denoted by
subscript r, as secondary task is given by

ui = M−1
i (θi)(α̇

′
oi
+ α̇r|oi

), i ∈ {1, . . . , N}, (42)

where

α̇′oi
= J+oi

ė′oi
,

α̇r|oi
= (Jri Noi )

+(ėri + ṙi − Jri J
+
oi

ė′oi
),

ė′oi
= h(t)ėoi + (1− h(t))Joi J

+
ri

ėri ,

with Noi = I2 − J+oi
Joi ∈ R2×2, Joi as in (22) and Jri = I2 as stated below of (35), ėoi as in

(23) and ėri as in (39) and (40). The transition function h(t) is a smooth bounded function
such that 0 ≤ h(t) ≤ 1 and increases from 0 to 1 (activated) when an obstacle is detected
within the safety distance σ. Its value is h(t) = 1 while the obstacle is within the safety
distance and decreases from 1 to 0 (deactivated) when the obstacle leaves the safety distance.
The duration of the transition function is fixed by the user and is the same value for both
activation and deactivation. Thus, the use of the transition function yields continuity of the
computed robots velocities. In the sequel we will denote h(t) = h.

In the following theorem, the stability of the control law for both obstacle avoidance
and formation tracking tasks is proven. All the expressions in the theorem are presented in
vector form, however, the approach keeps distributed as given by the individual control
law (42) for each agent.

Theorem 2. Consider an MAS of N unicycle-type robots with position dynamics of the control
point as in (3), under a connected communication graph G, and related to the virtual agents’ position
according to (26). The leader robot knows a continuously differentiable reference trajectory m(t).
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Then, for control parameters γ > 0, k > 0 and λ > 0 of the distributed protocol expressed in
vector form

u = M−1(θ)(α̇′o + α̇r|o), (43)

where α̇′o = J+o ė′o, α̇r|o = (JrNo)+(ėr + ṙ − JrJ+o ė′o), ė′o = hėo + (1 − h)JoJ+r ėr, both the
formation tracking error er and the obstacle avoidance error eo convergence to zero asymptotically
when both tasks are active, i.e., with 0 < h ≤ 1. The terms of (43) are as follows: ėr given by (38),
ėo = −λeo ∈ RN , with eo = [eo1 , eo2 , . . . , eoN ]

T , (JrNo)+ = diag((Jr1 No1)
+, . . . , (JrN NoN )

+),
J+o = diag(J+o1

, . . . , J+oN
), No = diag(No1 , . . . , NoN ), where the individual entries have been

defined below (42).

Proof. Let us consider the following extended error function

e′ =
[

er
eo

]
. (44)

Consider a Lyapunov function candidate given by

V =
1
2

e′Te′, (45)

whose time-derivative is given by
V̇ = e′T ė′. (46)

Using the open-loop dynamics of ėr and ėo for the whole network to compute V̇, we
have the former given by (35). Expanding the obstacle task error for the N agents, we get

ėo = Joα̇ = diag(Jo1 , . . . , JoN )α̇, (47)

where Jo ∈ RN×nN . Now, we have

V̇ =
[
eT

r eT
o
]([Jr

Jo

]
α̇v −

[
ṙ
0

])
. (48)

Considering that α̇v = M(θ)u according to (27) and introducing the hierarchical
task-based control protocol (43), then

V̇ =
[
eT

r eT
o
](

Ψ−
[

ṙ
0

])
, (49)

where

Ψ =

[
Ψ1
Ψ2

]
=

[
Jr(J+o ė′o) + Jr((JrNo)+(ėr + ṙ− JrJ+o ė′o))
Jo(J+o ė′o) + Jo((JrNo)+(ėr + ṙ− JrJ+o ė′o))

]
. (50)

Expanding the expressions using ė′o as in (43), we have

Ψ1 = JrJ+o [hėo + (1− h)JoJ+r ėr] + Jr(JrNo)
+{ėr + ṙ− JrJ+o [hėo + (1− h)JoJ+r ėr]},

Ψ2 = JoJ+o [hėo + (1− h)JoJ+r ėr] + Jo(JrNo)
+{ėr + ṙ− JrJ+o [hėo + (1− h)JoJ+r ėr]}.

