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Abstract: Traditional methods to measure spatio-temporal variations in above-ground biomass dy-
namics (AGBD) predominantly rely on the extraction of several vegetation-index features highly
associated with AGBD variations through the phenological crop cycle. This work presents a com-
prehensive comparison between two different approaches for feature extraction for non-destructive
biomass estimation using aerial multispectral imagery. The first method is called GFKuts, an ap-
proach that optimally labels the plot canopy based on a Gaussian mixture model, a Montecarlo-based
K-means, and a guided image filtering for the extraction of canopy vegetation indices associated with
biomass yield. The second method is based on a Graph-Based Data Fusion (GBF) approach that does
not depend on calculating vegetation-index image reflectances. Both methods are experimentally
tested and compared through rice growth stages: vegetative, reproductive, and ripening. Biomass
estimation correlations are calculated and compared against an assembled ground-truth biomass
measurements taken by destructive sampling. The proposed GBF-Sm-Bs approach outperformed
competing methods by obtaining biomass estimation correlation of 0.995 with R2 = 0.991 and
RMSE = 45.358 g. This result increases the precision in the biomass estimation by around 62.43%
compared to previous works.

Keywords: data-fusion; feature-extraction; multispectral imagery; crop biomass; phenotyping

1. Introduction

Rice is an essential grain to ensure global food security [1], contributing to 20% of
food energy requirements worldwide. Major efforts have emerged to develop novel high-
throughput methods for enabling precision biomass characterization aimed at improving
crop yield, grain quality and crop management [2–4].

Monitoring rice biomass at larger crop scales requires remote sensing approaches for
precision sampling, mostly based on unmanned aerial vehicle (UAV-driven) multispectral
imagery [3–6]. For this purpose, Above-Ground Biomass Estimation (AGBE) methods have
recently gained significant traction [7–10], since machine learning models can be trained by
features extracted according to different plant reflectance wavelengths, namely vegetation
indices (VIs). These VIs, are computed from multispectral imagery captured by UAVs or
satellites. Although the combination of several VIs tends to avoid saturation issues with
higher values of accumulated biomass [11], in some cases the estimation of the biomass
(based on VI extracted features) requires independent models that must be characterized
and calibrated dependent on the crop growth stages. Furthermore, VI features are highly
affected by the genotype (rice variety) and external abiotic conditions [5,6,12–14].
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Most of the AGBE methods reported in the literature require image segmentation
algorithms to extract the VI formulas from the corresponding canopy [3–6,15]. Therefore,
the accuracy of the extracted VI-features strictly depends on the quality of the segmentation,
where several factors such as image resolution, saturation and radiation noise, play an im-
portant role in achieving an accurate correlation between the segmented pixels (VI-features)
with the biomass. To overcome this problem, recent approaches based on graphs [4]
propose the fusion of different wavelengths images into a single graph, where the eigen-
vectors can be used as features. As a result, graph-based methods do not require image
segmentation or other photogrammetry corrections that can be computational expensive.

In this paper, we compare two approaches for the extraction of relevant features
from multispectral aerial imagery, allowing the estimation of above-ground biomass based
on training classical machine learning models. In previous work reported in [3,4], we
introduced the aforementioned methods. The former method is called GFKuts, which was
primarily used as an image segmentation method to optimally segment the crop canopy.
The latter was based on graphs data fusion, which instead of using VIs or a mask image to
extract features, it use the structural information captured by the graphs.

2. Related Work

Several approaches are used to address the above-ground biomass estimation (AGBE)
problem [3–6,15]. For instance, authors in [15] conducted a comprehensive survey to
identify which VIs were suitable for estimating rice biomass as a function of the growth
stages of the crop. Furthermore, in [15,16], crop features were extracted by using classical
k-means binary clustering for segmentation, where linear multi-variable regression models
were applied to each crop stage independently for the biomass characterization. In [3],
a more sophisticated method named GFKuts was presented, aimed at combining a Monte
Carlo K-means with the well-known GrabCut segmentation method [17,18]. Overall,
the GFKuts approach is based on three image processing methods: Magic Wand, Intelligent
Scissors [19,20], and GrabCut that is grounded on the Graph-Cut method [17,18]. In GFKuts,
the energy function of the Graph-Cut method was adjusted, to achieve a global optimization
for a N-dimensional image through a Gaussian Mixture Model. Also, the proposed GFKuts
algorithm is fully automatic [21,22].

