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Abstract: Cybersecurity is an arms race, with both the security and the adversaries attempting
to outsmart one another, coming up with new attacks, new ways to defend against those attacks,
and again with new ways to circumvent those defences. This situation creates a constant need for
novel, realistic cybersecurity datasets. This paper introduces the effects of using machine-learning-
based intrusion detection methods in network traffic coming from a real-life architecture. The main
contribution of this work is a dataset coming from a real-world, academic network. Real-life traffic
was collected and, after performing a series of attacks, a dataset was assembled. The dataset contains
44 network features and an unbalanced distribution of classes. In this work, the capability of the
dataset for formulating machine-learning-based models was experimentally evaluated. To investigate
the stability of the obtained models, cross-validation was performed, and an array of detection metrics
were reported. The gathered dataset is part of an effort to bring security against novel cyberthreats
and was completed in the SIMARGL project.

Keywords: machine learning; network intrusion detection; dataset

1. Introduction

The surge in the number of devices communicating with one another over the Internet
is expected to reach 50 billion by the end of the decade [1]. This expansion of the Internet
makes network security and cyberthreats a global problem.

Increasingly frequent leaks cause users to lose confidence in whether their data is
being kept secure. Furthermore, attacks on critical infrastructure, such as water treatment
plants or power stations, can have dire consequences [2,3]. This is why the development
of appropriate mechanisms to defend against hackers and malware is crucial. One of the
mechanisms at the forefront of attack detection are Intrusion Detection Systems (IDS).
The constant evolution of malware drives further development of IDS [4]. One of the
most important aspects of state-of-the-art IDS comes with the utilization of the machine-
learning (ML) technologies. Apart from the influence of hyperparameter setups [5], these
methods are only as good as the data used in the training phase. In cybersecurity, data
acquisition is particularly hard. The traffic needs to represent the behavior of realistic
and current network architectures and feature contemporary attacks. This, in conjunction
with numerous privacy and technological issues, creates a vacuum and a constant need
for new cybersecurity datasets. This paper is a preliminary description of the creation
of the RoEduNet2021 dataset, along with the initial tests performed with the use of ML
benchmark algorithms.
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The proposed dataset helps build, train, and evaluate ML algorithms used for in-
trusion detection, on data which is relevant to contemporary network environment. The
characteristics of network traffic change in time; not only are there novel attacks, but the
nature of the benign traffic also fluctuates, as new services become popular. Thus, even the
datasets which gain popularity in the research community become less and less relevant
in time.

The contribution of this work is in the collection of relevant, real-life traffic that will
be publicly available, and testing its usability for supervised machine learning methods.
On top of that, the dataset, in contrast to other available datasets, contains a set of features
which allows for formulation of a machine learning model which can be used for detection
in live traffic, a feat not found in other datasets available to researchers.

The work described in this paper is part of the SIMARGL project, which is co-financed
by the European Union under the Horizon 2020 program. The main goal of this project is
to fight the issue of malware and other novel challenges of cybersecurity. This is achieved
by finding new solutions that can effectively deal with the detection and prevention
of, among others, network anomalies, stegomalware, ransomware and mobile malware.
This research was conducted in conjunction with and the participation of the Romanian
Education Network (RoEduNet), a national education and research network in Romania.
RoEduNet collected and provided real-life data from its own networks, along with records
of attacks. The dataset is geared towards cybersecurity researchers who are interested
in examining their methods on contemporary, realistic traffic. The dataset also contains
features which can be calculated from live traffic, which makes the dataset highly usable
for the construction of deployable network intrusion detection systems.

The paper is structured as follows: in Section 2, the overview of the proposed dataset is
introduced, with the sources of traffic, the used attacks and the extracted network features
explained. Section 3 enumerates the related works in intrusion detection and recent datasets
in the domain. Section 4 contains the description of the proposed methodology, Section 5
encompasses the experiments, and their results and the conclusions are given in Section 6.

2. Related Work

The development in the domain of network traffic analysis and the preparation of
appropriate techniques for detecting anomalies and threats in computer networks, along
with the development of the IDS have resulted in the creation and publication of many
research papers. The ML algorithms vary in terms of their sophistication and types of
features used [6,7]. The following chapter will examine the state-of-the-art publications
from the fields related to network traffic threat detection.

2.1. Intrusion Detection Systems

Attacks on networks are becoming more sophisticated and pose a serious threat to
various types of infrastructure. Unavailability of services due to various types of attacks
drastically reduces the confidence in the security of the stored data.

Systems, such as Intrusion Detection Systems (IDS), are used to defend against un-
wanted activities. The authors of Reference [8] highlight a cross-section of modern IDS,
additionally comparing current datasets used to evaluate the IDS. The paper distinguishes
the division of IDS into two categories: signature-based (SIDS—an overview and taxonomy
are realized in Reference [9]) and anomaly-based (AIDS—characteristics and examples are
presented in Reference [10]).

The literature features a myriad of examples of various types of ID Systems. One
example comes from Reference [11], where the authors propose a solution to the problem
of attack detection for minority classes. They point out the problem of long learning
and detection times of deep neural networks. As a result, they propose a solution that
is based on the adaptive synthetic (ADASYN) oversampling [12] and LightGBM (Light
Gradient Boosted Machines) [13] technologies. The developers first normalize and encode
the original data and then increase the number of samples of minority classes using the
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data balancing technique, ADASYN. Finally, the data prepared in this way is trained using
the LightGBM algorithm. NSL-KDD [14], UNSW-NB15 [15], and CICIDS2017 [16] datasets
are used to verify the performance of the proposed solution. This approach results in the
precision of 92.57%, 89.56%, and 99.91% in the three test sets, respectively.