Given the known properties JoJ+o = IN , JoNo = 0N×2N , No = NT
o , and NoNo = No,

the following holds

Jo(JrNo)
+ = JoNT

o (NoNT
o )
−1 = JoNo(NoNT

o )
−1 = 0N×2N , (51)

(JrNo)
+ = (JrNo)

T((JrNo)(JrNo)
T)−1 = No(NoNT

o )
−1 = I2N . (52)

Thus, Ψ1 and Ψ2 are simplified as follows

Ψ =

[
Ψ1
Ψ2

]
=

[
ėr + ṙ

(1− h)Jo ėr + hėo

]
. (53)
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Introducing the closed-loop dynamics (38) and ėo = −λeo in (53), the time-derivative
of the Lyapunov function, is given by

V̇ = −
[
eT

r eT
o
](

P
[

er
eo

]
−
[

d
0

])
, (54)

where

P =

[
(K⊗ I2) 02N×N

(1− h)Jo(K⊗ I2) λhIN

]
. (55)

The eigenvalues of matrix P depend on the values λ > 0, 0 < h(t) ≤ 1 and the
matrix K, which is defined as K = diag(γ, γ, k, k, k, . . . , k) ∈ R2N×2N , where γ > 0 is the
tracking gain and k > 0 is the consensus gain. Therefore, the matrix P is positive definite.
As in the case without obstacle avoidance of the Theorem 1, d only affects the dynamics of
the tracking error er1 and represents the consensus error of the leader with respect to its
neighbors. Given the positive definiteness of the matrix P, the rest of the consensus errors
eri , i ∈ {2, . . . , N} altogether with the evasion error eo have asymptotic stability to zero.
As shown below (41), the effect of d vanishes as the time elapses and the tracking error
also converges asymptotically to zero. Consequently, the leader tracks the time-varying
reference, the virtual followers reach consensus to the leader position (respectively the
robots achieve the desired formation around the leader) and the robots perform obstacle
avoidance when needed.

The previous theorem guarantees the stability of the multi-agent system in closed loop
with the distributed control protocol that solves both the formation tracking and obstacle
avoidance tasks and provides continuity of the computed robot velocities. Since we are
modeling the robots at kinematic level, the generation of smooth velocities is important
to improve the accuracy of the position control. It is well known that due to robot and
actuator dynamics (masses and rotational inertias), velocity commands with discontinuous
profile cannot be exactly realized by a vehicle.

From our point of view, the proposed approach has two limitations. (1) Connectivity
of the communication model is very important to guarantee convergence of the consensus
error; however, connectivity can be easily lost when the robots move in cluttered envi-
ronments. Although our scheme does not consider an explicit handling of connectivity,
the consensus control law favors the maintenance of it. Nevertheless, there are no theo-
retical guarantees that connectivity is preserved in the current formulation. We consider
that the approach can be extended to include an additional task dedicated to contribute
in the velocities’ computation to move the group of robots preserving connectivity, such
that the control law might be a combination of the solution of three tasks. (2) The proposed
approach is considered as a sensor-based reactive navigation method that works properly
not only for circular (strongly convex) obstacles but also for unknown convex polygonal
obstacles of different forms. Nevertheless, our approach is not able to deal with non-convex
obstacles. We consider that the proposed approach offers a good compromise between
effectiveness and required information to solve the formation tracking problem in cluttered
environments without the need of a high level global planner.

4. Evaluation of the Proposed Scheme

In this section, we present results of implementing the proposed distributed control
law, first in the dynamic simulator Gazebo with a group of TurtleBots 3 Burger (Robotis Inc.,
Lake Forest, CA, USA) and then, with real robots using the Robot Operating System (ROS)
in both cases. The simulations are presented for two different cases: a 4-agent system where
the predefined trajectory to follow was a quadrifolium curve and a 10-agent system that
had to follow a circular predefined trajectory. Results in an environment with unknown
polygonal obstacles are also shown.

In the implementation, the distance d to define the control point (2) for all the robots
was set to 10 cm. Besides, the transition function is h(t) = 1

2

(
1− cos

(
π

(t−t0)
(t f−t0)

))
, where
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t0 was set to the current time value (t0 = t) at the instant that a DDR crossed the security
distance of an obstacle, t f = t0 + td with td the duration of the transition function that was
set to 0.8 s for both activation and deactivation. The sampling time in the simulations was
set to 25 ms. Since the formation tracking control law requires knowing the velocities of the
neighboring robots in the formation, we used estimated values taken from the velocities
computed by the control law in one sampling time before the current time. This aspect
could be improved as future work by using, for instance, an estimation of the velocities
given by an exact differentiator [46] of the robots positions, or a distributed observer as
in [47], although in the last case only estimation of the leader’s state would be needed.

