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Abstract: Topics concerning autonomous navigation, especially those related to positioning systems,
have recently attracted increased research attention. The commonly available global positioning
system (GPS) is unable to determine the positions of vehicles in GPS-shaded regions. To address this
concern, this paper presents a fuzzy-logic system capable of determining the position of a moving
robot in a GPS-shaded indoor environment by analyzing the chromaticity and frequency-component
ratio of LED lights installed under the ceiling. The proposed system’s performance was analyzed by
performing a MATLAB simulation of an indoor environment with obstacles. During the simulation,
the mobile robot utilized a fuzzy autonomous navigation system with behavioral rules to approach
targets successfully in a variety of indoor environments without colliding with obstacles. The
robot utilized the x and y coordinates of the fuzzy positioning system. The results obtained in this
study confirm the suitability of the proposed method for use in applications involving autonomous
navigation of vehicles in areas with poor GPS-signal reception, such as in tunnels.

Keywords: vehicle-navigation system; GPS-shaded areas; vehicle-positioning system; chromaticity

1. Introduction

Many studies have been conducted to develop autonomous navigation systems that
can facilitate safe and efficient mobility of vehicles [1–5]. Autonomous navigation systems
combine new technologies, such as modern sensors, information communication, and
intelligent control, to enable a vehicle to recognize its surrounding environment, analyze
risks, and achieve active safety [1–5]. Furthermore, the development of autonomous
navigation technology could enhance the safety of driving via improvements in the range of
recognition and reaction time, reduction in road accidents, alleviation of traffic congestion,
and promotion of the automotive convergence industry [1–5].

Behavior-based navigation algorithms are commonly used for developing autonomous
navigation systems [6–9]. They determine the motion of a vehicle by using programmed
behavior rules corresponding to the real-time information of the surroundings obtained
from the mounted sensors. Moreover, these algorithms improve navigation skills, such
as ensuring coping ability for unexpected situations while heading to a target and avoid-
ing obstacles. However, to achieve more advanced navigation, multiple behavior rules
generating a variety of vehicular motions corresponding to surrounding information must
be included, and the problems involving combination between behavior rules should be
considered [6–9].

Fuzzy-logic theory mimics human recognition ability, and it is widely employed in
studies on autonomous navigation because it exhibits good performance in processing
information gathered from the surrounding environment [6–9]. Fuzzy logic includes three
stages: fuzzification, rule evaluation, and defuzzification. In the fuzzification process,
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all sensor data input to the fuzzy system have their own weights assigned by input
membership functions. In the rule-evaluation process, the behavior rules are activated for
sensor data with nonzero weights. In the defuzzification process, all the outputs from the
behavior rules are combined using the defuzzification function. Because all the weights of
the input signals are considered, and the behavior rules are well combined to produce an
output—such as the motion of a robot. Fuzzy logic demonstrates excellent performance
in systems addressing multiple environmental uncertainties, such as robot navigation
algorithms [6–9].

Positioning is one of the most important techniques in autonomous navigation [1–5].
A variety of positioning methods based on sensor techniques are currently utilized in the
autonomous navigation systems of vehicles. Further, studies are underway to minimize the
measurement errors that occur for each sensor and enhance the accuracy of the positioning
results by utilizing the advantages of each positioning sensor [1–5].

Commonly used positioning sensors present advantages as well as disadvantages.
In the case of the global navigation satellite system (GNSS), the position of the receiver is
calculated by using satellite networks through triangulation, utilizing the time at which the
satellite signal arrives at the ground-surface receiver and the position information of other
satellites. However, owing to various error factors, a positioning error of approximately
7 m occurs [10–15]. In addition, differential GNSS uses the ground master station to address
satellite clock, ion/ionospheric, and orbit errors; the positioning error is approximately
2 m in this case, and obtaining an accurate measurement is still difficult [1,2]. Some studies
have combined inertial navigation systems (INS), vision, radar, geomagnetic sensors, Wi-Fi,
etc., to improve accuracy. However, Wi-Fi has a different positioning accuracy depending
on the interval of installation and the number of surrounding signal sources (access points,
APs). In INS-GPS, owing to the sensor bias and noise accumulation over time, the accuracy
and reliability of positioning decrease [10–15]. In addition, GPS, which is widely used
for vehicle positioning, measures a vehicle’s current position through a satellite using a
function for transmitting navigation signals; consequently, it cannot measure the vehicle’s
position in indoor and other GPS-shaded areas [3]. Therefore, INS-GPS cannot produce
precise position measurements in areas where signal reception is difficult. Thus, while
studies are continuously being conducted on sensor-measurement fusion technologies,
many issues must still be addressed [10–15].