In [23], a deep learning approach was used for the estimation of biomass in forage
grass crops. Convolutional neural networks were trained with extensive datasets that are
computational expensive to process, while over-fitting issues were also observed. Other
approaches based on structural information combine multiple feature sources through a
fused graph [4,24,25]. These methods relies on the approximation of the graphs given by
the Nyström extension. In this paper, we extend the original graph method presented in [4],
by adding a new sampling technique known as blue-noise sampling. This is combined
with a graph signal processing approach to enhance the estimation given by the Nyström
extension of the graph in [4]. As mentioned, this method uses the eigenvector from the
graphs as the features to extract from the multispectral images. As a result, we expect to
improve on the estimation of the above-ground biomass, by correlating the estimations
against biomass measurements directly obtained from the crop by destructive sampling.

3. Materials and Methods

The general architecture for UAV-driven remote sensing of above-ground biomass
in rice crops is presented in Figure 1. An UAV is equipped with a multispectral camera
onboard that captures the reflectance of the light spectrum in four different bands (Green,
Red, Red-Edge, and NIR). A set of 1868 (i.e., one image per band) images was acquired for
the crop’s three growth stages: vegetative, reproductive, and ripening. Further details on
the dataset acquisition and crop characteristics can be found in [3].

As mentioned, this paper presents two approaches for feature extraction. The first
approach is GFKuts, which is based on the image processing area. This approach is an
entirely automatic proposal that integrates a binary classification technique with an op-
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timization approach based on a Gaussian mixture model, followed by a filtering stage,
to extract a mask related to pixels that belong to the crop canopy. The second approach
is a graph-based framework that aims to fuse data by taking advantage of the structural
relationship between the data captured by independent graphs (i.e., the structural relation-
ship of the pixels of an image with one graph per image channel). The method generates
a resultant fused graph with the most relevant information. Unlike GFkuts, this method
uses eigenvectors of the fused-graph as features rather than vegetation indices. Lastly,
the extracted features obtained from both methods are the input of a regression model to
estimate the above-ground biomass. The next subsections explain the features extraction
approaches and the regressors.

Vegetative
314 photos

Reproductive
82 photos

Ripening
71 photos

GFKuts Approach

Graph-Based Approach

Biomass estimation 

Conventional and destructive 
Measurement process

Ground truth

Vegetative index
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(c)

(d)

(e)

(f)

(g)

Validation
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Figure 1. (a) UAV-driven remote sensing of above-ground biomass in rice crops. (b) Multispectral imagery. (c) Dataset
amount & crop stages (d) First methodology—GFKuts. (e) Second methodology—Graph based. (f) Destructive biomass
sampling. (g) Validation and correlation stage.

3.1. GFKuts

Figure 2 details the proposed GFKuts approach. The first contribution of GFKuts
is to apply a random sampling approach based on Monte Carlo method and integrate
these samples into a binary classification method [26]. This random arrangement and the
binary classification algorithm solve a time-demanding computational iteration problem as
they provide an efficient stochastic numerical method based on a photogrammetric image
technique used in precision agriculture.
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Figure 2. GFKuts approach. (a) Preprocessing stage, (b) binary classification approach, (c) GMM modeling & optimization,
and (d) filter stage.
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An array I = (i1, . . . , in) of size N, denotes the input image in the standard RGB
color space (sRGB). The binary non-supervised classification method implemented in
this work is the k-means clustering algorithm that cluster the set of N samples into K
groups. The semantic labeling of the groups is random according to the nature of the
algorithm. Thus, there is no control of the true class of the label assigned. Given that
the results are highly repeatable, the identification of each group is carried out through
the characterization of the centroid. This characterization runs only once and operates
as long as the conditions of the images do not change (e.g., the type of crop, growing,
or environmental conditions).

The Montecarlo sample K-means classification strategy generates a selection of pixels
with a uniform random distribution of the spatial coordinates n(x,y) of the image. The result
is a subset of sRGB values for each selected pixel N. These values come from the refractive
bands of the light spectrum captured by the sensor. The implementation of this first stage
is shown in Algorithm 1. The result is a pair of masks that allow us to initialize regions of
the image to implement the optimization process.