The authors of Reference [17] touch on the problem of detecting the zero-day attacks.
The authors point out that even systems with frequent data updates are unable to detect
zero-day attacks due to the lack of an adequate signature database. Zero-day attacks in their
early stages are able to bypass the signature-based network intrusion detection systems.
The authors of this paper propose to solve this problem by using RNNIDS, which uses
recurrent neural networks (RNNs) to find complex patterns in attacks and create similar
samples. Using this approach results in an improved NIDS detection rate.

The IDS developed in Reference [18] presents an approach based on a multi-layer
perceptron. The research and testing were realized on the UNSW-NB15 dataset, from which
30 features were selected using the gain factor method. The binarization discretization
technique was applied. The model achieved the results of 76.96% accuracy.

Another example comes from Reference [19]. The paper presents the design of an IDS
that bases its assumptions of detecting unwanted network traffic on feature selection and
ensemble learning. In the first step, the authors eliminate the multidimensionality of the
data using the CFS-BA algorithm. The operation of this method is based on selecting the
most optimal parameters using feature correlation. The data is then subjected to ensemble
learning with two algorithms: Random Forest (RF) and Forest by Penalizing Attributes
(Forest PA). The last step of labeling is done by using the voting technique, and, through it,
the final decision is made. Testing and learning are carried out on the following datasets:
NSL-KDD [14], AWID [20], and CIC-IDS2017 [16]. The experimental results for these
datasets oscillate around 99% in terms of accuracy.

2.2. Overview of Existing Datasets

Detecting anomalies in the network traffic is a challenging endeavor, as more and more
threats enter contemporary networks every day. Many contemporary tools today are based
on the aspects of machine learning. The effectiveness of the ML-based methods is directly
in proportion to the quality of data on which the model is trained. This is an extremely
important activity because it conditions the subsequent correct detection of attacks. In this
section, the main features of selected benchmark network datasets (CTU-13 [21], CICIDS
2018 [16], IOT-23, LITNET-2020 [22]) are presented.

2.2.1. CTU-13

In 2011, a team of researchers from the Czech Technical University in Prague created
the CTU-13 dataset. Network traffic developers decided to establish a benchmark consist-
ing of anomalies, along with reshuffled background traffic. The entire dataset is composed
of thirteen sub-sets representing real network traffic. The set includes over twenty mil-
lion samples. The distribution of labels in the dataset for each scenario is presented in
Table 1. The initial collection was captured in a PCAP file [23]; then, during processing,
the unidirectional Netflow traffic was separated and converted to a bidirectional Netflow.
With this transformation, more features were obtained, and the client-server traffic was
distinguished. The list of features with their descriptions can be found in Table 2.
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Table 1. Distribution of network traffic in the CTU-13 dataset for each scenario.

# Normal Flows Background Flows C&C Flows Botnet Flows

1 30,387 2,753,290 1026 39,993
2 9120 1,778,061 2102 18,839
3 116,887 4,566,929 63 26,759
4 25,268 1,094,040 49 1719
5 4679 124,252 206 695
6 7494 546,795 199 4431
7 1677 112,337 26 37
8 72,822 2,875,282 1074 5052
9 43,340 2,525,565 5099 179,880
10 15,847 1,187,592 37 106,315
11 2718 96,369 3 8161
12 7628 315,675 25 2143
13 31,791 1,853,217 1202 38,791

Table 2. CTU-13 list of features.

Feature Name Description

StartTime Start Time flow
SrcAddr Source IP address
Sport Source port
DstAddr Destination IP address
Dport Destination port
Proto Protocol
Dir Direction of communication
Dur Flow total duration
State Protocol state
sTos Source Type of Service
dTos Destination Type of Service
TotPkts Total number of packets exchanged
TotBytes Total number of bytes exchanged
SrcBytes Number of bytes from source
Label Name of type attack

2.2.2. CICIDS 2018

It was developed by the Canadian Cybersecurity Institute in 2018. The collection
contains eight different subsets that represent the collected data over a five-day period.
The creators provided within each subset both normal and infected traffic, which contains
the following infection types: Brute-force, Heartbleed, Botnet, DoS, DDoS, web attacks,
and network infiltration from within. All records were produced using the B-Profile
tool to profile abstract human behavioral interactions and produce naturalistic, smooth,
background traffic. The collection structure contains 83 features, and it was extracted
using the proprietary CICFlowMeter tool. The tool, created by the Canadian Cybersecurity
Institute, generates a bidirectional flow of network traffic by determining the direction
from source to target and from target to source using the first packet. With this approach,
the developers have extracted as many as 83 features, like Duration, Number of packets,
Number of bytes, Packet length, etc.

2.2.3. IoT-23

The IoT dataset was entirely developed by the Stratosphere Laboratory in the Czech
Republic and was published in 2020. The dataset contains infected and normal traffic and
features twenty malicious attacks and three benign captures. The researchers managed to
collect the traffic from IoT devices and make it available for developing machine learning
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algorithms that will effectively defend against these threats. The traffic has been divided
into twenty-three scenarios, each containing a different type of malware or attack. The
traffic distribution is shown in Table 3. The scheme consists of 20 features and a label. The
most active anomalies in this set are PartOfAHorizontalPortScan (213,852,924 samples),
Okiru [24] (47,381,241 samples), and DDoS (19,538,713 samples), while the least frequent
anomalies are: C&C-Mirai [25] (2 samples), PartOfAHorizontalPortScan-Attack (5 samples),
and C&C-HeartBeat-FileDownload (11 samples). The list with the description of all features
is shown in Table 4.