To improve positioning in GPS-shaded areas, many researchers have begun focusing
on the visible light communication (VLC) technique using light emitting diode (LED)
lighting [10–15]. VLC requires multiple LED networks, in which a unique ID is assigned to
each LED transmitter, and positions are calculated via trilateration, whereby the distances
from a receiver to the three closest transmitters are measured. Various measurement
methods for LED-based VLC are available, including proximity [16], finger printing [17],
received signal strength [18], angle of arrival [19], time of arrival, time difference of arrival,
phase difference of arrival, and image-based positioning [20]. Although the proximity
has a simple and inexpensive process, it yields low accuracy [21]. In contrast, the finger
printing, received signal strength, arrival data (i.e., angle of arrival, time of arrival, time
and phase difference of arrival), and image-based techniques are well-known for achieving
high accuracy in LED-based indoor positioning. However, the equipment size and the
complexity of hardware hinder their practical application [22,23].

In our previous study, a fuzzy-logic-based positioning system was developed using
the chromaticity and frequency components of LED light [24], and it could successfully
detect the position of a mobile robot in the developed simulator.

In this present study, the fuzzy positioning system was implemented for two au-
tonomous mobile robot navigation systems, and the performance of the fuzzy positioning
system in each navigation system were compared. The first navigation system comprises
fuzzy-logic–based behavior rules that determine the motion of the mobile robot while
it moves toward a target and avoids obstacles simultaneously. The second navigation
system is based on the potential field method wherein the robot finds a path such that
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the attractive force from the target is maximized and the repulsive forces from obstacles
are minimized [25,26]. The mobile robot operating based on the two proposed navigation
algorithms utilizes the chromaticity and frequency component ratio of LED light obtained
via the optimal route to avoid and escape obstacles and reach targets without having any
pre-installed localized information.

2. Positioning Method
2.1. Experimental Environment

In this study, we developed a simulator that imitates GPS-shaded areas, as depicted
in Figure 1. The color temperatures of LED illuminators depicted in Figure 1 equaled
3000, 4500, and 6000 K, and the said illuminators were installed 73 cm above the simulator
floor. Each LED-lighting fixture measured 1 m long—a combination of two 50 cm long bar
lamps. Individual fixtures were placed 20 cm apart. The simulator floor was marked by a
grid comprising square elements measuring 5 cm each along the x- and y- directions, as
depicted in Figure 1. On the grid, the red dots indicate points of intersections between the
horizontal and vertical grid lines, and they represent chromaticity measurement points.
Therefore, in this study, reference-data measurements were performed at 21 points.
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Figure 1. Indoor-environment simulator used in this study and size of testbed [24].

It is noteworthy that the front and rear bar lamps comprising the LED illuminator
operated at different frequencies, thereby separating the illumination zones along the
y-axis. Figure 1 shows the irradiation of 1.75 kHz light on the elliptical part of the LED
illuminators and that of 4.75 kHz light on the rectangular part.

By configuring the simulator in this manner, the positioning in the x-axis direction is
calculated based on the chromaticity value, whereas that in the y-axis direction is calculated
based on the different frequency-component ratios of the LED-irradiated light.

Figure 2 shows the signal-processing procedure used in this study [24]. An RGB
sensor (HDJD-s822) is used for performing positioning on the mesh grid on the simulator
floor. The RGB sensor detects the light irradiated by the three LED fixtures located on the
ceiling of the simulator and outputs R, G, and B voltage signals. The LED illuminators
irradiate 1.75 and 4.75 kHz light for each section, as shown in Figure 1. For this purpose,
the LED illuminators are controlled using a power switching method that employs pulse
width modulation.
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Figure 2. Signal-processing workflow: (a) Schematic of signal-processing procedure; (b) Simulink model for fuzzy positioning.