Algorithm 1: Montecarlo Sampled K-means.
Input: the image I, the number of samples N, and two heuristic values associated with the mean expected

radiance of the canopy: C1, and the ground: C2.
for Each pixel in range (1 . . . n) do

Random (x, y) pixel selection from I to P
Store sRGB value from P to Featuren
Store pixel coordinates Ix,y

end for
Run K-means over Feature to get labeling In,k=1 and In,k=2
calculate the Euclidean distance between C1 and the centroid of the group K = 1 to m1;
calculate the Euclidean distance between C1 and the centroid of the group K = 2 to m2;
if m1 < m2 then

group K = 1 to canopy
group K = 2 to ground

else
group K = 1 to ground
group K = 2 to canopy

end if
Create a mask TF and set the coordinates in Ix,y of each pixel in In,canopy as the foreground.
Create a mask TB and set the coordinates in Ix,y of each pixel in In,ground as the background.

The image segmentation consists of inferring the unknown opacity variables, denoted
as α, from the given image data I and the model θ [18]. The opacity term α = (α1, . . . , αN)
is the image segmentation weighed by each pixel with 0 ≤ αN ≤ 1 for soft segmen-
tation and αN ∈ (0, 1) for hard segmentation, with 1 denoted as foreground and 0 for
background. The parameters θ describe image foreground and background distributions
modeled by GMMs values, that introduces the covariance parameter k = (k1, . . . , kN)
with kn ∈ (1, . . . , K) assigned for each pixel. The “Gibbs” energy function of Equation (1)
denoted as E, models a trend of solidity of the objects through the opacity parameter, whose
minimum corresponds to an optimal segmentation.

E(α, k, θ, I) = U(α, k, θ, I) + V(α, I). (1)

The function U() in Equation (1) is explained in Equation (2); this function estimate
the fitness of the opacity distribution α of the image, given the model θ, in which p() is a
Gaussian probability distribution and π() are mixed weights coefficients.

U(α, k, θ, I) = ∑
n
−logp(zn|αn, kn, θ)− logπ(αn, kn) (2)
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The remaining function V() shown in Equation (3) is called the smoothness term.
The constant γ is defined empirically as 50 by [18], given images in a 0–255 range. β is a
constant that regulates the smoothness term.

V(α, z) = γ ∑
(m,n)

dis(m, n)−1[αm 6= αn]β ∗ exp(Zm − Zn)
2 (3)

The segmentation can be estimated as a global minimum of α parameter over the
energy model, as seen in Equation (4)

α′ = argmin
α

E(α, θ) (4)

After the optimization process, an image filtering stage is introduced. Linear and
time-invariant filters are usually used. A powerful approach, is to optimize a quadratic
function that directly imposes constraints on the unknown output. The solution is obtained
by solving a dispersion matrix encoded with the information from the guide image [27,28].
Processing is done around each pixel using a weighted average of the nearby pixels.
The processing information is based on the color and intensity of the guide image [27].
This proposal is developed with the bilateral filter, starting with the guided filter. The filter
can preserve the edges and smooth out small fluctuations [29]. This approach is based
on explicitly constructing the cores using an orientation image. The output is a linear
transform of the guide image. This filter has the edge-preserving and anti-aliasing property
such as a bilateral filter, but does not suffer from gradient inversion problems [28,29].

The filter stage has two inputs, a guide image ‘I’ and an input image ‘p’. The output is
expressed as a weighted average ‘q’. The parameters i and j are the pixel indices, as seen in
Equation (5)

qi = ∑
j

Wij(I)pj (5)

The guide image ‘I’ is the reference of the filter kernel Wij independent of ‘p’. The ker-
nel weights can be explicitly expressed by Equation (6)

WGF
ij (I) =

1
|ω|2 ∑

k;(i,j)∈ωk

(
1 +

(Ii − µk)(Ij − µk)

σ2
k + ε

)
(6)

The parameters µk and σ2
k are the mean and variance of wk in image ‘I’ respectively, ε

is a regularization parameter and ‖w‖ is the number of pixels in wk [28].

3.2. Graph-Based Data Fusion

Multi-channel input images denoted as Xc
n ∈ Rm×n, with c = 1, . . . , Ch and n = 1, . . . , N,

where Ch is the number of channels of each image and N is the total number of images. Here,
the goal is to extract relevant features given by each channel of the images, in order to train
a model that captures the biomass behavior across the crop stages. As explained in [4], each
channel of images are represented by a corresponding graph, with the purpose of obtaining a
single fused-graph from all the channels. The fused-graph is then used as an embedded space
of images to extract relevant features.