4.1. A 4-Agent System

The results to implement the distributed control law (42) for a 4-agent system (N = 4)
are presented in this section. We considered the network with undirected communication
topology described by the graph of Figure 2a and the desired formation of Figure 2b.
We set aij = 1 for connected agents and initial conditions qx(0) = [0,−2,−3,−1]T ,
qy(0) = [0, 1.8,−1,−0.8]T and qθ(0) = [0,−0.6, 1.14, 0]T for agents 1 to 4, respectively.
The reference trajectory had a duration of τ = 200 s and was given by m(t) = 4[sin (4πt/τ)
cos 2πt/τ, sin (4πt/τ) sin 2πt/τ]T . There was a fixed obstacle in the environment, in par-
ticular a column in the position αo = [0,−2]T , and the security distance for it and
between robots was set to σ = 0.6 m. The displacement vectors to define the de-
sired formation were z1 = 1.5[cos (3π/2), sin (3π/2)]T , z2 = 1.5[cos (2π), sin (2π)]T ,
z3 = 1.5[cos (π/2), sin (π/2)]T and z4 = 1.5[cos (π), sin (π)]T , for agents R1 to R4 re-
spectively, with respect to the formation center. The control gains were set to γ = 1, λ = 0.8
and k = 0.1 for tracking, evasion and consensus, respectively.

(a) (b)
Figure 2. The 4-agent system. (a) Connected graph used in the simulations. (b) Specified formation
in the dynamic simulator Gazebo.

The results of the formation tracking with obstacle avoidance for the 4-agent MAS
are presented in Figures 3–5. A video of this experiment can be seen in the link https://
drive.google.com/file/d/1SEDzs_H3UoK7Y2TqMTGHMZ5M3Q16p86q/view (accessed
on 24 June 2021). Figure 3 shows snapshots of the motion of the robots in an environment
with a fixed obstacle in the form of a column. The images on the left correspond to the
initial position of the DDRs in an arbitrary configuration; the images at the center present
an intermediate position where one of the DDRs was avoiding the obstacle, and the images
on the right show that the desired formation was effectively reached despite that the
four agents had to avoid the obstacle in some moment during their motion. This can be
appreciated in Figure 4a, where the trajectory followed by each robot and the obstacle
position with its security distance are depicted. Since the obstacle was at the center of the
environment, the trajectories of the four agents passed close to the obstacle and the robots
had to avoid it in different moments. Figure 4b shows the trajectories of the virtual agents
(variables αvi ) during the experiment. The initial virtual positions are marked with × and
the final positions with a circle, which appears as a single one around coordinates (0.3, 0.5).

https://drive.google.com/file/d/1SEDzs_H3UoK7Y2TqMTGHMZ5M3Q16p86q/view
https://drive.google.com/file/d/1SEDzs_H3UoK7Y2TqMTGHMZ5M3Q16p86q/view
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This demonstrates that consensus of the virtual agents was finally achieved although not all
the time these agents moved in consensus due to the transients introduced by the obstacle
avoidance task. In Figure 5, it is shown that every robot activated the multitask control (42)
at least one time during the experiment and the time interval that such control was active
was different for each robot.

(a) (b) (c)

(d) (e) (f)

Figure 3. The 4-agent system. Snapshots of the DDRs motion in the simulation. (a) Initial position.
(b) Intermediate position. (c) Final position. (d) Upper view of initial position. (e) Upper view of
intermediate position. (f) Upper view of final position.
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Figure 4. The 4-agent system. Trajectories of the DDRs. (a) Trajectories of the real agents. (b). Trajectories of the virtual agents.
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Figure 5. The 4-agent system. Task transition functions for each agent.

Figure 6a shows the evolution in time of the tracking error for the leader R1. The leader
avoided the obstacle slightly after time 140 s, which was evident in the rapid but continuous
change of the tracking error. In other times of the experiment, as around 50 s and 90 s, the
effect can be seen of the evasions performed by the followers that affected the tracking error
of the reference by the leader; after a transient the tracking error decreased toward zero.
The consensus errors of the virtual MAS for coordinates x and y are shown in Figure 6b,c,
respectively. Consensus was achieved in both coordinates in around 45 s for the first time,
but after that, the agent R3 performed an evasion motion and the consensus error increased
for a while, to asymptotically decrease to zero around 90 s. Thus, this effect appeared
always that one of the agents avoided an obstacle, due to the use of local information of
the network.

