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Abstract: Quality inspection applications in industry are required to move towards a zero-defect
manufacturing scenario, with non-destructive inspection and traceability of 100% of produced
parts. Developing robust fault detection and classification models from the start-up of the lines is
challenging due to the difficulty in getting enough representative samples of the faulty patterns and
the need to manually label them. This work presents a methodology to develop a robust inspection
system, targeting these peculiarities, in the context of solar cell manufacturing. The methodology
is divided into two phases: In the first phase, an anomaly detection model based on a Generative
Adversarial Network (GAN) is employed. This model enables the detection and localization of
anomalous patterns within the solar cells from the beginning, using only non-defective samples
for training and without any manual labeling involved. In a second stage, as defective samples
arise, the detected anomalies will be used as automatically generated annotations for the supervised
training of a Fully Convolutional Network that is capable of detecting multiple types of faults. The
experimental results using 1873 Electroluminescence (EL) images of monocrystalline cells show that
(a) the anomaly detection scheme can be used to start detecting features with very little available
data, (b) the anomaly detection may serve as automatic labeling in order to train a supervised model,
and (c) segmentation and classification results of supervised models trained with automatic labels
are comparable to the ones obtained from the models trained with manual labels.

Keywords: anomaly detection; electroluminescence; solar cells; neural networks

1. Introduction

Quality inspection applications in industry are becoming very important. It is a
requirement to move towards a zero-defect manufacturing scenario, with unitary non-
destructive inspection and traceability of produced parts. This is one of the applications
where image analysis with deep learning (DL) methods is showing its full potential. DL
has proven to greatly improve the results of solutions obtained using traditional vision
techniques, regarding precision, robustness, and flexibility. These improvements allow
models to be adapted to incorporate new features of interest, transfer learned models
between different domains, and to speed-up the design and development of models for
new tasks.

However, the quality inspection environment in the industry has peculiarities that
must be taken into account when applying DL-based solutions. Thus, it is not easy to
generate large enough datasets with representative images of the different characteristics
of interest. Manual labeling of each of the examples must be carried out, which is usually
an arduous task that takes large amounts of time and resources. Furthermore, the scarcity
of available examples, and the fact that the images of industrial products manufactured
successively are very similar to each other, can make the DL algorithm prone to overfitting.
Finally, in new applications or industrial processes, there are no defective data samples
from the beginning, so it would be necessary to wait a long time to be able to have DL
models capable of identifying the faults that may appear.
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Thus, this work presents a methodology to deal with these peculiarities. This method-
ology should work as a guide towards robust classification and segmentation models,
giving rise to fault detection models that are able to detect anomalous feature patterns from
the start-up of a new line. The methodology will make use of an anomaly detection model
which allows anomalous patterns to be detected in the produced parts, and in addition, the
detected anomalies will serve as automatic annotations making the labeling of the images
much faster. The work will be tailored to the solar cell manufacturing industry; however, it
could be extrapolated to different domains.

In the last decade, about 2.6 trillion dollars have been invested in renewable energies,
half of it in solar energy, with the objective of developing efficient alternatives to traditional
energy sources, such as oil or gas [1]. The development of the technology has reduced
solar electricity generation cost per kilowatt-hour by 81%. This cost reduction has turned
solar energy into an attractive source of energy for electricity production, increasing the
installation of Photovoltaic (PV) cells by 36.8% between 2010 and 2018 [1]. This investment
trend is expected to continue in the coming years [2].

During the assembly of the panels, different events, such as excessive mechanical
stress on the panel or a soldering failure, can lead to defects that can harm the long-term
energy generation capacity of the module. A defect that covers 8% of the total cell area may
not have a significant impact on the performance if the cell is isolated. However, the same
area can have a significant impact when cells are connected and soldered to each other
in cell arrays [3], which is the most common layout. The defective area may spread with
time, breaking the cell and considerably reducing the energy production capacity of the
module. As cell production increases, quality inspection becomes critical to avoid defective
cells being assembled into the final panel and, thus, to ensure high efficiency and reliable
performance of the produced panels.

Today, different imaging techniques are used during PV module inspection to obtain
images where defects appear highlighted, for example, Electroluminescence (EL) [4,5],
Photoluminescence (PL) [6,7], or Thermography [8,9]. During the assembly stage, EL is
one of the predominant techniques. In EL, the cells emit light under electrical current by
the phenomenon of Electroluminescence. This light is then captured in high-resolution
images where defective areas, with less current flow, appear darker than the remaining
parts of the cell [10]. The most common defects that may arise are cracks, breaks, and finger
interruptions [11]. Figure 1 shows the appearance of these kinds of defects in EL images.
This technique requires a high degree of control over environmental conditions since the
images have to be taken in total darkness. This requirement makes the application of EL
unfeasible for outdoor panel inspection but suitable for inspection in the manufacturing
phase with controlled environmental conditions. EL provides high-resolution images
where defects are highlighted.

Figure 1. Different types of defects highlighted in Electroluminescence images. The defects are: (a) microcrack, (b) crack, (c)

bad soldering, (d) break, and (e) finger interruptions.

Despite these enhanced images, the defect detection process has to be done by checking
each of the cells individually. This process is currently done to a great extent by human
operators, who are prone to error, as it is hard for humans to meet industrial production
cycle-times. For example, a panel composed of 60 PV modules must be examined in



Sensors 2021, 21, 4361

30f22

under 30 s, which means half a second for each module. In addition, human subjectivity
is inevitable when deciding if a cell is defective or not, affecting the quality inspection
effectiveness. In recent years, several proposals have been made towards the automation
of quality inspection. By automating the inspection, all the cells can be checked faster and
always using the same objective criteria, overcoming the previous limitations.