The graphs used in the approach in [4] are undirected, and they are denoted as a triplet
G = (V, E, w), consisting of vertexes V, and edges E ⊂ V×V, and a non-negative weight
function w : V×V 7→ [0, ∞). Therefore, a multichannel image Xc

n can be represented as
graph G by defining a vertex set V, an edge set E ⊂ V×V, where each edge represents
the relationship between two pixels, and a weight function w that measures the strength of
that relationship. Typically w is defined by:

w(vi, vj) = exp

(
−dist

(
vi, vj

)2

σ2

)
, (7)
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where dist(vi, vj) is the Euclidean distance between the nodes vi and vj associated to the
pixels ∈ Xc

n, and σ > 0 is a scaling parameter.
Given the graphs for all channels in the image (Xc

n) Gc = (V, Ec, wc) ∈ Rmn×mn,
a fused graph G f = (V, E f , w f ) ∈ Rmn×mn can be defined by combining the weight
functions of Gc as follows:

w f (vi, vj) = min(w1(vi, vj), w2(vi, vj), . . . , wCh(vi, vj)), (8)

Therefore, the eigenvectors (u) and eigenvalues (λλλ) are computed from W f ∈ Rmn×mn

by solving the eigen problem of the normalized Laplacian, defined as:

Lu = λλλDu, (9)

where the Laplacian L = I−D−1/2W f D−1/2 and D is the degree matrix that is diagonal
has elements dj = ∑i w f (vi, vj)).

3.2.1. Nyström Extension

Since the matrix W f ∈ RP×P with P = mn cannot be computed the authors in [4]
leveraged the Nyström extension to compute the eigenvectors of W f without computing
the complete matrix, while using some samples (ns) of Xc

n, as follows:

W f =

[
A B

B> C

]
,

where A ∈ Rns×ns , B ∈ Rns×(P−ns) and C ∈ R(P−ns)×(P−ns). This method approximates
C by using ns samples from the total number of pixels P ∈ Xc

n with ns � P. Thus,
the eigenvectors of the matrix W f can be spanned by eigenvalues and eigenvectors of
A, by solving the diagonalization of A (A = U>λλλU). Hence, the eigenvectors of W f

can be spanned by Û =
[
U; B>Uλλλ−1]>. Since the approximated eigenvectors Û are not

orthogonal, as explained in [30], they can be obtained with S = A + A−
1
2 BB>A−

1
2 . Then,

by the diagonalization of S (S = UsλλλsUs) the final approximated eigenvectors of W are
given by:

Û =

[
A

B>A−
1
2

]
Usλλλ

− 1
2

s . (10)

Up to this point we have discussed the approach proposed by authors in [4] in which,
they used the common Gaussian kernel-based graph that might not provide the best
representation of the intrinsic behavior of the data. In addition, the uniformly spaced
distributed sampling method used to extract samples for the Nyström extension can
overlook relevant samples that contain structural information about the change detection.
Moreover, as defined by [31], the approximation of W f given by the Nyström extension
is highly affected by the way samples are selected. Thus, we propose to use a recent
graph-based sampling method named as Blue noise sampling [25] alongside a graph using
prior smoothness learning, which is based on graph signal representation [24]. This is
detailed in the following.

3.2.2. Graph Signal Processing: Smoothness Prior

The problem of learning a graph with a prior of smoothness, is to learn the Laplacian
matrix (L), so that the signal variation on the resulting graph (Q(L)), is small. Here a small
value of Q(L), means that the signal on the graph takes similar values to its neighbors,
resulting in edge disconnections from the graph [32]. The measure of smoothness of a
signal x on a graph is given by:

Q(L) = 1
2 ∑

i,j
wij(x(i)− x(j))2,
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where wij is the ijth entry of matrix W. To do so, we use the recent approach in [24] for large
scale graphs with prior smoothness, where the authors leverage the desired graph sparsity
to reduce computational cost. This model needs as inputs the number of neighbors K that
are related to the edges per node, and the parameters α and β. Therefore, the minimization
problem of [24] can be computed as:

min
W∈RP×P

tr(WTZ)− α ∑
i

log(∑
j

wij)

+
β

2
‖W‖2

F +
c
2
‖W−W0‖2

F (11)

s.t. wij = wji ≥ 0, i 6= j, wij = 0, i = j

where Z is a pairwise distances matrix, α is a log prior constant (> α→> weights in W),
β is a ‖W‖2

F prior constant (> β→ less sparsity in W), and the parameter c encourages
adjacency matrices close to a pre-specified adjacency matrix W0. To reduce the complexity
of Equation (11) the authors in [24] fix the parameters α = β = 1 and multiply the pairwise
distances matrix (Z) by a parameter θ to make the sparsity analysis simpler. The parameter
θ is computed by each column b of Z, and it has upper and lower bounds, as described by
Equation (12).