The profiles of the control inputs (robot velocities) of each agent are shown in
Figure 7a,b, for the linear and angular velocities, respectively. During the first seconds,
some important changes were appreciated in the angular velocities due to the DDRs having
to align their orientation to the one imposed by the reference trajectory of the leader. It
can be seen that all the velocities were the same when the virtual agents are in consensus
(the robots move in formation), for instance around 40 s and 85 s. As expected, the evasion
actions yielded changes on the velocities evolution, mainly among the follower agents,
for instance, the robot R3 avoided the fixed obstacle around the time 45 s; it yielded an
important change in the velocities of R2 and R4 and less for the leader R1 since the tracking
of the reference had a higher weight for the leader’s dynamics (γ > k). Notice that the
profiles of velocities were continuous all the time thanks to the use of the smooth transition
function h(t).
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Figure 6. The 4-agent system. Error functions of the formation tracking. (a) Tracking errors of
the leader. (b) Consensus errors in the x-axis. (c) Consensus errors in the y-axis.
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Figure 7. The 4-agent system. Control inputs (velocities) of the DDRs. (a) Linear velocities. (b) Angu-
lar velocities.
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4.2. A 10-Agent System

As a second experiment, we considered a 10-agent system in a network with undi-
rected communication topology described by the graph of Figure 8a, with the leader
R1 as the root. Figure 8b presents the desired formation. We set aij = 1 for connected
agents and initial conditions qx(0) = [5, 4, 6, 3.5, 5.5, 7, 3, 4.5, 6.5, 7.5]T , qy(0) = (0)1N and
qθ(0) = (π/2)1N for agents 1 to 10, respectively. The reference trajectory was a circle
given by m(t) = [5 cos (2πt/τ), 5 sin (2πt/τ)]T , with τ = 180 s. There were five fixed
obstacles in the environment, represented as columns with different diameters in the
positions αo1 = [−3.5,−2.5]T , αo2 = [−6,−2.5]T , both with associated security distance
σ1 = 0.4, αo3 = [2, 2.5]T , αo4 = [0,−5.8]T , both with security distance σ2 = 0.5 and
αo5 = [−1, 5.3]T with σ3 = 0.6. The displacement vectors to define the desired formation
were z1 = [0, 1]T , z2 = [−0.5, 0.5]T , z3 = [0.5, 0.5]T , z4 = [−1, 0]T , z5 = [0, 0]T , z6 = [1, 0]T ,
z7 = [−1.5,−0.5]T , z8 = [−0.5,−0.5]T , z9 = [0.5,−0.5]T and z10 = [1.5,−0.5]T , for R1 to
R10 respectively, with respect to the formation center. The control gains were set to γ = 1,
λ = 0.85 and k = 0.35 for tracking, evasion and consensus, respectively.

(a) (b)

Figure 8. The 10-agent system. (a) Connected graph used in the simulations. (b) Specified formation
in the dynamic simulator Gazebo.

The results to implement the proposed distributed control law for the 10-agent
MAS are presented in Figures 9–13. One can see a video of this experiment in the link
https://drive.google.com/file/d/1KoZ4JlW9-lwD5kWcmxN5LNCiIsVQxOZ2/view (ac-
cessed on 24 June 2021). Some snapshots of this experiment are shown in Figure 9; the
group of robots initiated forming a line and they navigated in the specified triangular
formation while obstacles were avoided when needed. The trajectories followed by the
robots and the obstacle position with its security distance are depicted in Figure 10a, where
one can observe several evasion actions of different agents to avoid collisions with the
fixed obstacles and between robots. The trajectories of the virtual agents (variables αvi )
for this experiment are presented in Figure 10b. It can be seen that the circular trajectory
imposed by the leader was well tracked by the 10 agents except when evasion actions were
performed, however, after a transient the group of robots returned to consensus. The final
consensus value reached when the leader trajectory ended in 180 s was the point (5,−1)
marked with a circle.

https://drive.google.com/file/d/1KoZ4JlW9-lwD5kWcmxN5LNCiIsVQxOZ2/view
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(a) (b) (c)

(d) (e) (f)

Figure 9. The 10-agent system. Snapshots of the DDRs motion in the simulation. (a) Initial position.
(b) Intermediate position. (c) Final position. (d) Upper view of initial position. (e) Upper view of
intermediate position. (f) Upper view of final position.
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Figure 10. The 10-agent system. Trajectories of the DDRs. (a) Trajectories of real agents. (b) Trajectories of virtual agents.