Table 3. Representation of the traffic content of the IoT-23 dataset by executed attacks.

Attack Name Flows

Part-Of-A-Horizontal-PortScan 213,852,924
Okiru 47,381,241
Okiru-Attack 13,609,479
DDoS 19,538,713
C&C-Heart Beat 33,673
C&C 21,995
Attack 9398
C&C- 888
C&C-Heart Beat Attack 883
C&C-File download 53
C&C-Tori 30
File download 18
C&C-Heart Beat File Download 11
Part-Of-A-Horizontal-PortScan Attack 5
C&C-Mirai 2

Table 4. IOT-23 features.

Feature Name Description

fields-ts Start Time flow
uid Unique ID
id.orig-h Source IP address
id.orig-p Source port
id.resp-h Destination IP address
id.resp-p Destination port
proto Protocol
service Type of Service (http, dns, etc.)
duration Flow total duration
orig-bytes Source—destination transaction bytes
resp-bytes Destination—source transaction bytes
conn-state Connection state
local-orig Source local address
local-resp Destination local address
resp-pkts Destination packets
orig-ip-bytes Flow of source bytes
history orig-pkts History of source packets
missed-bytes Missing bytes during transaction
tunnel-parents Traffic tunnel
resp-ip-bytes Flow of destination bytes
label Name of type attack



Sensors 2021, 21, 4319 6 of 20

2.2.4. LITNET-2020

LITNET-2020, which leveraged an academic network, was published in 2020. The
traffic was collected in real-life scenarios. The collection period lasted for ten months,
and, during all this time, 12 types of different anomalies were extracted, and the data
structure itself contains as many as 85 different features. Table 5 shows the specific number
of samples by attack class. In total, the dataset contains 45,492,310 flows.

Table 5. Representation of the traffic content of the LITNET-2020 dataset by executed attacks.

Attack Name Number of Samples Attacks

Packet Fragmentation attack 1,244,866 477
Scanning/spread 6687 6232
Reaper worm 4,377,656 1176
Spam bot’s detection 1,153,020 747
Code red worm 5,082,952 1,255,702
Blaster worm 2,858,573 24,291
LANDattack 3,569,838 52,417
HTTP-flood 3,963,168 22,959
TCP SYN-flood 14,608,678 3,725,838
UDP-flood 606,814 59,479
ICMP-flood 3,863,655 11,628
Smurf 3,994,426 59,479

3. Proposition of the RoEduNET2021 Dataset

In this section, the proposition of a dataset that is derived from a real data flow in an
academic network is presented. The network data schema is in the Netflow v9 format, and
it contains 44 unique features and a label describing each frame. The entire flow contains
two different types of DDOS attacks [26] and a PortScan attack [27], in addition to normal
traffic. The following subsections will provide descriptions of the network and the overall
infrastructure. Furthermore, all the collected features will be presented, and the dataset
will be tested using machine learning methods.

3.1. Overview of RoEduNet’s Client Infrastructure

For generating and capturing normal and malicious network traffic, the topology
presented in Figure 1 was used:

• Target network: contains the systems that are used in the research laboratories and
for educational purposes that are used by one of RoEduNet’s clients. In this network,
we added vulnerable systems that will be attacked using different attack scenarios
and vectors. This network contains hosts that run Ubuntu, CentOS, or Windows as
operating system. The traffic that is generated by the target network (normal and
malicious traffic) is represented in dataset.

• Attacker network: contains systems that are used to generate attacks against the
vulnerable systems and applications. This network contains virtual machines that run
Kali Linux [28] as the operating system. To train the machine learning algorithms,
the malicious traffic must be labeled; thus, the source of the attacks must be known.
The attacker network is controlled to create and monitor the traffic, and to label the
vector attacks.

• Clients (legitimate traffic): represents the traffic flowing through the target network
and labeled as normal. Besides malicious traffic, the vulnerable systems contain
legitimate traffic, as well.

• Internet: the network architecture is connected to the Internet since the research and
education systems highly utilize applications that require Internet connectivity.
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• Router: all the previous mentioned network architecture components are converging
to the same router. All the traffic that flows through the target network is mirrored,
using nProbe and ntopng, and captured.

In the topology presented in Figure 1, the vulnerable systems are the ones that are
targeted when running the attacks. Mainly, they contain eLearning platforms (Moodle)
that are used in the research and education field. The eLearning platforms were chosen
because they are an important part of the university and school activities (especially during
online classes) and may represent a target for the entities that want to harm the educational
process. The goal is to protect those assets against attacks.

Internet

vulnerable
system

vulnerable
system

education educationresearch

research research

Target network

Clients (legitimate traffic) Attacker network

Router nProbe
ntopng

Flows

BDE 
Platform

RoEduNet 
Client

education

port
mirror

Figure 1. Network architecture for the “Reconnaissance and Denial-of-Service attacks”.

The network used for collecting the data consists of multiple physical and logical
elements. The physical elements are the core router, which is comprised of a pair (VSS,
Virtual Switching System) of Cisco WS-4506-E with Cisco Catalyst 4500E Supervisor Engine
7-E, to which the the NProbe node has been connected. The core router is also connected to
all the switches that bridge the servers from where data of the hosted services is collected.
In addition, in this core router, there are multiple links connected to the university campus
buildings (from where data generated by RoEduNet’s end-users is collected). The data is
collected using Catalyst Switched Port Analyzer (SPAN) from the VLAN interfaces, which
are the gateways for the services mentioned above.