To block the effects of other external lights and to select only the driving frequency
components of the LED illuminators, the preprocessed signals were passed through a
bandpass filter that allowed only the 1.75-kHz and 4.75-kHz signals to pass. The Direct-
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Form-II infinite-impulse-response bandpass filter was designed using MATLAB FDA
Toolbox and implemented using MATLAB Simulink. The Simulink model of the bandpass
filter works with the Micro-Autobox (ds-1401) DAQ to conduct signal filtering. The DAQ
output signals were converted into DC via a smoothing circuit comprising a capacitor,
following which the chromaticity value and frequency-component ratio were calculated
using Arduino 2506. Finally, the x- and y-axis coordinates were estimated using the
corresponding fuzzy systems. Processing in the Arduino board was implemented as a
MATLAB Simulink model linked to the board via the MATLAB Embedded Coder Toolbox.

2.2. Fuzzy Positioning System

In the constructed simulator, three LEDs with different colored temperatures in the
x-axis direction were installed on the ceiling. The overlapping of light was considered,
following which different chromaticity values were measured depending on the position
of the RGB sensor in the x-axis direction.

We first collected reference chromaticity data corresponding to the positional coordi-
nates in the x-axis direction. The red dot on the mesh grid in Figure 1 denotes the location of
the collected reference data. Thus, for obtaining reliable measurements of the x-axis in the
interior of the simulator, the x coordinate was increased from zero to 60 cm in increments
of 10 cm, and the chromaticity data were collected at each point on the lines indicated by
“close”, “med” and “far” intersecting each x-axis coordinate. Figure 3a shows the variation
in the mean values of chromaticity data along the x-axis.
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As shown in Figure 1, the bar-shaped LED illuminators installed on the ceiling of the
tunnel simulator were driven by power-switching methods at 1.75 and 4.75 kHz for each
section. In this study, the y-axis position coordinate was calculated using the 1.75 kHz
frequency-component ratios included in the sensor output signal, corresponding to the
position change along the y-axis.

For collection of the reference data, the RGB sensor was fixed at 30 cm on the x-axis.
As the sensor was moved along the y-axis from 5 to 85 cm in increments of 10 cm, the
magnitudes of the 1.75 and 4.75 kHz signals, subject to the bandpass filter and smooth-
ing circuit, were measured. These measurement values were obtained to calculate the
frequency-component ratios (|VR(1.75 kHz)|/|VR(4.75 kHz)|). Figure 3b shows the
frequency-component ratios corresponding to the y-axis coordinates at which the sensor
was located. Based on the reference data shown in Figure 3, a fuzzy positioning system
was developed [24]. In this study, a fuzzy-logic positioning system was designed with
MATLAB to calculate the x and y-coordinates corresponding to the position of a mobile
robot from data pertaining to the chromaticity and the frequency-component ratio of the
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light. Data points corresponding to x-chromaticity and the frequency-component ratio
(i.e., points other than those shown in Figure 3) were estimated by using linear approxi-
mation between the two-boundary data, which involved every two-neighbored reference
data point in Figure 3. In this way, all the data points corresponding to the x-chromaticity
and frequency-component ratio at the location of the mobile robot in the MATLAB-based
simulation were estimated; these were then utilized as inputs to the fuzzy positioning
system which calculates the 2-D Cartesian coordinates. Figure 4 summarizes the fuzzy
positioning process [24].
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Figure 4. Schematic of fuzzy positioning system [24].

3. Fuzzy-Logic Autonomous Navigation System
3.1. Sensors of Navigation System

Figure 5 describes the sensor system of the mobile robot used for evaluating the
performance of the developed navigation system. The mobile robot was mounted with
eight distance sensors and the fuzzy positioning system investigated in [24]. Figure 5a
shows the function of the distance sensors mounted at the front, right, and left of the robot.
Among the distance values, three minimum values from each side, expressed as fd = MIN
{d1, d2}, rd = MIN {d3, d4, d5}, ld = MIN {d6, d7, d8}, were inputs to the fuzzy navigation
system. Figure 5b shows the function of the fuzzy positioning system that uses the x and y
coordinates of the robot’s current position to calculate the angle (θd) between the current
moving direction and the direction to the target. θd is also used as an input to the fuzzy
navigation system.

To reach the target, the mobile robot requires navigation skills, such as heading to the
target, avoiding obstacles, and following the edges of obstacles. The effectiveness of these
skills has been verified in previous studies [10–15].