θlower =
n

∑
j=1

1

n
√

Kz2
K+1,j − bk,jzK+1,j

θupper =
n

∑
j=1

1

n
√

Kz2
K,j − bk,jzk,j

(12)

The process is summarized in Algorithm 2, as follows:

Algorithm 2: Graph learning with prior smoothness [24].
Input: Matrix of distances Z, K edges per node (sparsity level)
Output: Graph learned with prior smoothness Ws

Step to compute θ

Compute bounds of θ with Equation (12).

Compute θ as a geometric mean between the bounds θlower and θupper.

Step to compute adjacency matrix Ws.
Compute Ws from Equation (11) with Z = θZ

3.2.3. Blue-Noise Sampling

Many methods to perform a sampling over graphs can be found in the literature [33] in
order to find a suitable sampling set S ⊂ V ∈ G. However, as explained in [34], is desirable
to get samples from different structures or objects that are present in the image, that from
the graph perspective this structures/objects can be capture by sub-graphs. Therefore,
we will focus on the sampling method known as blue-noise sampling since it focus on
extracting samples related to sub-graphs. This kind of sampling has been widely used in
digital half-toning [35], but has recently been extended to graphs [25].

The blue-noise sampling gives as a result a subset S of vertices V that are as far
as possible from each other in terms of the geodesic distances on G. The work in [25]
demonstrated that the final subset given by blue-noise sampling leads to an accurate
reconstruction of signals that is energy is mostly concentrated at the lowest eigenvectors of
the graph Laplacian of G.

In order to assemble all the aforementioned methods into a single approach, we
need a graph that contains the most relevant samples (i.e., pixels). To do this, we use
a down-sampled version of the image taken from the GFKuts method [3] which con-
tains probabilities of the pixels that belong or do not belong to the crop (see Figure 3).
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The down-sampling is conducted to avoid computer memory saturation, by applying
a square grid M ∈ R m

25×
n
25 . Secondly, to learn a graph by using the Algorithm 2 of the

prior of smoothness, we use, as nodes, the vectorized version (Mi ∈ R625) of each square
in the image, computing the distances between the nodes (Z ∈ R|V|×|V|) and apply the
prior of smoothness [24]. Lastly, we apply the blue-noise sampling over the smoothed
graph Ws and inject these samples to the graph based fusion algorithm proposed in [4],
in order to obtain the eigenvector with the highest eigenvalue of the fused-graph W f . Since
the eigenvectors are embedded in a high-dimensional space equal to the resolution of
the images (i.e., 960× 1280), we use the same dimensionality reduction technique used
in [4], based on the t distributed stochastic neighbor embedding (t-SNE) [36]. Figure 3
summarizes proposed method.

From the gfkuts
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Figure 3. Proposed method based on the three stages: (a) Graph learning with prior smoothness, (b) blue-noise sampling to
inject the samples to Nyström extension and (c) the fusion of the the multispectral images to extract features of the crop.

3.3. Non-Linear Regression Models
3.3.1. Support Vector Machine Regression (SVM-R)

The purpose of a support vector machine regression is to solve a linear regression prob-
lem by mapping the input data into a high dimensional space (feature space). The following
model is considered:

f (we, x) = (we ∗ φ(x)) + b, (13)

where we are the regression coefficients (weights), φ(x) : Rin 7→ Rout with out� in, and b
is the bias term. To obtain the optimal values of We, a loss function can be defined such
as the Laplacian, Huber’s, Gaussian or ε-intensive. We will use the most common loss
function that is the ε-intensive with a regularization parameter C:

min
We ,ξ,b

1
2
‖We‖+ C

n

∑
i=1

(ξi + ξ∗i ) (14)

s.t.


yi − f (we, x)− b ≤ ε + ξ∗i
f (we, x) + b− yi ≤ ε + ξ∗i
ξ∗i , ξi ≥ 0

,
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where ξ∗i and ξi are slack variables with measure deviations larger than ε. By transforming
the optimization problem in Equation (14) into a dual problem, the final solution is obtained
by using Lagrange, the Karush–Kuhn–Tucker conditions, and the kernel trick [37], giving:

f (x) = (ααα− ααα∗)K(x) + b, (15)

where ααα, ααα∗ are the Lagrange multipliers and K(x) is a Kerrnel function. In this case we use
the Radial Basis Function (RBF) Kernel (similar to Equation (7)).