NProbe is running on a CentOS7 box that processes the data sent by the SPAN. The
services presented in Figure 1 are running on top of an Openstack Cloud deployment.
Openstack uses logical links and switches to connect the virtual machines using the Neutron
service. The logical links are overlay networks on top of the physical network, implemented
using openvswitch.

3.2. Traffic and Attack Orchestration

To manage vulnerable servers and to generate legitimate or malicious traffic, virtual
machines that are orchestrated using OpenStack [29] were used. OpenStack is an open-
source set of tools that can be used to manage a cloud environment.

For the attacker network, a template image was created that is based on Kali Linux
that contains the tools necessary for the attacks. In addition, the scripts that can be used to
start the attacks were configured. Based on the Kali template, multiple virtual machines
were created from where the attacks can be performed.

Even though the attacks are run in a research and education network, and the tests are
run during work and classes time, we wanted to have more legitimate traffic. Thus, virtual
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machines (using OpenStack) were added in the Clients (legitimate traffic) network that use
the services alongside with students and researchers. Based on an Ubuntu 20.04 server
template, multiple workers, along with a Kubernetes orchestrator [30], were created, that
became part of the vulnerable servers’ clients, in addition to students and researchers. Since
the platforms used are Moodle instances (eLearning platform), to generate legitimate traffic,
JMeter scripts were run to simulate a user’s activity: login, check courses and assignments
and logout. The traffic generated by JMeter is not intensive and does not affect the process
of generating malicious traffic.

3.3. Attack Scenarios

For replicating the real-life use cases, the following attacks were considered to be run
into the pilot network: network scanning (reconnaissance) and denial of service.

Usually, network scanning and reconnaissance (commonly implemented using net-
work port scanning) is the first step that is run by an attacker to detect the network
connected devices and their configuration details: operating system, open ports, the ver-
sions of the running applications and their vulnerability. Thus, one of the attacks that were
run against the network is related to network scanning. For running this attack, tools,
such as nmap [31] or Masscan [32], were used. For generating network scanning traffic,
scanning applications from the attacker network on the IP networks that are contained by
the target network are run.

An SYN Scan attack [33] is one the fastest methods of detecting a port’s state. It relies
on the TCP three-way handshake where the attacker sends a SYN packet to the desired
port. Based on the response (or the lack of it), the attacker can determine if the port is open,
closed or has some firewall filters active.

The Denial-of-Service attack category usually leads the system to be inaccessible or to
increase the response time to requests. There are multiple methods of attacks that can lead
to denial of service. The following two types were chosen:

• Denial-of-Service using SlowLoris [34]: this type of DoS attack opens many HTTP
connections to the target and sends incomplete, but legitimate HTTP requests or
responses to the target in a very slow manner, keeping the connection alive for a
long period of time. Since the HTTP messages are correct and not delivered very fast,
they result in flooding the target (as most Denial-of-Service attacks work). The traffic
can be considered as legitimate and the attacker as a slow client. Due to the large
number of connections that are opened and the slow pace of communication, this
type of attack can cause the target to respond very slowly to normal clients, or even to
become unresponsive.

• Denial-of-Service using R-U-Dead-Yet (RUDY) [35]: this is also a DoS attack that works
in a slow manner to occupy all the target’s processing power by opening and keeping
alive many connections and sending responses slowly. However, the main difference
between RUDY and SlowLoris is that the first one sends many small HTTP POST
messages (usually, 1 byte of data), while the latter sends only HTTP header messages.

For generating Denial-of-Service network traffic, the attacks from the attacker network
are started and target the vulnerable servers in the target network.

When the attacks are conducted, the following things need to be taken into considera-
tion to provide a reliable dataset that can be used to train machine learning algorithms:

• The attackers’ IP addresses;
• The targets’ IP addresses;
• The attack’s start and end date.

This information helps properly identify the network packages that should be consid-
ered malicious. As shown in Figure 1, using nProbe, all the data that flows through the
target network is collected. After the raw logged data is collected and stored (which is
saved as a JSON), a Python script is used to convert the logged data into a format that is
required by ML algorithms. The script does the following:
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• Adds a new key named “LABEL” for each packet. This field specifies if the traffic
is considered to be normal (“Normal flow”) or malicious (“SYN Scan”, “Denial of
Service SlowLoris”, or “Denial of Service R-U-Dead-Yet”).

• Modifies the key fields from the JSON to match the names described in subsection
“Features and labels” (nProbe saves an index for each field, and we replace the index
with its name, based on the NetFlow v9/IPFIX format).

3.4. Features and Labels

The set of features that was collected from the network infrastructure by the collector
and stored in JSON files is based on a data schema in the form of Netflow. This is a network
protocol developed by CISCO for collecting and monitoring network flows. During the
data collection process, 44 features were extracted that may be needed to correctly analyze
network flows and detect anomalies. All the collected featrues are summarized in Table 6.

In addition, each frame contains its own label that specifies exactly the type of flow
classifying it as anomalous or not. There are two DDoS attacks (Slowloris and R-U-Dead-
Yet) and one PortScan attack type (SYN SCAN) in the dataset. The distribution of these
types is as follows: the dataset contains 6,570,058 frames representing the non-infected
base traffic. Next, 2,496,814 frames contain the SYN Scan attack. The dataset contains
2,276,947 frames of the Denial of Service R-U-Dead-Yet and Denial of Service Slowloris
has 86,4054 flows. In summary, our collection contains 6,570,058 frames of pure traffic and
5,637,815 flows that are labeled as anomalies.