The proposed approaches for automatic PV module inspection can be grouped into
three categories according to the required level of human intervention: (1) traditional
image processing-based approaches, where the procedures used to highlight and binarize
defective areas in the images must be manually defined, (2) shallow learning approaches,
where machine learning techniques are used for defect identification based on meaningful
features that must be obtained through manual feature engineering, and (3) deep learning
techniques, where the features are automatically obtained from the data. Note that higher
levels of human intervention in the image processing algorithm implementation implies
larger development times in order to adapt it to new requirements.

The remainder of the paper is organized as follows: Section 2 presents some back-
ground and related works in the field of photovoltaic cell inspection. In Section 3, the
unsupervised and supervised training are explained. Section 4 details the dataset, metrics,
and hardware and software specifications used in the experiments. Section 5 describes
the performed experiments and their results. Finally, Section 6 provides some conclusions
about the work.

2. Related Works

In this section, some of the proposed approaches for the automatic detection of defects
in images of PV modules are going to be summarized.

The traditional image processing methods are mainly based on manual feature en-
gineering. In this process, the discriminating characteristics of the defects are used to
process and binarize the images to highlight the defects. For example, using anisotropic
diffusion filters [12,13] or modified steerable filters [14,15], the background in the modules
is smoothed such that only defects remain. Or inversely, applying anisotropic in Tsai et
al. diffusion [16] or filters in the frequency domain in Tsai et al. [17] to remove the defects
in the cells, so then the difference between the filtered and the original image is used to
highlight the defects.

In other works, the manual feature extraction is combined with shallow learning
methods: In Tsai et al. [18] and Zhang et al.[19], they extract Independent Component
Analysis basis (ICA) from defect-free solar cells samples to construct a demixing matrix. At
the inspection stage, the images are reconstructed using the learned basis images and the
reconstruction error is used for detecting the presence of defects. In Rodriguez et al. [20],
20 different LoG-Gabor Filters are used to extract 81 features for each pixel in the images.
Then, Principal Component Analysis (PCA) is used to refine these features, and finally,
a Random Forest model classifies each pixel as non-defective or defective. In Tsai et al.
[21], they extract characteristics of local grains patterns and clusterize them using Fuzzy
C-means. At testing, the distance of the grains from the samples to the clusters is used
to decide if the grain is defective or not. Similarly, in Su et al. [22], they use a modified
Center-Symmetric Local Binary Patterns (CS-LBP) feature descriptor to extract features
from the defective areas in the cells, which are then used to train the K-means algorithm.
The cluster centroids from training samples are employed to generate global feature vectors
to train a classification algorithm, such as a Support Vector Machine (SVM).

Opverall, both traditional image processing methods and traditional methods in combi-
nation with shallow machine learning techniques can achieve high defect detection rates.
However, manual feature engineering is usually time-consuming and requires high domain
knowledge. In addition, inspection systems based on these approaches are commonly very
case-specific solutions that lack adaptability. A change in the data can mean a substantial
change in the inspection system, which would require additional time-consuming manual
feature engineering labor to adapt it.
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In more recent works, DL methods have been widely applied in the solar cell in-
spection field. These methods can directly extract meaningful features from the raw data
without any feature engineering work, thus making these methods more flexible to changes.
References [4,23-27] are some examples of how Convolutional Neural Networks (CNN)
have been employed for classifying solar cells as defective or defect-free during quality
inspection. In addition to classification, in some cases, the location of the defects in the
cells is also provided. For example, in our previous works, we used the sliding window
approach with a CNN designed for classification to process cell images by patches and
accumulate the results in a heatmap-like image, highlighting areas with a high probability
of being defective [28]. Or we explicitly train a Fully Convolutional Network to perform
pixel-wise classification [29]. Additionally, other researchers have also proposed other
types of defect location, using bounding boxes [30,31], or by visualizing the activation
maps from the last network layer [25,32].

Nevertheless, to obtain high detection rates, the networks are trained using supervised
learning, which requires a considerable amount of annotated defective data. The quality of
the results (i.e., detection rate) in supervised learning is directly proportional to the amount
of employed annotated data. However, this represents a challenge in many industrial
applications as sufficient defective samples may be difficult to obtain in an industrial setting.
Thus, the creation of accurate inspection models may be difficult, as a new manufacturing
line will need time to generate a representative dataset with enough examples. There may
also be certain very rare defect types that might be difficult to gather for the dataset.

To tackle the problem of insufficient defective data, several researchers have proposed
different solutions. One of the approaches is transfer learning [26,33,34], where the neural
network is initialized using weights from a previously trained network. Then, the model
is refined using a few case specific samples. Transfer learning is limited by the similarity
between the source and target domains. Currently, the available pre-trained weights have
been mainly trained on natural images rather than on industrial datasets, which can limit
their use in industrial cases.

Another approach consists in generating synthetic data to compensate imbalanced
datasets employing variants of the Generative Adversarial Network (GAN) [35]. These
architectures have shown remarkable capabilities in learning latent representations of
real data to generate realistic synthetic samples. In this way, synthetic defective sam-
ples are generated and employed along with real samples to train a conventional CNN.
This approach alleviates the risk of overfitting and improves the generalization capabil-
ity of the network. This strategy has been successfully employed to generate realistic
human faces [36], synthetic machinery faulty signals [37], and also defective solar cell
samples [11,38]. Nonetheless, both Transfer Learning and GAN:Ss still require defective data.