3.3.2. A Nonlinear Autoregressive Exogenous (NARX)

An exogenous autoregressive model (NARX) aimed at the identification of non-linear
systems involves both current and past values of the impulsive series that models the
dynamics of the system. NARMAX (Nonlinear Autoregressive Moving Average with
Exogenous Inputs) methods provide models that are transparent, and easily solve many
problems such as contour errors in CNC machines, forecasting, network traffic, and pre-
diction of daily solar radiation [38–41]. The NARMAX model is defined in Equation (16).
Where y(k) is the output system, u(k) is the input system and e(k) is the noise sequence.
ny, nu y ne are the maximum lags for the system output, input and noise respectively; F[.]
refers to the function and d is a time delay usually set to d = 1.

Y(k) = F[y(k− 1), . . . , y(k− ny), u(k− d), . . . , u(k− d− nu), e(k− 1), . . . , e(k− ne)] + e(k)] (16)

In this work, the function F[.] has been implemented using artificial neural networks
(ANN) with two hidden layers and one output layer.

4. Results and Discussion
4.1. Experimental Setup

In order to compare the effectiveness of the proposed feature extraction based on
graphs, the results were compared with two approaches: (i) the former graph method
introduced in [4], namely GBF, and (ii) the GFKuts approach [3]. We used the datasets
and Ground-Truth reported in [3,4], containing 314 images for the vegetation stage, 82
for the reproductive, and 71 for the ripening. The captured images have a resolution of
960× 1280 pixels, geo-referenced with the corresponding biomass measurements in grams
(g) from the Ground-Truth (further information of the experimental protocol can be found
at https://www.protocols.io/view/protocol-bjxskpne, accessed date: 24 June 2021), which
was assembled as follows: 1 linear meter of the plants were cut from each plot of the crop
and weighted to obtain the fresh biomass. Subsequently, the samples are placed inside an
oven at 65 degrees Celsius for 4 days or until a constant weight is reached. This is known
as the dry biomass.

Having the imagery dataset and the Ground-Truth, we trained two estimation models:
classical SVM-R regression and a robust nonlinear autoregressive network with exogenous
inputs (NARX), both accounting for 70% of the dataset for the training, and the remaining
30% for testing and validation. Lastly, the performance of the models was measured in
terms of the root mean squared error (RMSE), the linear correlation (r), and the coefficient
of determination (R2). Additionally, we conducted several experiments with the SVM
regressor considering different kernel functions (i.e., linear, polynomial, and RBF), while
the best performance was achieved by the RBF Kernel (similar to the work in [4]).

The algorithms were tested in a server with two Intel(R) Xeon(R) CPUs E5-2650 v4 @
2.20 GHz, with 24 physical cores, 48 threads of processes, and 252 GB of RAM. Parameters
are detailed in Table 1.

https://www.protocols.io/view/protocol-bjxskpne
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Table 1. Parameters used for the models GFKuts [3], GBF [4], and our proposal GBF-Sm-Bs model.

Model Parameters

GFKuts [3] k-neighbors = 2 window radius = 60 ε = 10−6 -
GBF [4] - - t-SNEdim = 16 ns = 100
GBF-Sm-Bs edges/node = |V|

2 window size = 25 t-SNEdim = 89 ns = 100

4.2. Biomass Estimation

Figures 4–6 show the experimental results obtained from the 3 methods in the follow-
ing order: (i) GFKuts, (ii) former graph method (GBF), and (iii) proposed graph method
with blue-noise and prior smoothness (GBF-Sm-Bs). Numerical data containing the above-
ground biomass estimation results for each model are presented in Table 2.

Table 2. Performance in terms of RMSE, r and R2 for the models: GFKuts [3], GBF [4], and our
proposed GBF-Sm-Bs model with both Narx and SVM regressors.