Table 6. The list of the collected network features.

Feature Description

BIFLOW_DIRECTION Determines who initiated the flow
DIRECTION Determines the direction of flow

DST_TO_SRC_SECOND_BYTES An indicator that determines the flow of bytes per
second (dst to src)

FIREWALL_EVEN Information flag from the firewall
FIRST_SWITCHED Time of appearance of the first flow

FLOW_ACTIVE_TIMEOUT Network traffic activity timeout
FLOW_DURATION_MICROSECONDS Duration of flow expressed in microseconds
FLOW_DURATION_MILLISECONDS Duration of flow expressed in milliseconds

FLOW_END_MILLISECONDS Duration of flow end expressed in milliseconds
FLOW_END_SEC Duration of flow end expressed in seconds

FLOW_ID Unique ID
FLOW_INACTIVE_TIMEOUT Inactivity time of the flow

FLOW_START_MILLISECONDS Duration of flow start expressed in milliseconds
FLOW_START_SEC Duration of flow start expressed in seconds
FRAME_LENGTH Frame length

IN_BYTES Number of incoming bytes
IN_PKTS Number of incoming packets

IPV4_DST_ADDR Destination IP V4 address
IPV4_SRC_ADDR Source IP V4 address

L4_DST_PORT Destination Port
L4_SRC_PORT Source Port

LAST_SWITCHED Time of the last packet
MAX_IP_PKT_LEN The largest length of the observed packet
MIN_IP_PKT_LEN The smallest length of the observed packet

OOORDER_IN_PKTS Number of incoming packets that were out of order
OOORDER_OUT_PKTS Number of outgoing packets that were out of order

OUT_BYTES Outgoing bytes
OUT_PKTS Outgoing packets
PROTOCOL Protocol flag

PROTOCOL_MAP Name of protocol
RETRANSMITTED_IN_BYTES Number of incoming bytes repeated
RETRANSMITTED_IN_PKTS Number of incoming packets repeated

RETRANSMITTED_OUT_BYTES Number of outgoing bytes repeated
RETRANSMITTED_OUT_PKTS Number of outgoing packets repeated
SRC_TO_DST_SECOND_BYTES An indicator that determines the flow of bytes per

second (src to dst)
TCP_WIN_MAX_IN Maximum incoming TCP window size

TCP_WIN_MAX_OUT Maximum outgoing TCP window size
TCP_WIN_MIN_IN Minimum incoming TCP window size

TCP_WIN_MIN_OUT Minimum outgoing TCP window size
TCP_WIN_MSS_IN Incoming TCP segment size

TCP_WIN_MSS_OUT Outgoing TCP segment size
TCP_WIN_SCALE_IN Incoming TCP scale size

SRC_TOS Sets the service type byte on entry to
the incoming interface.

L7_PROTO_NAME Name of the layer 7 protocol
TOTAL_FLOWS_EXP Total number of exported flows
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4. Proposed Methodology

In this section, the architecture of the created system will be presented. This section
also describes the data preparation process detailing all the steps needed to obtain the final
version of the schema of the data that will be used later on to prepare and train the model.

4.1. Architecture Solution

The process of network intrusion detection occurs in the network environment and
can be described by three steps: Collecting Traffic, Delivering Traffic to the Stream, and
Verification. Figure 2 shows a simplified diagram of the relationship between the key
modules of the system. To properly run real-time stream anomaly detection from the
delivered network traffic, it is necessary to train the model in advance. This process is
done offline and an initial collection of labeled data is required. Once the data model is
created and stored, one can move to the next step which is to perform the live detection.
The entire process starts with collecting data and delivering it to the Kafka [36] stream.
The detector is set up to work with network data that is delivered in Netflow version 9
format. The detector is developed to work in a real-life situation of real-time network
intrusion detection, where the traffic from an environment will be collected with a probe,
like NTOPNG [37], which provides the ability to collect and transport network traffic to the
stream in any form.

Figure 2. Architecture: Detection Engine.

The use of the Apache Kafka software in the detection environment is dictated by a
number of necessities of real-time network intrusion detection. These are, among others,
providing high throughput and low latency message queuing services. Kafka uses the Pub-
lish and Subscribe message handling model and stores partitioned data streams securely in
a distributed, replicated cluster. Kafka scales linearly as throughput increases.

The traffic delivered to the Kafka stream is received in real time by the detection engine.
All features of a single frame are prepared for verification by a suite of machine learning
algorithms. After passing through the verification system, the frame is assigned a label.
Clean traffic which does not bear any signatures of an attack is labeled as “Normal Flow”.
Infected traffic receives a specific label corresponding to the attack type. The intricacies of
the stream-based network intrusion detection have been presented in Reference [38]. The
final step is to prepare the tagged frame for sending to the Elasticsearch database.
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4.2. Data Preparation

The data preparation process is a crucial step in the ML pipeline. The data preparation
steps performed are presented in Figure 3. The listed elements of the data preparation
process are described below.

Figure 3. Process of preparing the collected data.

4.3. Feature Selection

The first step in the process of preparing the final data shape is feature selection. As the
name suggests, feature selection is about choosing from among all features only those that
contribute to the effectiveness of the model. Feature selection reduces the computational
cost, as well as, in many cases, improves the model performance [39]. Feature selection
methods evaluate the relationship between each input variable and the target variable.