In other domains, researchers have used an anomaly detection approach to avoid
the need for defective data. The objective of this approach is to train a network to learn
the probabilistic distribution of normal data. Then, the learned features can be used to
discriminate samples that will be far from what is considered normal and are, thus, detect
defective samples. In anomaly detection, just defect-free samples are used during training
and there is no need for annotations. These features make anomaly detection an interesting
approach for industrial applications. Anomaly detection has been applied in different
industrial cases, e.g., Haselmann et al. [39] and Staar et al.[40] and also in the medical
domain, e.g., Schlegl et al. [41] and Chen et al.[42], where it is also difficult to obtain
anomalous data for training. However, these approaches usually result in less accurate
models than those obtained with supervised training.

In the case of solar cell inspection, anomaly detection approaches have been proposed
in Qian et al. [34,43], where they train a Stacked Denoising AutoEncoder (SDAE) to extract
features from defect-free samples using the sliding window method. In Qian et al. [34],
they extend the network architecture with a pre-trained VGG16 network that works as
an additional feature extractor. This extra branch extracts additional features which are
fused with the already extracted feature maps enhancing the obtained information. At
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testing time, the same procedure is applied and the extracted features are processed using
matrix decomposition to localize the defects in the cells. After that, some morphological
processing is applied to improve the results. However, in these works, only the detection
of cracks is targeted. Furthermore, the images are processed using the sliding window
method. This procedure slows down the inspection process limiting its deployment into a
real production environment.

An inspection system should be able to detect the maximum number of defects, be
fast to meet the established inspection time, and require the minimum human intervention
in order to save resources and time. The main contribution of this work is a methodology
that tries to meet these requirements by combining the accuracy of supervised models with
the benefits of an anomaly detection approach, i.e., that it only requires defect-free samples
for training and avoids the need for data labeling. The approach has been tailored for the
detection and segmentation of different types of defects, such as cracks, microcracks, or
finger interruptions, in EL images of solar cells; however, it should also be applicable in
other industrial inspection tasks. The methodology is illustrated in Figure 2 and consists of
two stages:

1.  First, using an anomaly detection approach, defect-free samples can be employed to
obtain an initial inspection model that from the very beginning of a new production
line can detect and segment anomalies in EL images of cells. For this purpose, {-
AnoGAN [41], a GAN-based anomaly detection network that has been shown to
work well with medical images, is adapted for inspection. The original architecture
has been modified such that instead of using a sliding window method, the images
can be processed as a whole, reducing the processing time drastically. In addition, a
modified training scheme is proposed which improves the defect detection rates with
respect to the results with the original training scheme.

2. Then, as defective cells arise, the anomaly detection model will separate them from
the defect-free ones and it will generate pixel-level annotations without any human
intervention. The experiments have shown that these segmentation results can be
used as pixel-wise labels for the supervised training of a U-Net [44]-based model that
improves the defect detection rates of the anomaly detection model.

STAGE 1

Unsupervised
training

Model: f-AnoGAN

* Defect-free samples
are employed for
training

STAGE 2
Anomaly Model Enough defective cells are Supervised Model
deployment Anoma|y accumulated supervised deployment
—_—
Detection (automatically annotated Training
dataset)
Model: f-AnoGAN Model: U-net
* The model classifies the cells * Defective cells are
as defective or defect-free used to traina
* For each defective cell an supervised model to
automaticannotationis improve the accuracy
generated

Figure 2. General schema of the proposed methodology. (1) In the unsupervised training, the network for anomaly detection

is trained with defect-free samples. (2) In anomaly detection, the network from the previous step is applied to detect and

locate defects, thus generating an automatically labeled dataset. (3) Finally, the generated dataset is employed to train a

supervised model that improves the detection rates.

3. Methodology
This section details how the different networks used in the methodology are trained.

3.1. Unsupervised Model for Anomaly Detection

In this stage, the objective is to train an anomaly detection model that can detect and
locate anomalous patterns within solar cell images. This is achieved by training f-AnoGAN
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network to encode and reconstruct only defect-free samples, so then, when processing
defective samples, it will output a defect-free version of them. The differences between the
original and the reconstructed defect-free version will highlight anomalies in the cells.

f-AnoGAN is composed of three different sub-networks (a generator G, a discriminator
D, and an encoder E) that are trained in two phases.

In the first training phase, the generator and discriminator are trained in an adversarial
manner to learn a latent space of normal data variability using just normal data. In
this work, defect-free samples are considered as normal data and defective samples as
anomalous data.

In the second phase, the encoder is trained to map normal data from the image space
to the learned latent space while the Generator and Discriminator are kept unaltered. Once
these two phases have finished, the encoder can map test images from the image space
to the latent space, and the generator can reconstruct the encoded version of the images
from the latent space back to the image space. As the network is trained on normal data,
it only learns to encode and reconstruct correctly normal features; thus, when processing
anomalous samples, deviations from the reconstructed images can be used for anomaly
detection and location.

3.1.1. Phase 1-WGAN Training

The objective of the first training phase consists in learning the variability of normal
data. For this purpose, a Wasserstein GAN (WGAN), composed of a generator and a
discriminator, is optimized to learn the normal data probability distribution. The optimiza-
tion is achieved using the gradient penalty-based loss shown in Equation (1), proposed
by Gulrajani et al. [45], where the Wasserstein distance between the real normal data
probability distribution Py, and generator synthesized data probability distribution Pg is
minimized.

Lwcan = _E [D(x)] - E [D(X)}+?\X@PA[(HV&D*)H2—1)2]/ 1)

xNIPg XNPr

where x = G(z), X = ax+ (1 —a)Xx with &« ~ U(0,1), and A is the penalty coefficient.
During training, the generator is fed with a noise input vector z, sampled from a latent
space Z, and tries to learn the mapping from that latent space to the image space &X'. The
synthesized data G(z) should follow as closely as possible the real data distribution P;.
Simultaneously, the discriminator is given the generated sample X and the real sample x,
so it outputs a scalar measure of how close both distributions are. The training and the
components in this phase are illustrated in Figure 3.

