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Abstract: Bridge health monitoring is increasingly relevant for the maintenance of existing structures
or new structures with innovative concepts that require validation of design predictions. In the
United States there are more than 600,000 highway bridges. Nearly half of them (46.4%) are rated
as fair while about 1 out of 13 (7.6%) is rated in poor condition. As such, the United States is one
of those countries in which bridge health monitoring systems are installed in order to complement
conventional periodic nondestructive inspections. This paper reviews the challenges associated
with bridge health monitoring related to the detection of specific bridge characteristics that may be
indicators of anomalous behavior. The methods used to detect loss of stiffness, time-dependent and
temperature-dependent deformations, fatigue, corrosion, and scour are discussed. Owing to the
extent of the existing scientific literature, this review focuses on systems installed in U.S. bridges
over the last 20 years. These are all major factors that contribute to long-term degradation of bridges.
Issues related to wireless sensor drifts are discussed as well. The scope of the paper is to help
newcomers, practitioners, and researchers at navigating the many methodologies that have been
proposed and developed in order to identify damage using data collected from sensors installed in
real structures.

Keywords: structural health monitoring; sensors; nondestructive evaluation; bridges; state-of-the-
art review

1. Introduction

The growth of the world’s population increases the tonnage of commodities and
the volume of private and public vehicles that cross bridges worldwide. Some of these
bridges may incorporate innovative materials whose degradation processes are not well
known. In the U.S,, the evaluation of bridges starts with a periodic inspection, typically a
visual inspection, conducted in accordance with the National Bridge Inspection Standards.
When a given bridge shows problematic areas, it may be inspected more frequently at
the discretion of the owner using advanced tools such as ultrasounds or ferromagnetic
methods, just to mention a few.

As traditional nondestructive evaluation (NDE) maintenance can do little when flaws
start or become critical between two inspections, there is a growing interest in cost-effective
structural health monitoring (SHM) strategies. SHM shifts the maintenance paradigm from
“time-based” to “permanent-based” where a network of sensors monitor the structure of
interest 24/7 in order to flag, locate, and quantify damage as it happens [1-6]. Besides
the scope of detecting damage at the earliest possible stage, reliable SHM systems may
monitor certain bridge parameters to assess a bridge’s performance under various service
loads, to verify or update the rules used in its design stage, and to prioritize maintenance
and rehabilitation. In 2011, Xu and Xia [7] listed nine major bridges (Table 1) in the U.S.
equipped with health monitoring systems. Nearly ten years later, the authors of this paper
identified at least 60 bridges in the U.S. with active or discontinued SHM programs in
addition to those listed in Table 1 (see Table 2 of ref. [8]).
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Table 1. Bridges in the United States instrumented with sensing systems prior to 2011 according to
Table 1.1 of ref. [7].

# Name Location Type

1 Golden Gate San Francisco, CA Suspension
2 Fred Hartman Houston Ship Channel, TX Cable-stayed
3 Sunshine Skyway Tampa Bay, FL Cable-stayed
4 Quincy Bayview West Quincy (MO)—Quincy (IL) Cable-stayed
5 Commodore Barry Chester (PA)—Logan Twn (NJ) Truss

6 Ironton-Russell ! Ironton (OH)—Russell (KY) Truss

7 New Benicia Martinez San Francisco, CA Box

8 Saint Anthony Falls I-35W Minnesota, MN Box

9 North Halawa Valley Oahu, HI Box

! This bridge closed in 2016 and was replaced by a new cable-stayed bridge. This new bridge was opened on
23 November 2016 but it is unclear if it is under surveillance with an active SHM system.

In any bridge health monitoring, sensors directly or indirectly measure external load-
ing (wind, seismic, and traffic), structural responses (strain, displacement, and acceleration),
environmental parameters (temperature, humidity, and rain), and environmental effects
(corrosion). The sensors are connected to dedicated hardware/software for storage and,
ideally, for real-time assessment. In this article, the discussion of the issues related to the
detection and processing of physical parameters for the health monitoring of bridges is
discussed. This paper complements the work published by the authors [8] in which a
thorough review of the scientific literature of the structural health monitoring systems
installed in U.S. bridges over the last 20 years was presented. That review aimed to offer
interested readers a holistic perspective of recent and current state-of-the-art bridge health
monitoring systems and to extract a “general paradigm” that is common to many real
structures. In this paper, the issues related to the physical parameters considered as damage
precursors or damage indicators and the challenges associated with the health monitoring
of bridges including the drift of wireless sensing are presented. Some of the most important
factors that degrade a bridge are discussed from the perspective of their detectability with
the sensors. Most of the discussion is about U.S. bridges. However, some case studies from
Europe and Asia are presented. This review is organized by the type of information to be
gathered from the health monitoring systems. Data inference methods used to detect loss of
stiffness, time-dependent (creep and shrinkage) and temperature-dependent deformations,
fatigue, corrosion, scour, and accidental impacts are included as they are all considered
major factors that contribute to long-term degradation of bridges.

2. Parameters Affecting Bridge Condition

Modares and Waksmanski [9] sorted SHM sensing systems by parameters and pro-
vided details of sensor types, accuracy, range, and operating temperature. The considered
parameters were (in alphabetical order): corrosion, cracking, displacement, fatigue, force,
settlement, strain, temperature, tilt, vibration, water level, and wind. In addition, they
classified the types of sensors as either contact or noncontact. With progress in technology,
new sensing capabilities are developed and two excellent reviews on the subject were
published by Sharyatpanahi [10] and Moreno-Gomez et al. [11], while a review focusing
on sensors for concrete monitoring was presented by Taheri [12].