For this research, the SelectKBest method was used for feature selection, with the
result function set to chi2. The Chi-Square method allows for determination of whether the
occurrence of a particular trait and the occurrence of a particular class are independent.
This can be expressed by the following formula:

chi2 = ∑
et∈{0,1}

∑
ec∈{0,1}

(Netec − Eetec)
2

Eetec

. (1)

N is the observed value of w, and E the expected value. et takes the value of 1 if the
document contains the term t, and 0 otherwise. ec takes the value 1 if the document belongs
to class c, and 0 otherwise.

Each feature in the dataset that receives a high Chi-Square score should be discarded
as it means that the class has no effect on the incidence of the feature. Conversely, when
the score value is low, it means that the class and the feature are dependent. In Figure 4,
the distributions of the 15 most important features in the dataset is shown.

4.4. Resolving the Data Imbalance Problem

Uneven distribution of classes is a known ML challenge [40–42]. Many ML algo-
rithms can under-perform on imbalanced data, experiencing issues, like misclassification
of samples from minority classes to majority classes.

To solve the imbalance issue, SMOTE technique was used at the data preparation
stage. SMOTE is one of the most commonly used oversampling methods. This technique
was first defined and presented in Reference [43]. It aims to balance the class distribution
by increasing the minority class instances with the use of an adaptation of the nearest
neighbors algorithm.

To create a synthetic instance, it finds the K-nearest neighbors of each minority sample,
randomly selecting one of them, and then computes linear interpolations to create a new
minority sample.

For this research, one of the extensions of SMOTE, SMOTE-ENC (Encoded Nominal
and Continuous Synthetic Minority Oversampling Techinque), was used. The reason for
choosing this particular method was that the data schema contained categorical values.
The authors of Reference [44] show the correct results of using this method on categorical
values and confirm that this method works correctly. In SMOTE-ENC, if the sample of a
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categorical attribute differs from its nearest neighbors, then a constant value is added dur-
ing distance calculation. This method allows for the use of SMOTE on datasets containing
both continuous and categorical features.

Figure 4. Distribution plots of the 15 most important features.

4.5. Feature Standardization

After the dataset was balanced, all samples were subjected to the standardization
process. The values were standardized by removing the mean and scaling to unit variance
with the use of scikit-learn StandardScaler. To maintain consistency in our tests, we
have also centered and scaled the features for the decision-based methods, even though
RandomForest can handle both scaled and unscaled features.
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4.6. Label Encoding

Categorical and textual data is a fairly common occurrence in datasets. In our case,
fields, such as protocol and label, are precisely of the categorical type. Some ML algorithms
can handle categorical features, but most expect only numeric values. Therefore, all
categorical values in the dataset are converted to numeric values. There are multiple
ways to perform this conversion; in this work, two were used: One-Hot-Encoding and
Label-Encoding. The Label-Encoder method converts each value in the column to a number
assigning a value according to the order of appearance, and it is suitable for conversion of
the dependent variable. The second approach creates a new column for each category and
fills it with zeros (False), only assigning ones (True) for samples where the particular value
of the feature was present, making it suitable to use on features.

5. Experiments and Results

This section describes and details the tests and provides the results of the study. The
formulas by which the machine learning and neural network algorithms were tested and
compared on the dataset are specified.

5.1. Evaluation Metrics

In this paper, a standard set of well-known metrics was used to evaluate the approach:
Accuracy (ACC), Precision (Pr), Recall (Re), F1-Score, Matthews correlation coefficient
(MCC) [45], and Balanced accuracy (BCC).

The metrics are calculated with the use of the confusion matrix. The following are
the values featured in the confusion matrix: True Positives (TP), which specify correctly
predicted positive values, followed by True Negatives (TN), which are correctly predicted
negative values. The other two variables are described as False Positives (FP), which is
when the result of the actual class is false and the result of the predicted class is positive.
The last variable is False Negatives (FN), which is when the actual class is positively
classified, but the predicted class indicates a negative value. Presented below are the
individual formulas that were considered in the process of evaluating the performance of
the algorithm.

Accuracy = TP+TN
TP+FP+FN+TN ;

Precision = TP
TP+FP ;

Recall = TP
TP+FN ;

F1 = 2 ∗ Recall∗Precision
Recall+Precision ;

BACC =
TP

TP+FN + TN
TN+FP

2 ;

MCC = TN∗TP−FN∗FP√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

.

5.2. Results

In this section, the results that were achieved after detecting the malicious traffic in the
dataset that was collected from an academic network are presented. At the very beginning,
the data schema that was provided in Section 3.4 was subjected to feature selection, and the
15 most useful features from this dataset that have the greatest impact on the effectiveness
of the model were extracted. A summary of these features can be found in Figure 5. The
Y-axis features the 15 parameter names with the highest score.
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Figure 5. Result of feature selection.

The feature with the strongest influence on the result of the classification, according to
the SelectKBest method [46], is the duration of the data flow.

In the remaining part of the research the focus was on utilizing the following ML
methods: Deep neural network [47–49], the Random Forest Classifier [50,51], the AdaBoost
Classifier [52], and the Gradient Boosted Trees Classifier [53].