Latent space
VA Generated
image
i .
|
(¢ |1-|Dp)

|
— Pg Pr

LR

v

X |
Real image

Figure 3. The schema of phase 1 of f-~AnoGAN training. The Generator takes a vector z and tries
to generate an image that follows the same distribution of the real data. Then, the Discriminator
measures the difference between the generated data distribution and the real data distribution. This
schema was inspired by the images from Schlegl et al. [41].

After the first phase of training, (1) a latent space that represents the variability of
the normal data, (2) a generator that can map samples from this latent space to image
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space, and (3) a discriminator that can detect samples that do not follow the normal data
distribution are obtained.

However, at this phase, there is no network component that can perform the inverse
mapping, i.e., from image space to latent space. The next phase will focus on learning
this mapping.

3.1.2. Phase 2-Encoder Training

In the second training phase, illustrated in Figure 4, the objective is to make the
encoder learn to map a real image to the latent space such that the generator can map it
back to the image space. During this phase, both the generator’s and the discriminator’s
weights remain unaltered. This network configuration is denoted as izi in Reference
[41]. In this case, the encoder is optimized by minimizing the Mean Square Error (MSE)
with respect to the difference between the original image x and the reconstructed one
G(E(x)). Additionally, the reconstruction error from the izi architecture loss is extended by
including feature residuals from an intermediate layer in the discriminator, yielding the iziy
architecture. By taking into account these residuals in the feature space, the reconstruction
is improved [41]. The loss function of izif is defined by Equation (2):

Lisy = X = GLE) |2+ - F(6) = FGER)z @

where f(-) corresponds to the discriminator’s intermediate layer features, 14 is the dimen-
sionality of the intermediate feature representation, and k is a weighting factor.

Latent space

Real ii /mage Reconstruction
G (E (X))
features

Figure 4. The schema of phase 2 of f-AnoGAN training. In the second phase, the Generator and

Discriminator are kept unaltered while an Encoder is added and trained to learn to encode the images
to the latent space so the Generator can reconstructed them back. This schema was inspired by the
images from Schlegl et al. [41].

3.1.3. Anomaly Detection

Once the training has finished, all the components are fixed and ready to be used for
anomaly detection. At this point, the images are processed as in the encoder training. First,
the encoder maps the images to the latent space, and then, the generator maps them back
to the image space. Finally, the difference between the reconstructed and the original image
defined in Equation (3) is used for anomaly detection.

A(x) = Ar(x) + k- Ap(x), @)

where Ag(x) = 1|x — G(E(x))|l2, Ap(x) = n%, || f(x) — f(G(E(x)))]||2, and k is a weighting
factor from Equation (2).

Only defect-free cell samples have been used for training; therefore, the network will
have only learned to reconstruct normal samples. In the case of defect-free samples, the
network outputs an image similar to the input image; thus, there is not much deviation
when subtracting one image from the other. Instead, when processing a defective cell,
the output is a defect-free version of the input sample. As a consequence, the deviation
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between the original and reconstructed images can be used to detect anomalous parts. This
behavior is shown in Figure 5.

a) Original f-AnoGAN Reconstruction
X z G(E®)

Py
|x — G(E(x))| = Pixel level Anomalies

b) x 6E®) k- G(EW)

Defect free

-

Defective

Figure 5. Example anomaly detection with f~AnoGAN. In (a) the final structure of the network

used for anomaly detection, and in (b) some example results obtained when the network process a
defect-free cell and a defective cell. This schema was inspired by the images from Schlegl et al. [41].

The absolute value of the pixel-wise difference between the original and the recon-
structed image, |[x — G(E(x))|, is used for pixel-wise anomaly detection. By applying a
threshold ¢, defined in Equation (4), to the residuals image obtained from |x — G(E(x))|,
the binary image y € {0,1} is obtained.

[ k-G 2 "
y 0, otherwise.

This binary image can be considered as a pixel-wise annotation of defective samples
as described in Section 3.2.

In this work, two modifications have been made to the original f~AnoGAN network
to adapt it for anomaly detection in photovoltaic cell manufacturing.

With f-AnoGAN, the images are processed in patches of size 64 x 64 pixels, which
requires multiple executions of the network, increasing the time to process an entire cell.
As a consequence, the network does not meet the industrial production cycle time (under
half a second per cell). In order to reduce the inspection time, the encoder input and
the generator output layers” dimension was increased. Thus, whole cell images will be
processed in a single pass, reducing processing time drastically with respect to the original
sliding window approach.

In addition, the training scheme was also modified. In f-AnoGAN, the generator is
frozen during the second training phase in Section 3.1.2; thus, only encoder weights are
modified. This can limit the network capability in terms of reconstructing the input image.
In order to maintain a stable training without restricting the reconstruction capability, the
generator is also trained at a certain number of the encoder training iterations with a lower
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learning rate, while keeping the discriminator unaltered. By training the generator, the
reconstruction of defect-free samples will improve. Therefore, the deviation between the
original and the reconstructed images of normal data will be reduced. Consequently, both
the anomaly score and the pixel differences will be lower for defect-free samples, but higher
for defective ones; thus, the model’s detection rate will improve.

3.2. Supervised Model for Defect Segmentation

In anomaly detection, the model is taught to find everything that is not considered
normal. In supervised training, the model is instead trained with labels to search for
specific defective patterns in the data, which usually yields more precise models for defect
detection. Using the anomaly detection approach as an automatic labeling method, one
may benefit from the precision of supervised learning models avoiding the time-consuming,
and not always trivial, pixel-level labeling task, thereby considerably reducing the effort
dedicated to the setup of a new inspection system.