3.2. Fuzzification Process of Distance Data

During the fuzzification process, each input (fd, rd, ld, and θd) to the fuzzy navigation
algorithm can be classified as close, med, or far and subsequently assigned weight values
between zero and one using the fuzzy membership functions. Figure 6a depicts the
membership function used for the fuzzification of inputs fd, rd, and ld. As can be realized,
the figure depicts weight values linearly corresponding to the distance data between each
grid. Accordingly, the fuzzy navigation system facilitates the mobile robot to perform a
linear motion based on its distance from obstacles. Because grid points corresponding
to named sub-functions within each membership function are considered as criteria for
determining the robot’s distance from obstacles as well as its direction of motion and speed
via sensor signals, any variations in the grid directly affect the motion of the mobile robot.
For example, a reduced range of the “close function” in Figure 6a causes the robot to
approach the obstacles better. This is due to the narrowing of the recognition range for an
input to be classified as “close”.
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Figure 5. Performance of sensor systems of mobile robot: (a) description of distance sensors; (b) description of positioning system.
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The sensitivity of the observed variations in assigned weight values is related to the
slope of the triangular membership function. In other words, a steep (high) slope implies
that the robot would respond more actively to its distance from obstacles. As depicted
in Figure 6a, the slope of the triangular function between grid points 10 and 20 is steeper
compared with that in other regions, and this makes the robot to avoid obstacles more
quickly in that region. Accordingly, the input θd is classified as either L_pos, S_pos, or
R_pos, and a weight value between zero and one is assigned to each variable based on the
membership function, as described in Figure 6b. In this study, the grid points within input
membership functions were adjusted to determine the optimum path to the target.

3.3. Behavior Rule-Evaluation Process

In the rule-evaluation process, the behavior rules consisted of “if–then” statements,
such as “if(ld and fd and rd and θd) then (LVel and RVel).” LVel and RVel are the output
values of each behavior rule and are used to generate the real control signal of the speed of
the two wheels. In this study, 81 behavior rules, consisting of navigation skills, movement
towards the target, following of obstacle edges, and avoiding of obstacles, were designed
for the stable motion control of the robot during navigation. Table 1 lists some of the
behavior rules to make the robot move toward the target. Table 2 lists some behavior rules
to make robot follow the edge of obstacles. Table 3 lists some behavior rules for the robot
to avoid obstacles. In the rule-evaluation process, only rules with all non-zero weights for
the input variables, fd, rd, ld, and θd were activated because the output of each behavior
rule is the minimum weight value among the input variables.
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Table 1. Behavior rules for target steering motion in navigation.

Rule if ld and fd and rd and θd then LVel and RVel

1
if

Far
and

Far
and

Far
and

S_pos
then

Fast
and

Fast
2 Far Far Far L_pos Fast Slow
3 Far Far Far R_pos Slow Fast

Table 2. Behavior rules for following edge of obstacles motion in navigation.

Rule if ld and fd and rd and θd then LVel and RVel

4
if

Far
and

Far
and

Close
and

L_pos
then

Med
and

Med
5 Close Far Far R_pos Med Med

Table 3. Behavior rules for avoiding obstacles motion in navigation.

Rule if ld and fd and rd and θd then LVel and RVel

6
if

Med
and

Close
and

Close
and

any
then

Slow
and

Fast
7 Close Close Med any Fast Slow
8 Close Med Close any Med Med

3.4. Defuzzification Process to Produce Robot Motion

The outputs of multiple activated rules in the rule-evaluation process were combined
to produce the control signals for the two wheels of the robot. This was done by using
the output membership function in Figure 7 and the weighted average method given in
Equation (1).

x =
∑

number o f activated rules
i=1

(
mi × wi)

∑
number o f activated rules
i=1 mi

(1)

Sensors 2021, 21, x FOR PEER REVIEW 8 of 17 
 

 

robot to avoid obstacles. In the rule-evaluation process, only rules with all non-zero 

weights for the input variables, fd, rd, ld, and θd were activated because the output of each 

behavior rule is the minimum weight value among the input variables. 

Table 1. Behavior rules for target steering motion in navigation. 

Rule if ld and fd and rd and θd then LVel and RVel 

1 

if 

Far 

and 

Far 

and 

Far 

and 

S_pos 

then 

Fast 

and 

Fast 

2 Far Far Far L_pos Fast Slow 

3 Far Far Far R_pos Slow Fast 

Table 2. Behavior rules for following edge of obstacles motion in navigation. 