Model/Regressor RMSE (in grams [g]) r R2

GFKuts [3]/SVM 129.490 0.963 0.929
GBF [4]/SVM 249.058 0.857 0.735

GBF-Sm-Bs/SVM 155.498 0.954 0.910

GFKuts [3]/Narx 86.769 0.983 0.968
GBF [4]/Narx 99.855 0.9856 0.971

GBF-Sm-Bs/Narx 45.358 0.995 0.991
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Figure 4. Biomass estimation using the GFKuts approach.
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Figure 5. Biomass estimations using the graph-based approach with uniform sampling features
(GBF).
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Figure 6. Biomass estimations using the proposed graph-based approach with blue-noise and prior
smoothness features (GBF-Sm-Bs).
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According to Table 2, the GKFkuts approach achieved the lowest RMSE = 129.490 g,
followed by the proposed graph-based model with RMSE = 155.498 g. However, by ap-
plying the robust Narx regressor, the best performance was achieved by our proposal,
with a RMSE = 45.358 g. Results were also correlated to the linear fit, presented from
Figures 4–6. There we can observe that the Narx regressor improves the fitting to a linear
model, in which the proposed method achieved a linear correlation value of r = 0.995.

Contrasting with the previous work from [3], the Narx model enabled a slight improve-
ment of about 3% over the former GFKuts method, due mainly to the configuration of the
auto regressive inputs, and the use of vegetative indices with the soft mask generated by the
GFKuts approach. Regarding the former graph-based method from [4] (GBF), results were
improved by around 62.43% (155.498/249.058) and 45.42% (45.358/99.855) for the SVM and
Narx regressors in terms of the RMSE metric, respectively. For the SVM regressor, the GBF
and the GBF-Sm-Bs methods achieved a RMSE = 259.058 g and RMSE = 155.498 g re-
spectively, as observed in Table 2, while for the Narx regressor, the GBF and the GBF-Sm-Bs
methods achieved a RMSE = 99.855 g and RMSE = 45.358 g respectively, as presented in
Table 2. This demonstrates the effectiveness of using a structured sampling method com-
bined with graph learning, based on a prior of smoothness, for the extraction of relevant
samples to be apply into Nyström extension.

Overall, the proposed GBF-Sm-Bs approach using Narx achieved an improvement in
the RMSE metric of about 50%, while also improving the biomass correlations reported
from previous works. Part of the improvement achieved with the GBF-Sm-Bs method
comes from extracting more relevant features than GFKuts, precisely 89 features. While
GFKuts works with only 7 VI-features (per image) highly sensitive to biomass variations,
the graph-based method is characterized by the eigenvectors with the highest eigenvalue
associated with the fused-graph W f , yielding 89 features per image.

5. Conclusions

The proposed methods for above-ground biomass estimation, not only enabled the
precise characterization of the biomass behavior of the rice crops through the entire pheno-
logical cycle, but also worked as both image segmentation and feature extraction techniques,
by associating relevant features from the canopy. It is worth mentioning that most of the
existing body of work in remote sensing methods for high-throughput biomass estima-
tions based on multispectral imagery, requires dedicated photogrammetry methods for
image correction, segmentation and feature extraction. In this study, both GFKuts and the
GBF-Sm-Bs methods solved those stages by combining them into one single approach.

According to the findings reported in Table 2, the proposed GBF-Sm-Bs approach
obtained an average biomass correlation of 0.995 with R2 = 0.991 and RMSE = 45.358 g, in-
creasing the precision in the estimation by around 45.42% (45.358/99.855), compared to the
GBF method, and about 52.27% (45.358/86.769) compared to the GFKuts approach for the
Narx regressor. This is a promising result towards GWAS gene characterization (Genome-
wide Association Study), that requires larger amounts of precise and accurate phenotyping
data for the association of gene functions with a specific trait. In this regard, future work is
aimed at the inclusion of clustering approaches within the proposed algorithms, to enable
the extraction of features according to several plant varieties (genotypes).

As future work, it would be interesting to explore the graph convolutional network,
which combines the structural information captured by the graphs with the high level of
abstraction given by neural networks. Additionally, a strong approach for segmentation
(i.e., different for square windows over the image) could lead to improved results, since
the segmented regions are used to generated a graph with smoothness prior.
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