Data inference is a critical part of any bridge health monitoring because diagnostics
and prognostics will be eventually made based on the processing of the data streamed from
different parameters (sensors). For bridge condition evaluation and prediction, both short
and long-term factors should be considered. The analyses conducted by the authors [8]
made evident that most SHM implementations do not rely on a single nondestructive
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evaluation method, e.g., strain measurements, because an SHM protocol based on a single
parameter is not able to monitor all factors that are critical to a bridge. As such, integrated
systems that contain different sensor types are warranted.

2.1. Stiffness Loss

The loss of stiffness in any given structural component is considered by many a
reliable indicator of damage. As such, several methods were proposed for the detection
and localization of stiffness losses. Some of the localization methods rely on the detection
of irregularities in the deflected shape of the structure [13-16]. These methods are based
on the determination of the modal characteristics of the structure and in particular on the
accurate determination of the deflected shape. This can be achieved by using a high spatial
resolution of sensors, high quality measurements, and reliable signal processing. One of
the major advantages of vibration-based damage identification methods is the possibility
of detecting damage at a global level using sensors not necessarily deployed close to the
location of damage, which is typically unknown. The estimation of stiffness loss can be
made by using response-only approaches, which are based on the use of sensor data only,
and/or by using physical-based models, such as finite element models.

Limongelli [17] reviewed the vibration-based damage localization algorithms based on
the detection of (changes of) irregularities in deflected structural shape. The review focused
on methods that perform localization through the detection of irregularities in the deflected
shape of the structure. Most of these methods exploit the relationship between a local loss of
stiffness and the corresponding local variation of curvature. The latter, which becomes the
damage-sensitive feature, requires double differentiation of the displacement data obtained
from a dense and distributed network of sensors. Unfortunately, the use of dense arrays
of sensors drives up the cost of the SHM. Another drawback is related to the estimation
of curvature from noisy recorded responses. To mitigate these drawbacks, some authors
proposed methods to identify variations of curvature without explicitly computing curva-
tures or through numerical validation using finite element approaches, due to the limited
availability of experimental data directly associated with damaged structures. Recently, data
recorded on benchmark structures have become available giving the opportunity to verify
the capability of these methods for damage localization in real-world conditions.

The interested readers are referred to [17] to learn more about individual methodolo-
gies based on modal and operational shapes, shape variation due to a loss of stiffness, meth-
ods based on curvature, and methods based on the indirect detection of curvature changes.

2.2. Time and Temperature-Dependent Factors

Time-dependent and temperature-dependent deformations have been a concern for
decades because creep and shrinkage affect concrete structures over time, whereas thermal
strain and thermal stress may mask damage-related effects and live load disturbances.

A number of models were proposed to predict temperature effects and to predict
time-dependent factors such as sustained live load. Ghali et al. [18] investigated both short-
term and long-term behavior and performance of the Confederation Bridge in Canada.
This bridge is a 12.9 km structure made of box girders, such as the one on display in
Figure 1. The study analyzed the time-dependent properties of concrete and compared
field measured deflections to predicted deflections. Creep was estimated using CEB-FIP
MC90 and ACI (American Concrete Institute) 209 codes. Ten-cylinder creep tests were
conducted by using the least square fitting of the measured creep coefficients; a best-fit
predictive creep equation was developed. For shrinkage, six (6) cylinders were taken to
measure the free shrinkage. Measured shrinkage strain was used to obtain the predictive
shrinkage equations. With other material parameters, creep and shrinkage equations were
employed to analyze the deflections. After the analyses of long-term deflection, all the
analyses were conducted again to induce the variation of temperature during the same time
intervals. The result showed that with consideration of temperature effects, the predicted
results became closer to the measured ones.
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Figure 1. Display of a typical segment of the Confederation Bridge. (https://en.wikipedia.org/
wiki/Confederation_Bridge#/media/File:188_-_Piece_of_the_Confedration_Bridge.JPG, accessed
on 23 June 2021).

Robertson [19] presented the results of nine years of vertical deflection monitoring
data of the North Halawa Valley Viaduct. The author found a disagreement between
the theoretical design predictions and measured vertical deflections, and proposed an
improved creep and shrinkage model, as it was believed that the sensors” data were reliable.
In support of the improved creep and shrinkage models, numerous laboratory tests were
conducted and four existing predictive models were considered: the ACI 209 model, the
CEB-90 model, the short form of Bazant B3, and the Gardner model. A conclusion of
the study was that the short form of the Bazant B3 model predicts long-term creep best,
whereas the Gardner model predicts the long-term shrinkage best. These two models
were combined and applied to the North Halawa Valley Viaduct. The outcome was the
agreement between the model predictions and the sensors’ field data.

Bazant et al. [20] investigated excessive deflections of Koror-Babeldaob Bridge in
Palau. They compared many models including the ACI Committee 209 (American Concrete
Institute (ACI) 1992), B3 model [21-23], CEB-FIP Model Code (CEB-FIP 1990), GL2000, and
the JSCE Japanese Code (JSCE 1991). The research revealed that most of the models that
were current at that time underestimated the deflections. Model B3 seemed to be the best
because the multiple calibrated independent material parameters could fit the measured
deflection well by linear regression scaling.

Sousa et al. [24] conducted a long-term assessment of the Leziria Bridge in Portugal
using the European Code 2 (EC2) (European Committee 2004). With assumed design
material parameters and computed creep/shrinkage functions, finite-element models of
the Bridge were created. The results showed that time-dependent behaviors based on the
fitted models could satisfy the measured trends in first five years.

Glisic [25] developed a model to predict creep and shrinkage in the Streicker Bridge
(Figure 2). The model is periodically updated using field measurements taken from fiber
optics sensors embedded in the bridge at the time of construction.