Rule if ld and fd and rd and θd then LVel and RVel 

4 
if 

Far 
and 

Far 
and 

Close 
and 

L_pos 
then 

Med 
and 

Med 

5 Close Far Far R_pos Med Med 

Table 3. Behavior rules for avoiding obstacles motion in navigation. 

Rule if ld and fd and rd and θd then LVel and RVel 

6 

if 

Med 

and 

Close 

and 

Close 

and 

any 

then 

Slow 

and 

Fast 

7 Close Close Med any Fast Slow 

8 Close Med Close any Med  Med  

3.4. Defuzzification Process to Produce Robot Motion 

The outputs of multiple activated rules in the rule-evaluation process were combined 

to produce the control signals for the two wheels of the robot. This was done by using the 

output membership function in Figure 7 and the weighted average method given in Equa-

tion (1). 

𝑥 =  
∑ (𝑚𝑖 × 𝑤𝑖)𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑 𝑟𝑢𝑙𝑒𝑠

𝑖=1

∑ 𝑚𝑖𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑 𝑟𝑢𝑙𝑒𝑠
𝑖=1

  (1) 

In Equation (1), x is the defuzzified control signal for the speed of the two wheels, 

and m is the output from the activated rules, i.e., the minimum non-zero weight of acti-

vated rules. w is the center value; 0.5, 1, and 2 correspond to “Slow”, “Med” and “Fast” 

functions, respectively, in the output membership function in Figure 7. Because the center 

values in the output membership function affect the speed of the mobile robot, the center 

values are selected to generate the optimal path. 

1

10 2

Slow Med Fast

0.5
 

Figure 7. Output membership function. 

  

Figure 7. Output membership function.

In Equation (1), x is the defuzzified control signal for the speed of the two wheels, and
m is the output from the activated rules, i.e., the minimum non-zero weight of activated
rules. w is the center value; 0.5, 1, and 2 correspond to “Slow”, “Med” and “Fast” functions,
respectively, in the output membership function in Figure 7. Because the center values in
the output membership function affect the speed of the mobile robot, the center values are
selected to generate the optimal path.

4. Potential Field Autonomous Navigation System
4.1. Sensors of the Navigation System

When the robot that is based on the potential field navigation technique reaches the
destination, it is affected by the attractive force from the goal position and the repulsive
forces from obstacles.

Figure 8 presents the sensor system of the potential field–based mobile robot naviga-
tion system. To calculate the influences of the forces and finding path on the goal position,
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a virtual circle surrounding the mobile robot is designed, where the attractive and repulsive
forces are calculated on the points of the circle, in the interval of ∆θp from 0 to 360◦ as
indicated by p0 − p35 in Figure 8. The coordinate of the search radius is expressed as
follows:

pnx = x(k) + Rx cos
(
n ∆θp

)
, pny = y(k) + Rx sin

(
n ∆θp

)
(2)

where {x(k), y(k)} is the coordinate of the current position of the mobile robot, and ∆θp = 2π/m;
therefore, n = 0, . . . , m − 1, and R is the radius centered on {x(k),y(k)}, which is the position
of the robot.
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The detection range of the sensor system for the surrounding obstacles is spread in
a manner similar to the spokes of a wheel with the center of the search radius as the hub.
Further, all the distances between the points on the search radius and the obstacles are
calculated to obtain the repulsive forces from the points on the search radius, which are
depicted as dr0 − dr35 in Figure 8. In addition, the sensor system calculates all the distances
between the points on the search radius and the goal position to evaluate the attractive
forces from the points on the search radius, which are depicted as da0 − da35 in Figure 8. When
the robot is heading toward the target, 72 datasets comprising dr0 − dr35 and da0 − da35
are used in every step to calculate the steering angle of the mobile robot in the next step
using the potential field navigation algorithm.

4.2. Potential Field Navigation Algorithm

The potential field algorithm uses the two virtual forces (repulsive and attractive
forces) to lead the robot to the destination. The repulsive force interacts between the robot
and obstacles and pushes the robot away from the obstacles. The attractive force interacts
between the robot and the goal position to pull the robot toward the destination. Both
forces are calculated using the distance data from the 36 points on the searching radius
surrounding the robot, to the obstacles and goal positions, respectively.