In the case of the 10-agent system, due to the number of robots and the number of
fixed obstacles, many more evasion actions were performed in comparison to the 4-agent
experiment. Figure 11 shows the transition function along the simulation time for each
robot. All the agents activated the multitask control (42) at least one time during the
experiment to avoid collisions with the fixed obstacles whether only one agent had the
transition function activated or to avoid other agents whether more than one agent had in
high value the transition function. For instance, the leader avoided a fixed obstacle around
time 50 s and agents R4 and R7 avoided each other around time 22 s.

Figure 12a presents the tracking error for the leader R1 along the experiment. There
was an initial transient since the leader did not initiate over the reference trajectory. In the
time intervals from 22 s to 63 s and from 98 s to 165 s, it is clear the effect of the evasion
actions performed by the followers that affected the tracking of the reference by the leader,
however the tracking error converged to zero after those transients. In the same time
intervals could be observed transients due to the evasion actions over the consensus
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errors of the virtual MAS for coordinates x and y, presented in Figure 12b,c, respectively.
Nevertheless, the consensus errors converged asymptotically to zero after the transients due
to evasions and they were null at the final position where the leader stopped at time 180 s.
Figure 13 shows the linear and angular velocities of all the robots. As expected, in the same
time intervals where evasion actions were performed, the velocities had important changes
but they returned to be all the same value during the intervals where the whole group
moved in the desired formation, as around 80 s and from 170 s to the end. Furthermore,
the velocities were continuous all the time since the function h(t) defined for each robot
generated a smooth transition between the control laws of Theorem 1 and the one of
Theorem 2.
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Figure 11. The 10-agent system. Task transition function activation.
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Figure 12. The 10-agent system. Error functions of the formation tracking. (a) Tracking errors of
the leader. (b) Consensus errors in the x-axis. (c) Consensus errors in the y-axis.
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Figure 13. The 10-agent system. Control inputs (velocities) of the DDRs. (a) Linear velocities.
(b) Angular velocities.

4.3. Environments with Unknown Polygonal Obstacles

This section presents results of simulations in a different kind of environment in
comparison with the previous sections where circular obstacles were considered. In this
case, we had a cluttered environment with large irregular obstacles with polygonal shapes.
This result was implemented in MATLAB for a rapid prototyping of onboard sensors, since
we simulated a scanning range finder for each robot, which allows the robots the detection
of the nearest obstacle. When an obstacle was detected within the security distance σ = 0.25
the obstacle avoidance task was activated. The simulation setup corresponded to five robots
and three obstacles of different shapes. The connectivity graph was circular and the desired
formation specified by displacement vectors was a pentagon. The robot R3 was the leader,
which had to track a linear trajectory starting and finishing in the coordinates (4, 7) and
(11,−2), respectively. This reference trajectory of the leader continued by following a
sinusoidal cycle to finally reach the coordinate (15,−2). Figure 14 shows the trajectories of
the control points of each robot starting from arbitrary positions marked with asterisks.
It can be seen that the robots avoided the obstacles in the environment and achieved the
desired formation as a pentagon. The reference of the leader is depicted as a dash-dotted



Sensors 2021, 21, 4374 22 of 29

line trespassing the pentagonal obstacle. The leader effectively avoided this obstacle and
returned to track the reference. Figure 15 shows the continuous velocities of the control
points (αi) of each robot in the x and y coordinates. The reference trajectory of the leader
was designed to start and finish motionless for each part of it. Thus, the linear part of the
reference finished in 7 s while the sinusoidal part was performed from 7 to 11 s. After that,
the velocities became null and the formation stopped since there was no consensus error
among the virtual agents.
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Figure 14. Environment with polygonal obstacles. Trajectories of five robots dealing with irregular
unknown obstacles.

Figure 15. Environment with polygonal obstacles. Velocities of the control points of each robot.