Figure 2. Photos of the Streicker Bridge at Princeton University, United States (Left: [26]; Right: [27]).

Temperature gradient may significantly affect the static and dynamic characteristics of
bridges overall or bridge components. Catbas et al. [28] developed a reliability model for the
Commodore Barry Bridge in Chester, Pennsylvania considering dead load, wind pressure,
traffic loads, temperature effects, and their combinations. The data came from vibrating-
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wire accelerometers, strain sensors, weigh-in motion devices, and tiltmeters installed in
the late 1990s [29]. The health monitoring strategy proposed by Catbas et al. [28] aimed to
minimize the uncertainties related to phenomena which are difficult to model. One of the
findings was that temperature-induced stresses on critical elements are not very easy to
conceptualize and subsequently model. It was observed that the truss elements experience
bending strains due to temperature. The peak-to-peak strain differential was observed to
be around 400 pe, which was about ten-fold higher than the maximum strains induced
by traffic. Another outcome was that thermally-induced strains in this bridge cannot be
neglected in any reliability estimation model.

Jin et al. [30,31] combined a vibration-based damage detection method and extended
Kalman filter-based artificial neural network (EKFNN) to eliminate the temperature effects
and detect damage in a single-span 26-m long bridge in Meriden, Connecticut. The
structure has multiple plate stringers supported by eight girders. Jin and co-authors [30,31]
used vibration acceleration and temperature data obtained from the bridge to identify and
analyze the correlations between natural frequencies and temperature in order to select
proper input variables for the neural network model. One-year-long monitoring data were
used to train the network. Structural damage scenarios were simulated in a finite element
model under SAP2000. The damage indicator was the change in the ratios of natural
frequency. In the testing phase, the damage simulation data of natural frequency time
series were presented to the trained model, and the occurrence of damage was successfully
detected by the control limits provided by the damage detection model. The results of
the neural network indicate that the EFKNN has better capabilities than the benchmark
multiple linear regression approach.

Temperature compensation methods were proposed in [32,33] and applied to the
Tacony-Palmyra Bridge. A temperature-based baseline was developed by minimizing the
local effects of temperature gradients and local bending using field data collected for three
years. The bridge, which is a combination steel tied-arch and double-leaf bascule bridge,
and includes a 168-m steel tied-arch span and a 79-m bascule span, was equipped with a
wide variety of sensors and hardware. Yarnold et al. [32,33] used this bridge as a testbed of
a temperature-based structural identification technique in which temperature is the forcing
function, local strains are another input, and the global displacements are the outputs. The
objectives of the evaluation included: (1) FEM calibration, (2) long-term performance, and
(3) development of automated alert criteria. Yarnold and Moon [34] used the relationship
between temperature changes and the consequent strains and displacements to create
a graphical baseline of the bridge for SHM purposes. They found that the nonlinear
relationship between temperature, local mechanical strains, and global displacements
results in a near-flat surface when plotted in 3D space.

Similarly, Hedegaard et al. [35-37] applied a method to extract the time-dependent
behaviors from the field monitoring data in a varying-temperature environment for the St.
Anthony Falls Bridge.

Besides the above cases, which are relative to U.S. bridges, a work by Peeters et al. [38]
and relative to a bridge in Leuven (Belgium) is noteworthy. They proposed a methodology
for vibration-based damage detection under varying temperature. They removed the effect
of the temperature from the identified vibration frequencies using linear regression analysis,
specifically the ARX model. Norouzi et al. [39] created a statistical model for the U.S.
Grant Bridge connecting Portsmouth, Ohio and Fullerton, Kentucky based on temperature
variations during long-term SHM of the bridge. They exploited the existing correction
between the strain reading from the strain gages and the temperature variation to establish
a model that could describe the normal behavior of the bridge. Temperature effects were
discriminated using classical curve fitting methods. An analogous method was applied
in [40] to investigate the abnormalities in the behavior of the Ironton—-Russell Bridge between
Ironton, Ohio and Russell, Kentucky. They used the autoregressive integrated moving-
average model (ARIMAX) to represent the strain gage data as a function of the temperature.
This model was able to detect a drastic change in the strain gage readings in mid-2014.



Sensors 2021, 21, 4336

6 of 18

The ambient temperature not only affects the strain gage reading but is also a significant
parameter that can alter dynamic properties of the bridges. In this regard, Zolghadri et al. [41]
investigated the influence of thermal variations on the natural frequencies of three different
bridges in Utah and California. In that work, the linear autoregressive model with exogenous
terms (ARX) was applied to establish a relationship between the temperature and the mea-
sured resonant frequencies. Moreover, they determined the number of appropriate inputs to
their ARX model based on the principal component analysis (PCA) of the data.

Recent investigations are also exploiting statistical methods such as the PCA to recog-
nize the individual influence of different types of loads such as thermal, wind, and traffic
on the structural response of the bridges [42—44]. Huang et al. [44] applied a temperature-
strain correlation model to eliminate the thermal effects on the strain. Moreover, they used
the PCA technique to distinguish permanent trends in the data from the traffic and wind
loads. Zolghadri et al. [41] applied the PCA to estimate the optimum number of input
variables for their ARX strain-temperature model.

Omenzetter and Brownjohn [45] studied the Singapore-Malaysia Second Link. Strain
data were modelled using a univariate model that described the signal recorded by a single
strain sensor and using a multivariate model. The latter enabled the analysis of signals
from multiple channels and took into account the correlation among the signals. The
method was applied to strains recorded during the construction of the bridge when the
structure underwent significant changes such as those related to the tensioning of tendons.
After inauguration, the same two models were used to analyze real strains from daily
service. During the analysis, some changes were observed. As the proposed approach did
not use temperature data, the authors argued that the changes were caused by abnormal
temperature variations and not structural changes.