The attractive force is a positive value, which is proportional to the distance from the
goal position, and it becomes “0” at the goal position. The attractive force from pn(nth
point on the search radius) in Figure 8 is expressed as follows:

Un attractive(pn) = Ca

[
( fx − pnx )

2 +
(

fy − pny

)2
]

, (3)
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where Ca is the coefficient used for balancing the effect of the attractive force, ( fx, fy) are
the coordinates of the goal position, and (pnx , pny ) is the x and y coordinates of point pn.

The repulsive force is inversely proportional to the distance from an obstacle, and it
approaches “0” as the robot moves farther from the obstacle. The repulsive force from pn
on the search radius corresponding to the ith obstacle is described in Figure 8 and expressed
as follows:

Un repulsive(pn) =
Cr(

fx −Oixn

)2
+
(

fy −Oiyn

)2 , (4)

where Cr is the coefficient used for balancing the effect of the repulsive force.
Therefore, the total potential (Un total ) from dn(nth distance data) in the search radius

described in Figure 8 is expressed as the summation of the attractive force (Un attractive ) and
repulsive force (Un repulsive ), as given below:

Un total = Un attractive + Un repulsive . (5)

After calculating n potential data, the steering angle of the mobile robot in the next
step (θ(k + 1)) is determined as ∆θpnmin, where nmin =

{
n |min

(
Untotal

)}
to move the robot

to the position where the value of the total potential (Un total ) is minimized.

5. Design of Autonomous Navigation Simulator

In this study, a mobile-robot navigation simulator was developed using MATLAB,
and it was applied for the verification of the autonomous navigation performance of the
robot. The navigation environment was developed using the MATLAB function “world” in
the matrix form with the same size as the floor area of the indoor environmental simulator
(Figure 1), which was 60 cm × 80 cm. The size of the matrix was 600 × 800, which implies
that the interval between elements was 1 mm, and each element had a color value; for
example, “1” for white and “0.5” for grey. In addition, the MATLAB function “image”
was used to visualize the navigation environment consisting of a white background with
grey obstacles. The motion of the robot was indicated as an overlapped rectangle by using
the MATLAB function “patch”, corresponding to the calculated moving direction and the
speeds of the two wheels. Figure 9 depicts the sequence of the data-processing operation
performed in the navigation simulator. Because the x and y coordinates, representing the
robot’s position, are calculated by using the speeds of the two wheels, the denser path in
the simulator indicates a slower speed. The eight distance sensors that produce the input
values (d1–d8) for the fuzzification process do so by calculating the distances between the
location of each sensor and obstacles placed in front of the heading direction of the sensors.

Figure 10 shows the algorithm of the MATLAB code for fuzzification of the left sensor
data in the proposed navigation simulator. The figure describes the code for the input
membership function illustrated in Figure 6a, and it can be used to generate 12 fuzzified
variables—L, F, R_Close, L, F, R_Med, L, F, R_Far, L, S, and R_pos—from the front, right,
and left sensor signals. The fuzzification of θd calculated using the output of the fuzzy
positioning system was performed using the MATLAB code for the input membership
function, as illustrated in Figure 6b.
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The behavior rule evaluation and defuzzificaton procedures are used to calculate the
rotational speed (LVel, RVel) at the center of the wheels of the mobile robot. The outputs
from the fuzzy navigation system are expressed as follows:

vL = LVel K r = ωL r, (6)

vR = RVel K r = ωR r (7)

where K (rad/s) is the coupling constant between the outputs (LVel, RVel) from the fuzzy
navigation system and the real rotational velocity (vL, vR) of the wheels, and r is the radius
of the wheel. Finally, the renewal position coordinate of the robot, as shown in Figure 12,
is calculated using (8) and (9), where T is the sampling interval that was set to 0.33 s in
this study.