4.4. Experiments with Real Robots

In this section, the proposed approach was evaluated in experiments with real robots
using a group of three DDRs, integrated by a Pioneer 3DX (used as the leader agent) and
two TurtleBots 2 (used as the followers). The gains were set to γ = 0.8, λ = 0.8 and k = 0.12
for tracking, evasion and consensus, respectively. The desired formation was triangular,
specified by the displacement vectors z1 = [0, 0]T , z2 = 0.7[cos(π/4), cos(π/4)]T and
z3 = 0.7[cos(3π/4), sin(3π/4)]T , with respect to the leader’s R1 position. The considered



Sensors 2021, 21, 4374 23 of 29

graph was undirected and connected, such that each robot has communication with the
other two. Each robot was connected via WiFi to a computer where the velocity commands
were computed in a distributed way using ROS. Each agent published its computed
velocities and also read the computed controls published by its neighbors at a sampling
rate of 0.025 ms. The position of each robot and the obstacles position in the environment
were obtained from an Optitrack Motion Capture System.

4.4.1. Linear Trajectory

As a first experiment, the leader performed the tracking of a linear trajectory, which
was given by m(t) = [x, λx + b]T , where x = (px0 − pxτ )(1 + cos(πt/τ))/2 + pxτ with
τ = 30 s, λ = (pyτ − py0)/(pxτ − px0), b = −λpx0 + pyi and (px0 , py0), (pxτ , pyτ ) were the
initial and final coordinates of the trajectory, respectively. Besides, a fixed obstacle was at
the position αo = [0.91, 0.12]T with security distance σ = 0.4.

The results of this experiment are presented in Figures 16–18 and the correspond-
ing video can be seen in the link https://drive.google.com/file/d/1RVNe52Gh6gmc2
AtGyeuERfKY54dixHz-/view (accessed on 24 June 2021). Figure 16 shows some snapshots
of the video with the initial configuration at the top left and the final formation at the
bottom right. Some intermediate positions are presented where one of the DDRs was
avoiding the obstacle and also caused the others to move. This was clear in the trajectories
of the robots as given by the motion capture system that can be observed in Figure 17a.
The position of the obstacle is also shown with its security distance depicted as a red
circle. Figure 17b shows the trajectories of the virtual agents computed from the position
of the robots and the displacement vectors zi. One can observe that the robots moved in
formation until R3 had to avoid the obstacle, which generated a reaction over the motion
of R2 and a small effect on the leader R1. At time 30 s, the virtual agents reached consensus
close to the coordinate (1.1, 2), which was the final point of the reference of the leader.

Figure 16. Three-agent system linear trajectory. Snapshots of the robots motion in the experiment.
The initial configuration is at the top left and the final formation is at the bottom right. Intermediate
positions when an obstacle is avoided are shown.

https://drive.google.com/file/d/1RVNe52Gh6gmc2AtGyeuERfKY54dixHz-/view
https://drive.google.com/file/d/1RVNe52Gh6gmc2AtGyeuERfKY54dixHz-/view
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Figure 17. Three-agent system linear trajectory. (a) Trajectories of real agents. (b) Trajectories of virtual agents.
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Figure 18. Three-agent system linear trajectory. (a) Tracking errors of the leader. (b) Linear velocities.
(c) Angular velocities.

The evolution of the tracking errors for the leader R1 with respect to time is shown
in Figure 18a. One can observe an initial transient and a maximum error slightly after
the middle of the time, which was expected given the form of the reference trajectory
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with maximum velocity in the middle of the trajectory. After that middle point, the errors
in both coordinates were reduced to reach low final values. The effect of the obstacle
avoidance performed by R3 could be appreciated around time 18 s with a smooth change
in the x-coordinate of the tracking error. Figure 18b,c show the profiles of the computed
robot velocities (linear and angular, respectively) for each agent. An initial transient was
appreciated during the first 5 s and after that, the velocities evolved very close each other
until the robot R3 performed an evasion around time 18 s. This action yielded a larger
change in the velocities of R3 than for R2 and had a low effect in the leader’s velocities.
The use of the transition function h(t) allowed the proposed scheme to compute continuous
velocities along the experiment.

4.4.2. Circular Trajectory

As a second experiment, we considered a circular trajectory, which was parameterized as
m(t) = 1.1[cos (2πt/τ), sin (2πt/τ)]T, with τ = 70 s, such that the radius of the circle was
1.1 m and the trajectory started at the coordinate (1.1,0) and returns to the same point in τ s.
Besides, a fixed obstacle was at the position αo = [0.6,−2.0]T, with security distance σ = 0.55.