This way, in the first stage of the inspection system development, where lots of
defect-free cell samples and few defective cell samples are available, an initial inspection
model can be obtained using anomaly detection. Then, as defective cells arise, the trained
anomaly model will process the samples and output pixel-wise annotations avoiding the
time-consuming data annotation task. After some time, when there are enough annotated
defective cell samples, a model will be trained in a supervised manner to search for specific
features in the images as in our previous works [28,29], obtaining more accurate models.

For the supervised training, as in our previous work [29], U-net [44], an end-to-
end trainable Fully Convolutional Neural Network (FCN), was used. This network has
been shown to work well on biomedical image segmentation with low amounts of data.
The network follows an encoder-decoder shape where, after successive downsampling
and then upsampling steps, features from the images are extracted to finally output a
segmentation map of the same size of the input. Additionally, skip connections connect
blocks in the encoder and decoder parts helping to recover fine-grained details lost during
the downsampling and improving the final results.

4. Experimental Setup

To validate the proposed methodology, several experiments were carried out regard-
ing unsupervised training and supervised training. In this section, the characteristics of the
employed industrial dataset, the metrics used to evaluate the performance of the models,
and the hardware and software specifications will be described

4.1. Dataset

The employed dataset is composed of Electroluminescence images of 1873 monocrys-
talline solar cells extracted from 31 panels. The images were provided by Mondragon
Assembly S. Coop. and were taken at the quality inspection stage during the assembly
of the solar panels. The cells have a size of 15 x 15 cm, and the images have an average
resolution of 840x840 pixels.

The dataset is composed of 1498 images of cells considered defect-free by the company
and 375 defective cells containing cracks, microcracks, and finger interruptions. The
distribution of the dataset is shown in Table 1. Each defective sample has its manually
labeled pixel-wise binary annotation {0, 1}, as shown in Figure 6.
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Table 1. Dataset sample distribution.

Total

Defect-free 1498
Defective 375
Crack 18
Microcrack 240

Finger interruptions 117

h 4

Figure 6. Defective monocrystalline samples with their pixel-level annotations.

4.2. Metrics

The results from the experiments were quantitatively and qualitatively measured. For
the defect detection performance assessment in the unsupervised part experiments, the
anomaly score from Equation (3) was used to construct the Receiver Operating Characteris-
tic (ROC) curves and to calculate the Area Under Curve (AUC). The results were analyzed
taking into account all the defects as if they were from the same class, and also considering
each defect type separately.

Note that there is a great unbalance between samples from each defective class and
defect-free samples, as shown in Table 1. So, to avoid misleading conclusions when
interpreting the ROC curves, the data was balanced by first taking all defective samples
of the class that was being analyzed, and then, randomly selecting the same amount of
defect-free samples.

Then, the results were binarized to calculate Precision, Recall, Specificity, and F1-score
metrics, defined in Equations (5)—(8), respectively.

TP

Precision = TP+ FP’ @)
TP

Recall = m, (6)

Specificity = N (7)

TN + FP’
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Precision - Recall
Precision + Recall’

F1_score =2 - ®)
where TP stands for True Positive, TN for True Negative, FN for False Negative, and FP for
False Positive. In this work, defective samples belong to the Positive class and defect-free
samples to the Negative class.

As there were few defective samples left for testing the supervised part, the perfor-
mance of the models was mainly evaluated at a qualitative level, although quantitative
analysis has also been reported at image-level. The Recall, Precision, and Specificity met-
rics have been applied considering the cells as defective if they contained more than 20
defective pixels.

4.3. Hardware and Software

Two Nvidia GeForce RTX 2080 GPUs, (Nvidia Corporation, California, United States)
were used in the experiments. The models’ training in the unsupervised part required both
GPUs, while the anomaly detection and supervised training only required one GPU. For
all f~AnoGAN-based models, the publicly available code (https://github.com/tSchlegl/
f-AnoGAN) (accessed on 21 January 2020) was used, which is written in Python2.7 and
employs Tensorflow 1.2 and CUDA 8. Instead, in the Convolutional Deep Autoencoder
and supervised U-net training, Python 3.6, Tensorflow 1.14, and CUDA 10 were used.

5. Experiments

In this section, the experiments and the results from each part (unsupervised and
supervised) are going to be described.

5.1. Unsupervised Model for Anomaly Detection

In this part, the impact of the proposed network modifications with regards to the
processing time and defect detection rates is evaluated. First, the technical details about the
experiments are going to be explained, and then, the results obtained from the experiments
will be analyzed and compared.

5.1.1. Experimental Design

First, the network in Schlegl et al. [41] was applied in our dataset to ensure its
applicability in this specific industrial context. Then, the modifications regarding the
input size and training scheme were incorporated. These two models are referred to as
f-AnoGAN-64 for the original network configuration, and f~AnoGAN-256 for the model
with the modifications.

The hyperparameters in both models were all kept the same as in Schelgl et al. [41]:
The z vector was sampled from a Normal distribution and had a size of 128, the value of
A parameter for the gradient penalty was 10, and the value for the weighting factor k in
Equation (2) was set to 1. The optimization algorithm for the first training phase was Adam
[46] and for the second RMSprop [47]. For both models, all the images were rescaled to a
range [—1,1] as in the original work [41]. In this way, the pixels in the images will match
the range of the Generator output layer activation function (i.e., tanh), and it will help the
network have a stable training [48]. The only hyperparameter that was modified was the
batch size for f-AnoGAN256 training in order to fit the model in memory. This was due
to the increase in trainable parameters resulting from the modification of the architecture.
The training took a different number of iterations depending on the phase. Both models
required 40,000 iterations in the first phase and 70,000 iterations in the second phase to
converge.