2.3. Fatigue Evaluation

Understanding and predicting the fatigue behavior of bridges is important especially
in lieu of aging infrastructures. Any initial fatigue crack may propagate due to an increase
in traffic tonnage, harsh environment, design errors, and age. Several researchers have
proposed different mathematical tools to assess and evaluate bridge fatigue reliability. In
this section, a few studies are briefly summarized.

Lietal. [46] assessed damage and predicted the lifespan of bridge-deck sections of existing
bridges using SHM strain-history data and a fatigue damage model based on the continuum
damage mechanics. Bridge-deck structures were modeled with elastic members and welded
connections with possible accumulative damage. To gage the reliability of the proposed
approach, a modified Palmgren—Miner rule was developed for the same fatigue problem.

Zhou [47] proposed a procedure for fatigue life evaluation of existing bridges based
on field-measured strain data. An AASHTO fatigue evaluation method was reviewed
and compared with the proposed procedure. Three bridges were used as case studies (the
Cleveland Central Viaduct over the Cuyahoga River in Cleveland (OH), the I-95 bridge
over James River located in Richmond (VA), and the U.S. 13 bridge over Pocomoke River
in Pocomoke City, Maryland). Fatigue life was evaluated based on the field-measured
stress range histograms under traffic load. With analyzed results from the three bridges,
conclusions were drawn to make an evaluation procedure for fatigue life of bridges.

Liu et al. [48] tested an approach to assessing bridge performance through a series-
parallel system modeled on the I-39 Wisconsin River Bridge. Strain data from an SHM were
used along with data from actual traffic. The sensitivity of the model was evaluated by
using the actual SHM data collected in 2004. They concluded that the system reliabilities of
the bridge can be predicted by using the component performance function and sensitivity
studies developed under this study.

Kwon and Frangopol [49] applied concepts related to fatigue reliability to the Neville
Island Bridge and the Birmingham Bridge, both in the city of Pittsburgh, Pennsylvania.
Probability density functions were used to estimate equivalent stress ranges based on field
data. In addition, the AASHTO S-N curve was used to provide relevant information about
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structural details. Lognormal, Weibull, and Gamma distributions were considered. The rain-
flow counting method was used to obtain the stress-range bin histogram from the monitoring
data. There were seven steps in total to conduct the assessment of the two bridges.

The Tsing Ma Bridge in Hong Kong, the world’s 14th longest span suspension bridge
and the 2nd longest at time of completion, was the subject of several studies related to
the estimation of fatigue life. The bridge has two decks and carries both road and rail
traffic. Chen et al. [50] proposed a fatigue analysis for this bridge using data from the
instrumented SHM systems. The framework was then generalized to include any long-span
suspension bridges. Dynamic stress analysis was conducted and maximum stress range
was selected as the index to identify the fatigue-critical locations of bridge components.
The database of wind-induced, railway-induced, and highway-induced dynamic stress
response was established based on the site measurements. A rain-flow counting method
was used in the fatigue analysis. For the same bridge, Ye et al. [51] developed a fatigue
life assessment method based on strain data and then stress-time histories obtained by
converting strain data. The rain-flow counting algorithm and statistical analysis were
used to identify the standard stress spectrum. Fatigue life was calculated by using the S-N
curve method and Miner’s rule. Ni et al. [52] proposed a fatigue assessment method to
integrate the hot spot stress range which was based on the Miner’s damage cumulative
rule with continuous probabilistic formulation. In this study, field-measured data and
stress concentration factors were considered as random variables to develop a probabilistic
model for fatigue life evaluation. The stress range from monitoring data was created by
using the finite mixture distribution and a hybrid parameter estimation method.

Guo et al. [53] proposed an approach to evaluate the time-dependent fatigue reliability
of steel bridges with traffic load model and probabilistic finite element analysis. An
equivalent stress range was obtained by integrating collected weigh-in-motion data and
finite element analyzing under uncertainties. By regression analysis, the most appropriate
probabilistic distribution of equivalent stress range was determined. This fatigue reliability
assessment of steel bridges subjected to fatigue cracking was applied to the Throgs Neck
Bridge, a suspension bridge built in 1961 in New York City.

Farreras-Alcover et al. [54] proposed a fatigue reliability evaluation method for welded
joints of orthotropic bridge steel decks. The method used real data to characterize pavement
temperatures and heavy traffic counts by means, respectively, of autoregressive models for
the case of pavement temperatures and autoregressive models combined with regression
models for traffic intensities. The method was illustrated by analyzing the data of field-
monitoring measurement from the Great Belt Bridge in Denmark (Figure 3). The result
revealed that the time of reaching a nominal target reliability was reduced by 27% with
consideration of pavement temperature and heavy traffic cases.

Figure 3. The Great Belt Bridge in Denmark [55].
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2.4. Corrosion Evaluation

Corrosion in metallic parts such as cables, reinforcements, connections, or girders
may degrade bridge performance. Monitoring corrosion is therefore necessary to identify
critical degradation that needs maintenance. Over the last 20 years, some researchers
have investigated this topic. Morris et al. [56] investigated the effects of local variables on
rebar corrosion process and proposed a criterion for rebar corrosion evaluation based on
measurements of concrete electrical resistivity. Two exposure conditions, namely seashore
environment and partial immersion in a saline solution, were selected. Two water-to-
cement ratios and various initial chloride ion additions were selected for the experiment.
The results showed that the electrical resistivity can be used to evaluate the potential of
steel corrosion. Additionally, concrete mix design, environmental exposure conditions, and
initial chloride concentration have an effect on rebar corrosion process. No specific bridges
were monitored or tested as part of this study.