θ(k + 1) = θ(k) +
(

VR −VL
d

)
T (8){

x(k)
y(k)

}
=
√

C2
1 + C2

2

{
cos θ(k + 1)
sin θ(k + 1)

}
(9)

Sensors 2021, 21, x FOR PEER REVIEW 12 of 17 
 

 

1. Acquiring fuzzified values of distance and angle data named below.

    L_clo, L_med, L_far, F_clo, F_med, F_far, R_clo, R_med, R_far, L_pos, S_pos, R_pos

 

2. Defuzzification process using (1) in case of left wheel rotaional  speed calculation.

    1) Calculation of numerator in (1) :

        MIN (L_far, F_far, R_far, S_pos)Rule 1 fast(Corresponding center values in Figure 7 to  the rule) 

        + ··· + MIN (L_far, F_far, R_far, S_pos)Rule 81 slow(Corresponding center values in Figure 7)

    2) Calculation of denominator in (1) :

        MIN (L_far, F_far, R_far)Rule 1 + ··· + MIN (L_far, F_far, R_far)Rule 81 

    3) Left wheel rotational speed = result of 1) / result of 2)

 

Figure 11. Rule evaluation and defuzzification algorithm. 

The behavior rule evaluation and defuzzificaton procedures are used to calculate the 

rotational speed (LVel, RVel) at the center of the wheels of the mobile robot. The outputs 

from the fuzzy navigation system are expressed as follows: 

𝑣𝐿 = 𝐿𝑉𝑒𝑙 𝐾 𝑟 =  𝜔𝐿 𝑟, (6) 

𝑣𝑅 = 𝑅𝑉𝑒𝑙 𝐾 𝑟 =  𝜔𝑅 𝑟 (7) 

where K (rad/s) is the coupling constant between the outputs (LVel, RVel) from the fuzzy 

navigation system and the real rotational velocity (vL, vR) of the wheels, and r is the radius 

of the wheel. Finally, the renewal position coordinate of the robot, as shown in Figure 12, 

is calculated using (8) and (9), where T is the sampling interval that was set to 0.33 s in 

this study. 

vL

vR

x

y

d
θ(k)

{x(k), y(k)}

θ(k+1)

C1

C2

 

Figure 12. Parameters influencing simulation of robot motion. 

𝜃(𝑘 + 1) =  𝜃(𝑘) + (
𝑉𝑅 − 𝑉𝐿

𝑑
) 𝑇 (8) 

{
𝑥(𝑘)
𝑦(𝑘)

} =  √𝐶1
2 + 𝐶2

2  {
cos 𝜃(𝑘 + 1)
sin 𝜃(𝑘 + 1)

} (9) 

Figure 12. Parameters influencing simulation of robot motion.

While the fuzzy logic navigation approach calculates the steering angle and moving
distance in the next step based on the velocity difference between the two wheels of
the mobile robot, as shown in (8) and (9), the potential field navigation approach only
calculates the steering angle for steering the robot in the direction where the value of the
total potential is minimized. Hence, the moving distance of the potential field approach
was calculated with a function that linearly relates the moving distance of the robot in each
step to the minimum value among 36 distance data.

6. Results

In this study, the performances of two navigation systems (fuzzy logic and potential
field navigation systems, both utilizing the fuzzy positioning system) were evaluated
with the developed robot navigation simulator. Figure 13a–d show the simulation results,
paths of the robot, and avoidance of obstacles until the robot reaches the targets in various
environments. In the results, the robot in each moving step is symbolized by square
shapes, wherein the blue and red colors represent the moving path of the robot using fuzzy
logic and potential field navigation, respectively. In the moving path, the denser parts
of overlapped square shapes indicate that the moving velocity is lesser than that of the
other parts.
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Figure 13. Simulation results of autonomous fuzzy navigation system with fuzzy positioning—(�: navigation path using
fuzzy logic navigation system, �: navigation path using potential field navigation system): (a) navigation path to reach
target after avoiding obstacles; (b) navigation path in narrow pathway; (c) navigation path to reach to the target in a room;
(d) navigation path to reach multiple targets.

Figure 13a shows the robot’s path to the target after it avoided round and square-
shaped obstacles; the navigation is shown to be successful without any collisions occurring
with the obstacles. As shown in Figure 13b, the robot navigated through a passageway
to reach the target, and Figure 13c shows the path from one room to another. Figure
13d shows the performance of the navigation system in an environment with scattered
obstacles. The robot reached the final target after three other targets without any collisions.