Figures 19–21 present the results of this experiment and the corresponding video can
be seen in the link https://drive.google.com/file/d/1bJZBO7dByTipDryC0XqHJurHE4
f-d_i1/view?usp=sharing (accessed on 24 June 2021). Some snapshots of the video are
presented in Figure 19. The initial configuration of the MAS is the image at the top left and
the final formation is at the bottom right. Some intermediate positions are presented; in
particular we show the evasion of the fixed obstacle, which causes a deviation of the three
robots to later recover the trajectory. Figure 20a depicts the trajectories of the robots and
shows how the robot R2 performed the evasion when it overstepped the security region.
The effect of the obstacle avoidance is also observed in Figure 20b, where the trajectories
of the virtual agents are shown. They moved in consensus until the robot R2 deviated to
evade the obstacle. In this case, the deviation of the evading robot was more significant
than in the previous experiment and then the three robots deviated in a similar way. At the
end of the trajectory, at 70 s, the virtual agents returned to consensus close to the the final
point (1.1, 0) of the leader’s reference.

Figure 19. Three-agent system circular trajectory. Snapshots of the robots motion in the experiment.
The initial configuration is at the top left and the final formation is at the bottom right. Intermediate
positions when an obstacle is avoided are shown.

Figure 21a shows the evolution of the tracking errors for the leader R1 with respect to
time. After the initial transient, the errors remained at low values and they had a second
transient due to the effect of the obstacle avoidance around time 53 s. Both coordinates
were affected in this case, but at the end the errors converged asymptotically to zero as
proven in Theorem 2. The consensus errors of the virtual MAS for coordinates x and y
are shown in Figure 21b,c, respectively. The consensus errors were also maintained at low
values and they increased around time 53 s due to the evasion task initiated by robot R3.
The avoidance task finished around time 65 s and then the consensus errors converged to

https://drive.google.com/file/d/1bJZBO7dByTipDryC0XqHJurHE4f-d_i1/view?usp=sharing
https://drive.google.com/file/d/1bJZBO7dByTipDryC0XqHJurHE4f-d_i1/view?usp=sharing
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reach a low value that allowed the MAS to return to the desired formation. Since the robot
velocities depended on the errors shown in these figures, the proposed scheme provided
continuous velocities along the experiment thanks to the smooth switching of control laws.
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Figure 20. Three-agent system circular trajectory. (a) Trajectories of real agents. (b) Trajectories of virtual agents.
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Figure 21. Three-agent system circular trajectory. Error functions of the formation tracking. (a) Track-
ing errors of the leader. (b) Consensus errors in the x-axis. (c) Consensus errors in the y-axis.
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5. Conclusions and Discussion

In this paper, we have proposed a distributed control scheme to solve the problem
of position formation of a group of differential-drive robots while tracking a predefined
trajectory guided by a leader, all moving in an environment with obstacles. The obstacles
can be the agents themselves or fixed objects in the environment. The proposed scheme is
valid for connected communication topologies. A hierarchical task-based scheme has been
introduced for the formation tracking problem with obstacle avoidance. Thus, whether a
robot is close to an obstacle at a given distance, the task with higher priority is devoted to
avoid the obstacle and the task with lower priority is the formation tracking, and whether
no robots are near to the obstacles only the formation tracking control is executed.

We have formulated an adequate task function for the formation tracking and has been
combined to solve both tasks simultaneously when needed, guaranteeing continuity of the
velocities computed by the control law, independently of the activation/deactivation of
the obstacle avoidance task. The proposed control scheme only needs relative information
between neighboring agents and local measurements to avoid obstacles, in such a way that
neither a global coordinate system nor a map of the environment are required. The conver-
gence of the proposed control scheme to the formation tracking in spite of the execution of
evasion actions is proven theoretically and its effectiveness is validated through realistic
simulations and experiments using real robots.

As future work, we want to extend the proposed hierarchical scheme to include more
tasks, for instance connectivity maintenance (focused on preserve the initial connected
graph or guarantee the maintenance of a connected graph regardless of changes in the
communication topology), consider more than one leader and different formations in
sub-groups, as well as the implementation of the approach for long-distance navigation
experiments in more general environments with complex obstacles. To do so, we will
focus on developing experimental work relying only on local measurements using onboard
sensing, such as laser range finders or depth cameras mounted on the robots, instead of a
global positioning system.
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