In addition to the mentioned models, two Convolutional Deep Autoencoders were
also trained. These models were used to establish a base with which the results from the
previous two models could be compared. In addition, the results from these two base
models served to check if a more simple network architecture could be enough to obtain
high defect detection rates in this specific context. Following the two approaches from
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previous models, one Autoencoder was trained to process the images in patches, and
the other Autoencoder was trained to process the images in an image-wise setup. These
models will be referred to as AE-64 and AE-256.

Regarding the architectures, both networks are composed of an encoder and a decoder
with several convolutional layers. In the case of AE-64, the encoder has two convolutional
layers with 64-32 filter distribution, followed by 4 Fully Connected layers of 128 units
each, and finally a decoder with the inverted shape of the encoder part. In the case of
AE-256, the architecture is two convolutional layers deeper than the AE-64 such that the
output dimension before the Fully Connected layers is the same. The filter distribution
is 8-16-32-64. After each Fully Connected layer, a dropout layer with a drop rate of 0.25
was set. Both networks were optimized with the MSE loss function and Adam as the
optimization algorithm. The AE-64 model training took about 30k iterations with a batch
size of 32, and the AE-256 model training took about 6k iterations with a batch size of 8.

In the experiments in this part, only defect-free cell images were required for training.
The defect-free samples in Table 1 were separated into the train, validation, and test sets.
In addition, the test set also contained 375 defective samples. The dataset distribution used
in this part is illustrated in Table 2.

Table 2. Dataset sample distribution for unsupervised part experiments.

Train Val Test Total
Defect-free 750 373 375 1498
Defective - - 375 375
Crack - - 18 -
Microcrack - - 240 -
Finger interruptions - - 117 -

f-AnoGAN-64 and AE-64 were designed to process the images patches-wise. For
these cases, each image was split into 256 patches using a sliding window. The final
train, validation, and test sets were composed of 192,000, 95,488, and 192,000 images,
respectively. For the other networks, the images were resized to the network input size
(i.e., 256 x 256 pixel resolution).

To compare the performance between the models, the results from the patch-based
models were post-processed. While, in the image-wise models, it was enough to apply a
single threshold so as to classify a sample as defective or non-defective, in patch-based
models, the errors of all patches belonging to the cell must be taken into account. So, in the
latter, the same threshold was applied to every patch, and, if a single patch was evaluated
as defective, the entire cell was also evaluated as defective.

5.1.2. Results

Regarding the image-level results, the network modifications had a positive impact
on the results. f~AnoGAN-256 was able to detect more defects (higher Recall values)
than the original f-AnoGAN-64 without incurring in more False Positive cases (higher
Precision and Specificity values). This is particularly visible in Table 3 for the case of the
finger interruption and microcrack defect classes where all the metrics improved over
10 points. This improvement can also be appreciated in the ROC curves and the AUC
values in Figure 7 where the curve reflecting the performance of f-AnoGAN-256 appears
closer to the top left corner that represents the perfect classifier, and the AUC value that
changed accordingly.

If the results of -AnoGAN models are compared with the ones from the Autoen-
coders, it is further underlined that the incorporated of network modifications brought
an improvement in defect detection rates. Setting aside the case of finger interruptions,
f-AnoGAN-64 obtained worse detection rates than its Autoencoder counterpart (i.e., AE-64)
and also AE-256. But, when the proposed changes were incorporated, the obtained results
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surpassed the ones from the Autoencoders for all the classes and all the metrics, which
means higher True Positives cases and lower False Positive cases for all defect classes.
The results in the ROC curves in Figure 7 and the metrics in Table 3 show that all
models could detect all samples with cracks, but they could not detect all samples with
microcracks and finger interruptions. This is caused by the fact that cracks are defects that
cover a larger area of the cells than finger interruptions or microcracks, therefore having
defective pixels that result in a higher anomaly score. The same happens in the case of
finger interruptions and microcracks. The first appear in groups of three or more, whereas
the latter appears isolated. Because of this, the sum of defective pixels in samples with
finger interruptions contributes to higher anomaly scores resulting in higher detection rates.

All defects as the same class Cracks
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0.01 —— AE-256, AUC 73 0.0 —— AE-256, AUC 100
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Figure 7. ROC curves from the different models in the unsupervised part experiments. (a) Results
considering all defects as they belong to the same class, (b) results with defective samples with cracks,
(c) results with defective samples with microcracks, (d) results with defective samples with finger
interruptions.

With respect to the defect location results, Figure 8 shows that all the models were
able to properly locate the different defect classes. Nevertheless, the segmentation results
were more refined in f-AnoGAN-256 and AE-256 models. Although the patch-based
models were able to point out the presence of defective areas, the borders and shape of the
predictions were not as accurate as the ones from the image-wise models.

In addition, the patch-based models have more False Positive cases. An example of
this behavior is the sample from the second row, where the buses in the cell were mistakenly
detected as defects. The same happened on the defect-free samples, where patch-based
models classified defect-free areas as defective (e.g., samples seven and eight), whereas the
image-wise models obtained clean predictions. Although not illustrated in Figure 8, this
behavior was shared across several other samples in the test set.
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In addition to the classes in quantitative analysis, the models were also executed on
samples that contained two other defects that were put aside as they were few available
samples for a proper analysis. These defects classes were breaks and bad soldering present
in Figure 8 in the bottom-right of the first row sample and on the right in the third row
sample, respectively. In the case of the break, image-wise models were able to output a
relatively precise segmentation. The AE-64 model results indicated the defect location;
however, they did not have much precision. Instead, in the case of f-AnoGAN-64, it
can be noticed that, at the defect location, there is a certain anomalous pattern but very
vaguely segmented. Regarding the bad soldering, f-AnoGAN-256 was the only model that
presented a reasonable segmentation result.