Deeble Sloane et al. [57] proposed a strategy to monitor the eventual corrosion of
the high-strength steel wires of suspension bridges. The strategy is based on a sensor
network that assesses indirectly the environmental conditions and deterioration of the
main cables. The strategy was tested on a full-scale mock-up cable recording temperature,
relative humidity (RH), and corrosion rate levels. The tested sensor network was able to
provide suitable clues about the interior environment of the cable. Although the observed
trend was not consistent throughout the cross section of the mock-up cable, the RH values
were strong indicators of corrosion rate levels. The same group later applied the same
strategy on the Manhattan Bridge [58,59]. The field data showed that corrosion levels
increased with the relative humidity level increasing, and relative humidity did not vary
with cable depth. It is noted here that detection of corrosion in bridge structures is quite a
significant issue and the fact that the scientific literature is not as rich as for other issues
shall not mislead the reader. Problems with corrosion losses and diagnostics on pre-stressed
rebar or post-tensioned tendons, for example, exist and are typically addressed by using
conventional or advanced nondestructive evaluation methods.

2.5. Scour

Scour is the erosion or removal of stream bed or bank material around bridge foun-
dations due to flowing water. Excessive scour can cause bridges to become unstable and
therefore unsafe for traffic [60]. Scour monitoring devices can be clustered in fixed and
portable groups. Fixed devices include sonars, magnetic sliding collars, float-out devices,
sounding rods, tilt sensors, and time domain reflectometers. Tables 2, 3, and 4 of ref. [61]
list the bridges with active or past fixed scour systems. Portable devices include sounding
rods, sonars on floating boards, scour boats, and scour trucks. They are more cost-effective
than fixed instruments because they can be transported from one bridge to another, and
can therefore be used in multiple bridges. A third approach based on visual inspection
is performed at standard regular intervals and can include increased monitoring during
high flow events (flood watch), land monitoring, and/or underwater inspections. Both
portable devices and visual inspections cannot be carried out during storms. When there is
a high-flow event, the scour hole that is formed is often filled in during the receding stage
as the stream flow returns to normal [61]. Hunt [61] summarized the response of a survey
submitted to U.S. state DOTs. One of the concerns about the scour monitoring devices is
the difficulty of maintenance and repairs to the scour monitoring systems and the damage
caused to the systems by debris flows and accumulation, vandalism, and corrosion.

Various studies in bridge safety evaluation revealed that foundation scour is the major
cause of bridge failure. Specifically, Lagasse et al. [62] noted that scour-related issues
account for 60% of bridge failures in the United States, i.e., scour is the primary cause
of bridge failure in the United States where more than 20,000 highway bridges are rated
“scour critical” [61]. Thus, the understanding of damages and degradation caused by scour
is important to make decisions for bridge maintenance and repair. Bridge failure caused by
scour has been investigated by many researchers worldwide.
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In 2005, a report by Walker and Hughes discussed the routine scour monitoring of
three (3) bridges in Wisconsin, namely the County Highway B Bridge on the Crawfish
river, the Wisconsin Highway 35 bridge in Tank Creek, and the Balsam Road Bridge over
the Big Eau Pleine river. With regard the first bridge, Walker and Hughes [63] reported
that a manual monitoring system was deployed and consisted of two manual wire-weight
gages that were installed on the upstream rail of the bridge. Field data were collected
monthly from March to May in 2003 and from May to June in 2004. The scientific literature
regarding these three (3) rural bridges is scarce.

The Balsam Road Bridge was instrumented with two Datasonics PSA-916 sonar trans-
ducers on the upstream and downstream edges of one pier. A Campbell Scientific CR10
datalogger was connected to transducers to record data every 15 min. The instrumentation
system ran from June 1998 to September 2001.

One pier of the Wisconsin Highway 35 Bridge spanning Tank Creek was instrumented
with a Datasonics PSA-916 sonar connected to a Campbell Scientific CR10 datalogger. In
addition, a Kellor KPSI Series 760 SDI-12 0-5 psi depth sensor was installed to measure
the stream stage. The instrumentation system started operating in April 2000. Selected
recording results were analyzed and the conclusion was that measurements ha some
uncertainties that would affect accuracy, but which were within limits for scour monitoring.

Hunt [61] presented a report about the current state of practice for fixed scour bridge
monitoring by performing a literature review, surveying the state transportation agencies,
and conducting a few interviews. Thirty-seven U.S. state Departments of Transportation
responded to the survey. Information about the other thirteen states was obtained from the
literature review. Thirty-two U.S. states used fixed scour monitoring instrumentation at
some point. Hunt [61] identified a total of 120 bridge sites that are using or have employed
fixed scour monitors. The monitoring systems used by the states, with the exception
of time domain reflectometry, are described in the current FHWA guidelines on scour
countermeasures and monitoring, Hydraulic Engineering Circular 23.

In what follows, some studies posterior to Hunt [61] are summarized for the sake of
completeness and to guide the interested readers in the subject of scour monitoring and
assessment.

Foti and Sabia [64] investigated the influence on the dynamic response of a bridge in
Northern Italy due to foundation scour. Two methods were proposed to evaluate the use
of monitoring traffic-induced vibrations as an indirect method to infer foundation scour.
For bridge span, a modal identification method based on the ARMAYV technique [65] was
proposed. For the piers, as modal identification is not effective, the dynamics response
caused by traffic was used instead. Both methods were evaluated by using field data
collected before and after the retrofit of the bridge pier.