Table 4 summarizes the simulation results of the study in terms of path length, navi-
gation time, and robot velocity. For the fuzzy navigation system, the velocity of the robot
varies depending on the value of the coupling constant K in Equations (6) and (7). In this
study, the value of K was set such that it minimized the errors between the simulation
results and the performance of the actual robot, the latter being subject to a function of
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hardware specifications. Ultimately, the values of K and r were set to 1 rad/s and 3 cm,
respectively. For the potential field navigation system wherein the linear approximation
method was used to calculate moving distance in each step, the linear function was set
such that it produced distance values in the range from 3–4 cm corresponding to the
minimum distance value in the simulation environment, and these results indicate that
the potential field navigation system shows a higher moving velocity than the fuzzy logic
navigation system.

Table 4. Rules for avoiding obstacles in robot navigation.

Simulation Data Simulation 1
(Figure 13a)

Simulation 2
(Figure 13b)

Simulation 3
(Figure 13c)

Simulation 4
(Figure 13d)

Length of path Fuzzy logic navigation 79.60 cm 88.41 cm 111.86 cm 299.78 cm
Potential field navigation 77.36 cm 105.11 cm 128.90 cm 333.40 cm

Navigation time Fuzzy logic navigation 99.34 s 133.33 s 161.39 s 312.21 s
Potential field navigation 57.43 s 76.24 s 92.74 s 223.10 s

Mean of velocity Fuzzy logic navigation 0.80 cm/s 0.66 cm/s 0.69 cm/s 0.96 cm/s
Potential field navigation 1.35 cm/s 1.38 cm/s 1.39 cm/s 1.49 cm/s

For an obstacle, the behavioral rules for following the edge of the obstacles in the fuzzy
logic navigation system were activated in the fuzzy rule evaluation stage; the robot with
fuzzy logic navigation follows the edge of obstacles, which results in a higher path length
(Figure 13a), whereas the robot with potential field navigation moves toward the middle
of the pathway because the repulsive potential is minimized here, resulting in a shorter
path length (Figure 13b–d). Thus, the moving paths of the two navigation techniques
are different.

Among all results, the fuzzy logic navigation system showed a smoother moving path
than the potential field navigation system, as shown in Figure 12. The 81 behavior rules
as well as the 4 input and 2 output membership functions in the fuzzy logic navigation
system interact well; further, the fuzzy logic navigation system produced smoother moving
paths than the potential field navigation system, wherein the steering angle is calculated
according to the repulsive and attractive potential data.

A faster navigation velocity was observed in simulation 4 than in other simulations
while simulation 4 also exhibited longer navigation time and distance. We think that the
navigation velocity was affected by the density of surrounding obstacles, resulting in a
faster moving velocity in the environment with scattered obstacles (simulation 4) compared
with the other environments.

According to the results, the fuzzy positioning process in [24] demonstrated good
performance because the chromaticity and frequency component data utilized during the
simulation were gathered within the simulator environment (Figure 1) via the bandpass
filtering, without the interference of other lights. However, for real-time applications of the
proposed technique, an improved filter technique is required, along with an investigation
of various chromaticity and frequency component applications of LED light, to minimize
the influence of other lights that cause positioning errors.

7. Conclusions

In this study, an autonomous robot navigation system was developed for indoor
environments using the fuzzy logic navigation system and potential field navigation
system, and both systems utilized the fuzzy positioning system. The positioning system
utilized chromaticity and frequency component ratio data, which were obtained from the
LED lighting that was installed under the ceiling in the simulation environment.

To evaluate the performance of the autonomous navigation system, various simu-
lations that mimicked indoor environments were conducted. The navigation simulator
generated the path of a mobile robot using the proposed systems until the robot reached



Sensors 2021, 21, 4345 15 of 16

the target. When the robot navigated by the fuzzy logic navigation system through the
unknown environment, it used eight virtual distance sensors, and the steering angle and
moving distance were calculated using 81 behavior rules and fuzzy membership functions.
When the robot navigated by the potential field navigation system, the repulsive and
attractive forces on 36 points of the searching radius, which is a circle surrounding the
mobile robot, were used to calculate steering angle. This also led the robot to the position
of minimum potential. The moving distance in the potential field navigation system was
calculated with a linear function that produces the moving distance corresponding to the
minimum distance data to surrounding obstacles in the following step.

The x and y coordinates of both navigation systems were calculated using the fuzzy
positioning system based on pre-measured chromaticity and frequency component ratio
data. The robot successfully reached the targets in various simulation environments using
both navigation systems.

In this study, the possibility of implementing LED lighting–based indoor navigation
systems was evaluated. In the future, a practical test will be performed using practi-
cal robots.
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