Table 3. The results of anomaly detection at the image-level. Precision tells how accurate the classifier
is when classifying a sample as defective. Recall tells how many samples have been correctly classified
as defective from all defective samples. Specificity describes how many defect-free samples have
been correctly classified as defect-free samples. The Fl-score is the harmonic mean of the Precision
and Recall. In all metrics, the higher the value, the better the classifier is.

Model AUC Precision Recall Specificity f1-Score
All test samples
f-AnoGAN-64 66 61.3 62.8 61 62
f-AnoGAN-256  81.5 75 78 75 77
AE-64 72 65.6 64 68 65
AE-256 73 68.4 58 72 63
Cracks
f-AnoGAN-64 99 66.7 100 50 80
f-AnoGAN-256 100 95 100 94 97
AE-64 98 78 100 100 87.7
AE-256 100 95 100 94 97
Micro
f-AnoGAN-64 63 58.7 59 59 58.9
f-AnoGAN-256 78 73 73 74 73
AE-64 71 66.5 63.7 67.9 65
AE-256 70 66 53 72 59
Finger int.
f-AnoGAN-64 70 66 64.9 66.7 65.5
f-AnoGAN-256 86 78 85 75 81
AE-64 69.7 61.9 59.8 63 60.8
AE-256 75 69 63 71 66

Regarding the processing time, Table 4 shows how the architecture modification made
f-AnoGAN able to reduce the time required to process each cell. While patch-based models
required more than half a second to process the cells (maximum stipulated time per cell),
f-AnoGAN-256 and AE-256 required only 0.05 and 0.02 s, respectively, to process each cell.

Table 4. Time required to process a cell for each model.

Model Time per Patch Time per Image
f-AnoGAN-64 0.02s 5.12s
f-AnoGAN-256 - 0.05s
AE-64 0.012s 3.07s

AE-256 - 0.02s
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Overall, it can be concluded that the proposed modifications made the network obtain
higher defect detection rates and also reduced the processing time meeting the established
time for industrial inspection.

The results in this part have shown that the anomaly model can yield relatively high
detection rates and defect locations. Among the trained models, f~AnoGAN-256 has shown
the highest detection rates, short enough processing time for industrial inspection, and
precise pixel-level results. Taking into account that the defect location results in Figure 8
were close enough to what human experts annotated, this model was selected as the
automatic annotator model to obtain automatic labels for the next stage in the methodology
(i.e., supervised stage).

Cell Label f-AnoGAN-64  f-AnoGAN-256 AE-64 AE-256
TR T | :
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Figure 8. Defect localization results from each model.

5.2. Supervised Model for Defect Segmentation

The goal of this experiment was to prove the feasibility of using the anomaly detection
approach as an automatic labeling method. To this end, the segmentation results from a
model trained on automatic labels obtained from the previous stage and a model trained
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with labels created by experts were compared. Some samples of the automatic labeling used
for training are shown side by side with their corresponding manually labeled counterpart
in Figure 9.

Manual labels Automatic _Iabels

h 4

Figure 9. Manual and automatic labeling for different samples. The automatic labeling kept the
segmentation of the labeled defects, but at the same time introduced some additional areas. This is
especially noticeable in the samples from the first row, where the manual labeling only considered
the defect itself, but the automatic labeling also considered the darker areas created by the effect of
the defect.

In the same way as in the previous section, first the technical details of the experiments
are going to be described, and then, the results are going to be analyzed.

5.2.1. Experimental Design

For both manual and automatic labeling models, U-net was used. The network
configuration was kept as in Ronneberger et al. [44], which is composed of 9 convolutional
layers blocks: 4 in the encoder, 4 in the decoder, and a middle block that acts as a bottleneck.
The blocks of the encoder are composed of two convolutional layers followed by a Max-
Pooling and a Batch Normalization layer. At these blocks, features are extracted from
the data, and the output is downsampled to half of the input size. Instead, the blocks
of the decoder are configured in an inverse way, substituting the pooling operators by
upsampling operators which consecutively upscale the extracted low-resolution features
into a final segmentation map of the input size. The networks were trained to minimize the
dice loss in Equation (9) that measures the difference between the output and the ground
truth. The training took 1000 iterations using Adam as the optimization algorithm with a
learning rate of 1074,

2 %P8
Yipit+g

where p € [0,1] is the network output, and g € {0,1} is the ground truth.

Unlike the experiments in the previous section, in the experiments in the supervised
part, just defective samples were used for training. So the defective samples were split
into train, validation and test sets following the next distribution: 300 for training and

)

Ldice =
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validation, and the remaining 75 for testing (4 crack images, 48 microcrack images, and 23
finger interruptions images). In addition, the defect-free samples used in the evaluation
in the unsupervised part experiments were also employed to evaluate the models in this
section. The final dataset for this part is shown in Table 5.

Table 5. Dataset sample distribution for the supervised part experiment.

Train Val Test Total
Defect-free - - 375 375
Defective 232 68 75 375
Crack 14 4 4 18
Microcrack 152 50 48 240
Finger interruptions 70 24 23 117

5.2.2. Results

After training U-net separately with the two versions of the dataset (manual and
automatic), the 75 defective and 375 defect-free samples were employed to compute the
metrics and evaluate the performance of the models. The results are shown in Table
6. In addition to the U-net-based models, the model from the previous section (i.e., f-
AnoGAN-256) was also executed on the same test to validate that the supervised training
with automatic labels improved the detection rate compared with the anomaly model.