Briaud et al. [66] evaluated various scour monitoring instrumentations including
the use of accelerometers by conducting both laboratory and field experiments. In the
laboratory trial, accelerometers and tiltmeters showed a good potential for bridge condition
evaluation. The Fourier transform of the acceleration data and the ratio of root mean
square values of acceleration in two different directions were shown to be good indicators
to monitor the progress of scour. While the laboratory data showed good results, field
experiments were corrupted by environmental factors including noise.

Hussein [67] investigated numerically the scour effects on the supports of a model-
scale bridge and determined that, while the vertical mode shapes of the bridge are not
sensitive to scour, the horizontal mode shapes have significant sensitivity to scour. To verify
the numerical analysis result, the experiment was conducted on a real structure under
three (3) scour scenarios. The Chicken Road Bridge (a two-span highly skewed bridge)
in Lumberton, North Carolina was investigated numerically to verify the applicability of
the proposed scour detection technique on a real bridge. The experimental results verified
the numerical analysis; otherwise, the results showed that three (3) damage indicators
were able to determine scour locations. Although the laboratory results showed significant
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promise for scour monitoring, more work is needed to make it practical for the actual
bridge structures. Hussein [67] concluded that:

e  The mode shapes relative to vertical displacements and the corresponding natural
frequencies did not show significant changes due to scour. Therefore, they could not
be used in scour detection, but they may be effective at detecting damages in the
bridge superstructure as seen in Ch. 4.

e  The 1st, 3rd, and 5th horizontally displaced mode shapes and their corresponding
natural frequencies were successful in identifying the existence of scour. The natural
frequencies of the significant mode shapes decrease as the natural frequencies increase
due to the reduction in the flexural stiffness of the intermediate piles. Other mode-
shapes, such as the 2nd and 4th, were insensitive to scour due to the presence of a
stationary node at the location of scour.

e  The curvature for the first five horizontally displaced mode shapes was successful in
identifying the exact location of some of the scour cases considered.

e  The magnitude of deflection increases as the scour level increases due to the decrease
in the flexural stiffness of the piles. The absolute difference in the flexibility-based
deflection from the unscoured case was calculated for various scour cases. The
difference in the absolute difference in the deflections was able to identify the exact
location of damage for the symmetrical scour cases and the damaged zone for the
unsymmetrical and braced scour cases.

Lin et al. [68] created a finite element model with soil spring to simulate the relation-
ship between the fundamental frequency and the embedded depth of the bridge column.
This relationship was used to develop a scour detection algorithm based on ambient vi-
bration of the superstructure. A set of laboratory experiments were conducted to verify
the algorithm.

Based on the works presented in refs. [66,67], Prendergast et al. [69] proposed a method
to detect and monitor scour development based on the changes in the foundation dynamic
response caused by scour. A laboratory experiment was conducted with a 1.26-m pile
installed in a sand box, where scour was modeled by removing the sand progressively. The
pile was subjected to an impulse load at the top and the acceleration response was recorded
by accelerometers. A Fourier transform was used to convert data into the frequency domain.
A numerical model was calibrated by using the laboratory data to obtain a good matched
model. The field experiment was conducted with the promising results from laboratory
and numerical models. A full-scale pile which was driven into dense sand was tested
with a similar method to the laboratory experiment. A good match between field test and
numerical prediction was obtained.

Kong et al. [70] investigated static and dynamic responses of a single pile with scour
effects. Three (3) possible methods for scour detection were proposed based on modal
frequency change, bending moment profile, and modal strain profile. These methods were
validated by a laboratory test.

Chen et al. [71] proposed a foundation scour evaluation method based on the ambient
vibration measurement obtained from the superstructure of the cable-stayed bridge. Var-
ious girder and local pier modal frequencies were identified and an FE model based on
the original design parameters was developed to perform modal analysis. Based on the
measured and model results, the best support boundary conditions were identified as well
as the optimal soil stiffness. Subsequently, the local pier scour depth can be estimated by
changing the depth of the soil to fit the local frequencies.

2.6. Impact Effects

Bridge vibration caused by external impacts is another critical factor that needs to
be considered for some structures. The impact of heavy vehicles with the superstructure
or collision of ships and barges on piers and pylons cause spikes in vibration but may
also cause permanent significant damage to structures. This is of critical interest for those
bridges crossing heavy fluvial traffic. As such, some researchers have investigated the
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effects of impact events on bridge condition. As done for scour, this section presents a brief
overview about the effects of impacts.

El-Tawil et al. [72] used an inelastic transient finite element simulation to investigate
the collision between vehicles and bridge piers. Two different types of truck models were
considered, namely a 14-kN Chevy truck, representing light trucks, and a 66-kN Ford
truck, representing medium weight trucks. In addition, two different bridge/pier systems
were simulated with approach speeds ranging from 55 to 135 km/h. The simulations
showed that, in general, the peak transient forces are much higher than the AASHTO-
LRFD collision design force at the time of the study. However, since the peak forces act for
a short duration, equivalent static forces were computed to serve as a measure of “design”
structural demands during collision. The computed equivalent static forces were also
significantly higher than the AASHTO-LRFD design force for a number of simulations.
These results imply that the AASHTO-LRFD design provisions (current in 2005) could be
unconservative for feasible crash scenarios such as those considered in the study.

Song et al. [73] proposed an overnight collision detection and evaluation system for
concrete bridge girders using piezoceramic transducers. A model concrete girder was used
to conduct an impact test and health monitoring test with three piezoelectric transducers.
An electric circuit was designed to detect the impact and activate a digital camera to take
photos of colliding trucks. The PZT output, being proportional to the physical impact of
the truck on the structure, can be used to predict the health of a structure. Impact levels can
also detect the growth of cracks inside concrete structures when the structure is gradually
damaged in repeated impact tests.