The choice of these algorithms was dictated by the following factors: Random Forest
has been proven in multiple studies on network attacks; its performance was always
high [4], and results were satisfactory, and the authors have found promising results from
the utilization of this algorithm in earlier work [54,55]. The Gradient Boosted Trees (GBT)
algorithm combines the advantages of RandomForest with the added benefit of gradient
utilization. Artificial neural networks were used because they have been proven to continue
to learn even when the other methods reach their full potential. Thus, adding ANNs can
be a good opportunity to improve results with larger amounts of data. The AdaBoost
algorithm was selected to check its potential in the real-world implementation of the NIDS
component in the SIMARGL project: the algorithm is fast, simple to use, and does not need
extensive hyperparameter tuning.

The selection of hyperparameters in the used algorithms was done using gridSearch,
which performs an exhaustive search over the chosen hyperparameter space. The setting
of hyperparameters can be a decisive factor for the results obtained by machine-learning
methods, as was presented in Reference [5].

Each classifier was subjected to a learning procedure on a training set. Cross-validation
was used to test and evaluate the model more accurately. This is a procedure that is used
to resample the data. The number of groups into which the set is divided is defined using
the K parameter was set, in this case, to 10. Therefore, each result in the summary table of
a given test contains 10 records. Each classifier underwent the learning procedure on the
training set.
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The first classifier is a deep neural network. The architecture of this classifier consists
of an input layer with the count of neurons corresponding to the used number of features,
and the Rectified Linear Unit (ReLU) activation function. This is followed by a dropout
layer with the dropout set at 0.01, and another hidden layer with a set of 16 neurons and
the ReLU activation function. The setup closes with a “softmax”. The loss function was set
to the “categorical_crossentropy” method, while the chosen optimization algorithm was
Adaptive Momentum (ADAM) [56]. Eleven epochs were needed to train the model with a
batch size of five. The test results for this model can be found in Table 7.

The next classifier that was used to detect malicious samples in the network traffic was
the RandomForest. The settings of this classifier were as follows: n_estimators was set to
the value of 100, and this parameter signifies the number of trees used. The maximum tree
depth was set to the value of ten, the minimum number of samples required to separate the
internal node was set to the value of two. The rest of the settings were used as provided by
default. Test results for this model can be found in Table 8.

The Gradient Boosted Trees classifier, is another model that was selected for test-
running the dataset. The preparation of this classifier consisted of setting the learning
rate to 0.5, the number of boosting steps to be performed was set to 100, the fractions of
samples was set to 0.5, the maximum depth of each regression estimator was set to 2 and
the number of features to be considered in the search for the best split was set to 2. Test
results for this model can be found in Table 9.

The last classifier that was utilized in the study was AdaBoost. The parameter con-
figuration of this classifier was as follows: The maximum number of estimators at which
boosting will be completed was set to a value of 50. The weight applied to each classifier
in each boosting iteration was set to a value of 1, and the base estimator from which the
boosted ensemble is built was set to DecisionTreeClassifier. Test results for this model can
be found in Table 10.

To further summarize the results of the experiment the measured metrics for all the
used algorithms are gathered in Table 11. The random forest classifier has achieved the best
metrics. For comparison, the results of the classifiers without the SMOTE data balancing
applied are provided in Table 12. The results are given on a 60/40 train/test split.

In order to compare the different classifiers on the accuracy of each model, a statistical
method based on paired Wilcoxon test [57] was applied. The results of these tests are
presented in Table 13. It can be seen that the AdaBoost algorithm loses every time compared
to all others, while the best choice is DNN or GBT algorithm, whose results are comparable.

Table 7. Summary of the results for the deep neural network.

# Accuracy Precision Recall F1 BACC MCC AUC_ROC

1 0.99 0.99 0.99 0.99 0.9904 0.9873 0.9987
2 0.99 0.99 0.99 0.99 0.9935 0.9914 0.9989
3 0.99 0.99 0.99 0.99 0.9930 0.9908 0.9966
4 0.99 0.99 0.99 0.99 0.9932 0.9910 0.9986
5 1 1 1 1 0.9955 0.9910 0.9983
6 0.99 0.99 0.99 0.99 0.9949 0.9932 0.9987
7 1 1 1 1 0.9953 0.9938 0.9982
8 1 1 1 1 0.9969 0.9959 0.9985
9 0.99 0.99 0.99 0.99 0.9906 0.9874 0.9975
10 0.99 0.99 0.99 0.99 0.9930 0.9907 0.9985
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Table 8. Summary of the results for the Random Forest Classifier.

# Accuracy Precision Recall F1 BACC MCC AUC_ROC

1 1 1 1 1 0.9999 0.9999 0.9999
2 1 1 1 1 0.9999 0.9999 0.9999
3 1 1 1 1 0.9999 0.9999 0.9999
4 1 1 1 1 0.9999 0.9999 0.9999
5 0.85 0.91 0.85 0.84 0.8537 0.8290 0.9025
6 1 1 1 1 0.9999 0.9999 0.9999
7 0.87 0.91 0.87 0.86 0.8709 0.8469 0.9139
8 1 1 1 1 0.9999 0.9999 0.9997
9 0.85 0.91 0.85 0.84 0.8524 0.8276 0.9016
10 0.78 0.88 0.78 0.72 0.7772 0.7546 0.8514

Table 9. Summary of the results for the Gradient Boosting Classifier.

# Accuracy Precision Recall F1 BACC MCC AUC_ROC

1 1 1 1 1 0.9991 0.9988 0.9991
2 1 1 1 1 0.9990 0.9987 0.9993
3 1 1 1 1 0.9993 0.9991 0.9993
4 1 0.99 1 1 0.9985 0.9980 0.9993
5 0.97 0.97 0.97 0.97 0.9660 0.9560 0.9992
6 0.98 0.99 0.98 0.98 0.9849 0.9801 0.9993
7 0.99 0.99 0.99 0.99 0.9927 0.9904 0.9994
8 1 1 1 1 0.9978 0.9971 0.9995
9 0.95 0.96 0.95 0.95 0.9520 0.9388 0.9991
10 0.98 0.98 0.98 0.98 0.9841 0.9791 0.9993

Table 10. Summary of the results for the AdaBoost Classifier.