Table 6. Image-level results from U-net trained on manually created labels and U-net trained on
automatically created labels, as well as the results from the anomaly model used for annotation.

Model Recall Precision Specificity
U-net w/ manual labels 80 95 99
U-net w/ auto. labels 93 81 95
f-AnoGAN-256 79 73 73

As shown in Table 6, both supervised models yielded higher detection rates than
the anomaly detection models without incurring more False Positive cases. If supervised
models are compared with each other, U-net trained with automatic labels was able to
detect more defective samples (Recall of 93%) than U-net trained on manual labels (Recall
of 800/0).

However, automatic labels made U-net have more False Positive cases, making the
Precision and Specificity decrease from 95 to 81 and 99 to 95, respectively. However, using
automatic labels resulted in more False Positive cases, making the Precision and Specificity
values decrease from 95 to 81 and 99 to 95, respectively. Note that the increase of False
Positives has a larger impact on the Precision because of the imbalance of defective and
defect-free samples in the test set.

As for the segmentation results illustrated in Figure 10, it can be seen that the defects
were more thoroughly marked with U-net trained with automatic labels than with manual
labels. The second and third samples in Figure 10 are an example of this. However,
impurities in the cells that were not taken into account during manual labeling were also
detected as defects (e.g., black spots under the crack in the second sample or around the
finger in the third sample). This caused certain defect-free samples with such impurities to
be classified as defective cells, which increased the number of False Positives resulting in
an impact on the image-level metrics. Nevertheless, few defect-free samples present these
False Positive cases.

In addition, even when not considered during training and when the metrics were
calculated, the automatic labels enable U-net to segment other kinds of defects. For example,
in the seventh sample in Figure 10, both models were able to detect the microcrack, but the
break at the bottom right was only detected by the models trained with automatic labels.
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The same happened in the last row sample where the bad soldering was not segmented
when using manual labels.

Label Manual Automatic Anomal

Cell ~

Sample 1

Sample 2

Sample 3

Sample 4

Sample 5

Sample 6

Sample 7

Sample 8

Figure 10. Results from supervised training models and from the anomaly model used for annotation

S

for comparison. Samples 1, 2, 3, and 4 are defective samples with defects contemplated at training
and metrics evaluation, and samples 5 and 6 are defect-free samples. Samples 7 and 8 contain
defects that were not considered during training and testing but illustrate the effect of the automatic
labels in the segmentation results. Label refers to the annotation made by experts, manual refers to
the segmentation results obtained from the supervised segmentation model trained with manually
labeled samples, and automatic refers to the segmentation results obtained from the supervised
segmentation model trained with automatically labeled samples as ground truth.

Concerning annotations, it seems that annotating dark areas around the defects has
a positive effect on the models’ pixel-level results. For example, in the first sample in
Figure 9, the manual label does not cover the areas around the defect, whereas, with
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automatic labeling, these areas are annotated as defective. The experts did not consider
these areas during the labeling as they are not part of the defect, but a consequence of the
defect itself. However, these dark areas will not appear in defect-free cells. Because of that,
the anomaly detection network annotated them as defective areas. When considering these
dark areas as part of the labels, the network trained on automatic labels recognized dark
areas around defects as defective.

Consequently, as shown in the eighth sample in Figure 10, even if the class was not
included in the training, the dark area in the right that belongs to a bad soldering defect
was segmented when using automatic labels and not when using manual annotations. The
same happened with the break in the first sample. Moreover, the segmentation of other
defects, for example, the finger interruption in the third sample and the microcrack in the
fourth, have been more accurately segmented. Nonetheless, by annotating dark areas as
defective, certain impurities that were not considered as defects were also segmented. So,
including dark areas as part of the labels was beneficial for pixel-level results and to detect
more defective samples, even if it made some new False Positive cases arise.

6. Conclusions

In this work, an anomaly detection-based methodology has been proposed for the
development of a quality inspection system of monocrystalline solar cells. With anomaly
detection, only defect-free samples are required to obtain a model for inspection which
can detect and locate defects in the cells. This feature is key for the development of a PV
module inspection system as it permits companies to have an inspection model from the
very beginning stage of a new production line setup, without waiting for defective data to
appear. Furthermore, it also avoids expending time in the annotation of the samples which
saves a lot of effort concerning data preparation when constructing an inspection system.

In order to apply anomaly detection for industrial inspection, a GAN proposed to
detect and locate anomalies in the medical domain has been adapted. The adaptations
have been two-fold: First, the architecture has been modified such that the images can be
processed in a single step instead of processing them by patches. In this way, less time is
required to process a cell; therefore, the established inspection time mark of less than half
a second per cell has been met. And second, the training scheme has also been modified.
This modification has resulted in an improvement in the defect detection capabilities of the
model.

In addition, it has been experimentally demonstrated that the results from the anomaly
detection are potential pixel-wise labels that can be used for supervised training. In the
experiment, the defect localization results obtained from a model trained with labels
generated by experts and a model trained with automatically generated labels have been
compared. The comparison has shown that using automatic labels is comparable to using
manual annotations; thus, it is feasible to use anomaly detection as an automatic annotator
which saves time and resources.

The proposed methodology is rooted in the use of GANs, which are known for their
difficult training process. In industry, most of the quality inspection cases are related
to homogeneous parts that can alleviate to some extent the training instability that the
network can face. However, less homogeneous parts might need some modifications in the
training or in the network, in order to learn the data distribution and obtain high quality
image reconstruction for the anomaly detection.

Lastly, although the experimental results already demonstrate the feasibility of the
proposed method for inspection of solar cells, we plan to explore different architectures and
parameters for optimizing the methodology in future works. It would also be interesting
to test it in other industrial contexts.
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