Yun et al. [74] investigated the effect of collision of a cargo ship with the Vincent
Bridge in Los Angeles. They conducted a forensic study to evaluate the structural condition
of the bridge before and after collision. A health monitoring system was installed and
acceleration data were analyzed. Time-history records of the bridge oscillations before,
during, and after the accident were analyzed using multi-sensor identification approaches
based on the Natural Excitation Technique (NExT) in conjunction with the Eigensystem
Realization Algorithm (ERA). These processing approaches served to extract the modal
characteristics of the bridge. Yun et al. [74] determined that the analysis carried out in the
study can provide the owners with forensic tools that enable reliable and rapid assessment
of extreme events.

3. Wireless Sensor Technologies and Sensor Drift

The cost of traditional wired SHM systems, due in part to cabling networks, is detri-
mental for the deployment of high-density sensor systems or for usage in long-span bridges.
SHM using wireless sensors can overcome the limitations of traditional wired methods with
many attractive features such as wireless communication, on-board computation, battery
power, ease of installation, and so on. Many groups worldwide, including researchers
at the University of Illinois at Urbana Champaign [75-78] have successful implemented
wireless sensor technologies for SHM and demonstrated the efficacy of such technologies
in measuring structural acceleration, strain, and displacement responses over full-scale
applications [79].

Wireless smart sensing (WSS) are devices that have sensor, microprocessor, radio
frequency transceiver, memory, and power source integrated into one small-sized unit
and are characterized by their capabilities of sensing, computation, data transmission,
and storage, all achieved by a single device. They are increasingly considered as SHM
platforms because they represent an alternative to their wired counterparts. WSS are
attractive because their cost is lower cost (including cost for labor) due to the absence of
long cables and due to the widespread production of micro-electro-mechanical sensors.
The wireless communication allows flexible network topology and enables a decentralized
monitoring scheme as opposed to the centralized scheme of wired systems [80].

Smart sensing platforms generally feature several characteristics: (1) on-board CPU;
(2) small size; (3) wireless communication and data transmission; and (4) low-cost. Many
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WSS platforms have been developed and applied in SHM. They include the Mica series,
iMote series, and Xnode. The Xnode is an advanced wireless sensing platform with several
critical features such as reliable wireless communication, high-fidelity analog-to-digital
converter, expandable data storage, high-precision synchronized sensing, user-configurable
middleware software library, automated long-term operation of wireless network, and
so [81]. Based on advanced wireless sensing platforms, many kinds of accompanying
sensor boards have been developed to interact with the wireless sensing platforms for
achieving diverse sensing capabilities. Because the measurement environment, frequency
range, and budget may be different for the purpose, various types of external sensor
boards for WSS were developed for acceleration, high-sensitivity strain, and environmental
measurements [82].

Noel et al. [83] presented a comprehensive review of WSNs for SHM applications,
outlining the: (1) algorithms used in damage detection and localization, (2) network design
challenges, and (3) future research directions. Solutions to network design problems such
as scalability, time synchronization, sensor placement, and data processing were compared
and discussed. The work by Noel et al. (2017) is one of the most recent papers on the
subject and follows the other excellent reviews from Lynch and Loh [84], and Aygiin and
Gungor [85].

More recently, Abdulkarem et al. [86] reviewed wired and wireless sensor SHM
systems including wireless sensor node architecture, communication technologies, and
operating systems. The review included the state-of-the-art academic and commercial
wireless platform technologies used in laboratory and field tests. The key challenges
associated with WSN for SHM were identified.

The reliability of the sensors is crucial for a successful SHM implementation and a
trustworthy complement to annual inspections. As sensors age along with the structure
they aim to monitor, sensors may experience a drift phenomenon. Drift is a slow, often
linear or exponential decrease in accuracy that can at times go unnoticed if not appropriately
monitored. If a sensor becomes too inaccurate, it can trigger false positives or (in the worst
case scenario) false negatives. False positives would require on-site inspection to verify
the alarms. False negatives would leave critical damage unnoticed until the next cycle of
bridge inspection.

Engineers and SHM specialists are therefore challenged with the development of
methods and strategies to alleviate or eliminate drift due to sensor age without becoming
a costly practice that nulls the economic advantages of wireless sensors with respect to
wired technology. As a matter of fact, despite that wireless sensors have become relatively
inexpensive, the cost in labor to replace them can be very high, and in some cases is an
incredibly high safety risk.

Currently, there is not a set standard for ways to correct this drift; however, various
methods have been researched. One of these methods is to cluster sensors in regions, rather
than have a single sensor, and to evaluate the detections of all sensors in the cluster. By
determining a uniform baseline from this data, sensors are calibrated back to a determined
“zero-line” and establish the detectable threshold from there. This can be done either
manually using remote computers or by utilizing auto-calibrating sensors. The approach
also relies on the ability to recognize data that are skewed and reject them from the results
in order to prevent errors [87].

Despite nearly two decades of developments, wireless-based SHM systems still face
other challenges besides drift. These challenges include but are not limited to powering
the system and therefore harvest energy, limited communication bandwidth and range,
data loss, time synchronization, and signal length [80,83]. Note that in the context of this
review paper, synchronization is separate from drift.