# Accuracy Precision Recall F1 BACC MCC AUC_ROC

1 0.52 0.42 0.53 0.46 0.5214 0.3919 0.7092
2 0.53 0.41 0.52 0.45 0.5313 0.4051 0.7093
3 0.53 0.54 0.52 0.69 0.5332 0.4070 0.7093
4 0.55 0.42 0.53 0.46 0.5459 0.4239 0.7095
5 0.54 0.43 0.54 0.47 0.5313 0.4051 0.7096
6 0.53 0.42 0.53 0.46 0.5332 0.4070 0.7092
7 0.55 0.43 0.55 0.48 0.5459 0.4239 0.7097
8 0.54 0.43 0.54 0.47 0.5423 0.4190 0.7095
9 0.52 0.40 0.52 0.44 0.5244 0.3965 0.7093
10 0.78 0.88 0.78 0.72 0.7762 0.7535 0.7091

Table 11. Comparison of the models used and their prediction results on test data with SMOTE.

Model Accuracy Precision Recall F1 BACC MCC AUC_ROC

Random Forest 1.00 1.00 1.00 1.00 0.9998 0.9996 0.9998
AdaBoost 0.56 0.43 0.56 0.49 0.5642 0.4456 0.7095
GBT 1.00 1.00 1.00 1.00 0.9987 0.9980 0.9991
DNN 1.00 0.99 1.00 0.99 0.9975 0.9936 0.9981
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Table 12. Comparison of the models used and their prediction results on test data without SMOTE.

Model Accuracy Precision Recall F1 BACC MCC AUC_ROC

Random Forest 0.99 0.99 0.99 0.99 0.9904 0.9873 0.9987
AdaBoost 0.54 0.43 0.54 0.47 0.5423 0.4190 0.7095
GBT 1.00 1.00 1.00 1.00 0.9979 0.9977 0.9990
DNN 1.00 0.99 1.00 0.99 0.9975 0.9936 0.9981

Table 13. Statistical analysis of the classifiers by accuracy of the model based on paired Wilcoxon test
with p-value 0.05.

Classifiers p-Value Z-Value W-Value Comparison

RandomForest/GBT 0.0151 −2.4303 21 Significant at p < 0.05.
RandomForest/AdaBoost 0.00001 −4.7821 0 Significant at p < 0.05.
RandomForest/DNN 0.31732 −1.0032 136 Not significant at p < 0.05
AdaBoost/DNN 0.00001 −4.7821 0 Significant at p < 0.05.
AdaBoost/GBT 0.00001 −4.7821 0 Significant at p < 0.05.
DNN/GBT 0.71884 −0.362 61 Not significant at p < 0.05.

6. Conclusions

The work presented in this paper provides the results of efficient detection of anoma-
lies in network traffic coming from a real-life architecture. As part of the presented research,
traffic from a real-world academic network was collected and, after performing a series of
attacks, a dataset was formed. The dataset contains 44 network features and an unbalanced
distribution of classes. The traffic captures were annotated accordingly. The efficacy of
the dataset for training machine learning algorithms was experimentally evaluated. To
investigate the stability of the obtained ML models, cross-validation was performed, and
a series of standard detection metrics were reported. The utility of the obtained dataset
has been evaluated for the following ML algorithms: Random Forest Classifier, Gradient
Boosting Classifier, and a Neural Network. The obtained dataset is part of an ongoing
endeavor to provide security against novel cyberthreats, executed in the SIMARGL project.

Although the proposed infrastructure generates attacks, collects, and labels the traffic,
it can be improved. The current approach is to generate one attack at a time. However, in a
real life environment, multiple attacks may be simultaneously run to destabilize various
services: DNS, email, e-learning platforms. Thus, as future work, more complex scenarios
may help the researchers train their machine learning algorithms using datasets that are
even closer to real-life network traffic.

Moreover, due to physical resource limitations, the proposed infrastructure does
not scale well, since larger amounts of data cannot be generated without affecting the
functionality of RoEduNet’s client network. The most important limitations that were
encountered are the limited disk storage for logged data collected by NProbe, traffic
generated through port mirroring sent to NProbe to process data, or large datasets that
must be manually transferred from the source to the BDE Platform. Thus, in the future, a
more scalable infrastructure should be implemented, as well as an integration procedure
that delivers data directly from the source to the BDE Platform.

In the current implementation, the attacks that are generated must be manually started
and stopped at well established moments (each attack runs in a well defined time interval
so that the traffic can be labeled accordingly). A further improvement that should be added
would be to automatically run and label attacks based on a given schedule.

For future work, more different types of attacks are going to be added to the dataset.
The number and variety of normal traffic samples are also going to be increased. In addition,
this collection is set to become publicly available to provide more researchers the ability to
test improve their cybersecurity solutions on contemporary and realistic traffic. In scope of
the SIMARGL project, the aim is to provide RoEduNet with a NIDS solution to suit their
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needs. In addition, future work is dedicated to further improvements towards integrating
more machine learning concepts and algorithms, including the notion of online learning,
lifelong learning, and unsupervised anomaly detection.
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