Issues related to synchronization were reviewed and addressed by Li et al. [80].
Synchronization errors may occur because each smart sensor in the network has an inde-
pendent processor with its own local clock which is not necessarily synchronized with the
clocks of other sensors. Moreover, even with clocks that are perfectly synchronized, the
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data may lack synchronization because: (1) the sensors start sensing at different times due
to random variations in the processing time in the sensor board driver; (2) the low quality
of crystals may cause differences in the sampling frequencies among the nodes; and (3) the
sampling frequency for each individual sensor node can fluctuate over time because of
jitter [80]. When data are not synchronized, there is a shift in the phase information, which
some algorithms consider as damage indicators. When modal analysis is used and high
frequency vibrations are used to detect damage because such vibrations are more sensitive
to local defects, the accuracy of time synchronization at high frequency is pivotal. For
example, a 1 millisec synchronization error between two measured accelerations will result
in a 3.6° error in phase angle at 10 Hz and a 36° error at 100 Hz. So, if the damage detection
algorithm linked to the SHM system is based on mode shapes, the mode shape error due
to phase angle errors can lead to false positives.

The scientific literature contains several time synchronization protocols for WSSNs
and the interested readers are referred to [80] for a brief overview and for a few solutions
experimented on a Korean bridge and on the Arsenal Bridge in the U.S. The monitoring
of the latter added extra challenges related to the extended sensing duration required to
fully capture a transient event. For example, the monitoring of an entire vibration response
during a swing event requires 10 min of data at 50 Hz (30,000 data points).

Clock drift is also caused by temperature variation to which a sensor may be exposed
during the day due to exposure to direct sunlight or other weather-related factors, or be-
cause of heat generated by the processor itself. It has been shown that temperature change
can cause nonlinear clock drift which poses an additional challenge for synchronized
sensing in SHM.

Sensing for SHM is characterized by much more sampled data points than, for ex-
ample, temperature measurements. For example, under a given frequency bandwidth,
more data points provide higher resolution once the data is converted into the frequency
domain, and therefore, higher accuracy of estimated modal frequencies can be achieved.
The requirement for longer sensing duration needed to extract meaningful information
of structural characteristics poses challenges related to power, board memory, and data
transmission. Longer recordings are instead required to capture the complete record of the
forced vibration caused by a train crossing the bridge, which takes about 10 min. Extended
sensing duration may exacerbate the problem of clock drift (skew), which is a phenomenon
where two clocks drift away from each other because of differential clock speed. Even
though the clocks were accurately synchronized when sensing started, they can drift away
from each other during sensing and cause errors in timestamps, which in turn leads to syn-
chronization error in the sampled data. Li et al. addressed this problem by implementing
clock skew compensation [80].

4. Conclusions

This article discusses data analysis methodologies and issues associated with wired
and wireless sensors in the framework of bridge health monitoring. The scope of the
article is to provide a holistic view on the challenges related to the extraction of meaningful
data from sensors bonded, bolted, or embedded on bridges. Owing to the breadth of the
topic and the number of bridges currently instrumented worldwide, the attention of this
study was mainly on U.S. bridges and instrumentation programs developed over the last
20 years. For this reason, many different aspects are covered, but some topics are described
in detail like “scour” or “time and temperature-dependent factors” while others (“corrosion
evaluation”) are mentioned in shorter paragraphs like “corrosion evaluation”. The article
complements a recent study by the authors [8]. With respect to ref. [8], which focused
on methodologies and objectives of the bridge instrumentation programs in the U.S., this
paper focuses primarily on methods to evaluate structural parameters and detect structural
irregularities using data from varying instrument types, and data validation techniques to
assess the accuracy of the recorded data including data collected using wireless sensors.
Overall, the following conclusions are drawn:
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1.  Owing to the size of the structures being involved and owing to the nature of the
degradation processes, the analysis and the comprehension of the field data is more
successful when complemented with robust finite element modeling.

2. Whenever finite element modeling has supplemented the SHM protocols, the latter
ones are deemed the ones providing the accurate results and therefore the models are
calibrated to “match” field data.

3. Time-dependent phenomena such as creep and shrinkage of concrete may affect
structures and therefore may affect sensor data.

4. Temperature plays a detrimental role in the static (strain) and dynamic (modal) analy-
sis of bridges. Any robust SHM strategy cannot disregard the effects of temperature
and proper compensation methods are necessary to extract live load or long-term
effect from daily measurements.

5. Factors such as snow or water were not found as potential factors influencing field
data.

6.  Despite that wireless sensing is increasingly used in bridge health monitoring, there
are still technical challenges that prevent its exclusive use in lieu of conventional
wired systems.

7. Asbridges have very little in common with each other and almost any new bridge is
unique, it is difficult to design a uniform SHM paradigm valid for any bridge. What
is adequate for some may not be adequate for another. This complication increases
when structures are modeled but damage can only be simulated numerically but not
(logically) induced experimentally.

Owing to the scope of the manuscript, the literature reviewed in this study should
not be considered comprehensive of all the work conducted worldwide. A query like
“structural health monitoring” AND “bridges” AND “United States” was the starting
point of the study. While peer-review articles and technical reports submitted to U.S.
Federal Agencies and Departments of Transportation were included, patents, conference
proceedings abstracts, and advertisement material were excluded. In addition, other criteria
of exclusion were all those methodologies related to remote sensing such as unmanned
aerial vehicles, video-based, infrared cameras, GPS, and advanced cloud computing (see for
example ref. [88]) were not considered to keep the review within reasonable size. Likewise,
issues related the limitations of the short lifetime of wireless sensor networks due to high
power consumption and solutions such as energy harvesting were not discussed in detail.
Possible solutions could be using power by harvesting energy from vibration or renewable
energy (solar) or by using multi-agent-based routing able to traverse the sensor nodes
mounted onto a bridge using multi-hop communication. Examples of such solutions can
be found in [89], although they are not applied on existing bridges.

For those readers interested in gaining more insights about algorithms and step-by-
step procedures on how the SHM systems were designed based on bridge location and
importance, size of the object, type of material used for the super-structure, etc., they are
referred to the complementary review [8] recently published by the authors.
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