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Abstract: There is a wide area of application that uses cerebral activity to restore capabilities for
people with severe motor disabilities, and actually the number of such systems keeps growing. Most
of the current BCI systems are based on a personal computer. However, there is a tremendous interest
in the implementation of BCIs on a portable platform, which has a small size, faster to load, much
lower price, lower resources, and lower power consumption than those for full PCs. Depending
on the complexity of the signal processing algorithms, it may be more suitable to work with slow
processors because there is no need to allow excess capacity of more demanding tasks. So, in this
review, we provide an overview of the BCIs development and the current available technology before
discussing experimental studies of BCIs.

Keywords: electroencephalogram (EEG); EEG signal processing; embedded brain computer interface

1. Introduction

In recent years, the advanced potential offers of understanding the physical phenom-
ena that occurred in the brain, as well as the information technologies, make the design
of brain computer interface (BCI) systems easier. Non-exhaustively, this technology is
mainly used for the functional substitution and pathological analysis. Figure 1 classifies
the technologies which were deployed to support people with severe disabilities or doctors
into two main categories with examples. There are other application domains including
the video games [1,2], the virtual and augmented reality [3–5], communication [6–8], etc.
The focus of this paper is the functional substitution and pathological analysis where the
other one are out of the scope of this review.

Figure 1. The main application domain of BCI.
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No matter what the application is, the signal processing chain is the same. The BCI
system consists of 4 sequential units: (1) signal acquisition, (2) feature extraction, (3) feature
translation, and (4) device output [9]. These 4 units are controlled by an operating protocol
that defines the onset and timing of operation, the details of signal processing, the nature
of the device commands, and the oversight of performance. The first unit recovers the
brain signals from the scalp according to invasive or noninvasive methods. As depicted in
Figure 2, the invasive technique is always used in a medical pathology analysis. It consists
of implementing the electrode inside the brain through a delicate surgical operation. For
the other one, it contends to place sensors on the scalp and recovers cerebral activity by
measuring the electrical activity (EEG), Functional magnetic resonance imaging (fMRI),
and magnetic activity (MEG). The noninvasive technique based on EEG method remains
the most solicited for several decades due to its ease of application, low cost, good temporal
resolution and not requiring surgical operation [10]. Furthermore, such acquisition systems
are based on very accurately analog-to-digital converter (DAC) allowing for the capture of
a very small variation in the signal. The second unit allows for increasing signal-to-noise
ratio (SNR) of the EEG signal and keeping the pertinent frequency band, depending on the
application. The third unit is the feature extraction allowing for reduction in the size of
the EEG signals and preparation of the features that are meaningful to the classification
stage. Finally, the fourth unit is the classification which permits to discriminate between
the class label of the features and convert the labels into logical control signal in order to
control the artificial agents or into useful presentation for the practitioner. The common
link between these two application classes of BCIs is the measurement of brain activity,
where the main difference is about the feedback. In fact, the feedback is sent to the user in
the field of functional substitution and for the practitioner in the other one.

Figure 2. The acquisition techniques [11].

Despite the tendency to apply the embedded system technique to BCI, a few embedded
BCI (EBCI) systems are presented in literature [12,13]. The most existing BCI platforms
are usually implemented in Laptops because it was difficult at the beginning to move the
BCI technologies from laboratory scale experiments to the daily life of the people with a
neurological disorder [14,15]. Furthermore, the focus of the researchers was to apply these
technologies on a personal computer occupied with high computational resources. Such
systems are implemented in high performance processors without taking into account the
memory resource, power consumption, compactness, the volume, etc. [15,16]. Today, due
to the wide spread of the embedded system and the computational resources that can offer,
it becomes an emergency to implement the BCI technologies in embedded platforms. So,
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an EBCI is a microprocessor- or microcontroller-based system of hardware and software. It
is designed to analyze the EEG signals and translates them into commands, that are relayed
to an output device to carry out a desired action or useful information for practitioner.

Recently, many technical papers have provided short reviews of related work on
BCI [11,16–20]. Most, if not all of these reviews, are focused on the application domain of
the BCI, the different acquisition technologies, the signal processing algorithm, and limiting
the evaluation in order to compare their general advantages/disadvantages, the accuracy
of the signal processing, and machine learning algorithms. To support the researchers in
the embedded BCI area, as well as other interested parties including EBCI architecture,
online/offline BCI, evaluation criteria of the embedded BCI systems, this paper provides a
wide and deep look into state-of-the-art contributions in the field of embedded architecture
of BCI systems. For this purpose, we followed a systematic approach by addressing each
of the following criteria for each reviewed paper.

Concentration/Stimulation?

The concentration/stimulation (Cs) criterion is used to know the type of the signals
controlling the system. The existing BCI systems are controlled either by the evoked
potential (EP), such as P300, steady state evoked potential (SVEP), or by the spontaneous
signals (SP), like motor imagery [21]. Some studies present hybrid systems that combined
these two signals to exploit the advantage of each signal type and to get highly accurate
system [22]. The most efficient system is the one that does not require the gaze movements
and an important effort to command the system [23]. For example, on the one hand,
Chabuda et al. proposed an efficient implementation of BCI based on a high-frequency
SSVEP. The proposed BCI used a filter block to attenuate all activities which are not phase-
locked to the stimulation [24]. Despite the good performance obtained by the proposed
system, this last requires the user’s disposition in front of simulation panel and needs
an effort of concentration. On the other hand, Belwafi et al. proposed an embedded BCI
system allowing people with severe disabilities to control the home domestic by thought
using two motor imagery actions [23]. The proposed system allows the user to move freely
and interact easily without any constraints. Thus, the BCI system controlled by the evoked
potential signal seems to be inappropriate for people with concentration difficulties or with
sight problems when the acquisition process becomes unfeasible. Hence, in this evaluation,
the system controlled by the spontaneous EEG signals will be seen as a good and an
efficient system in contrast to the system controlled by the evoked potential EEG signals.

Adaptability?

The EEG signals are always targeted by destructive interferences called artifacts. These
artifacts can be categorized into physiological and non-physiological artifacts [25]. On the
one hand, the physiological artifacts are mainly generated by the biological activity of the
system’s user. For example, these artifacts are generated by the heartbeat, eye movement,
muscle activation and user movement [26–28]. Fortunately, the methods to eliminate these
artifacts are quite simple because they represent repeated morphology waves related to
body member function that can be learned by the system during the training phase. On the
other hand, the non-physiological artifacts are related to the electrode interface, as well as
to the acquisition system and the environment in which it operates. These artifacts manifest
in a wide variety of morphologies that mask normal EEG signals and their removal remains
a delicate task. The compensation of these artifacts can be done a priori or a posteriori. The
first approach allows us to remove the artifacts during the recording process by guiding
the patient/user to follow some instructions, such as avoiding eye blinking, minimizing
the movements, etc. The second approach allows us to remove the artifacts using digital
filtering techniques in order to preserve the useful information and remove artifacts. There
are two main approaches to filter the EEG signal: dynamic and static. The dynamic
filtering process allows us to remove artifacts carefully in a dynamic manner by taking
into consideration the subject’s inter-variability where the static filter applied the same
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filter parameters for all the users/patients. In this review, a BCI system is classified as a
good system when the EEG signal processing algorithm removes artifacts according to
the dynamic approach which leads to a quasi-stationary system accuracy for all subjects.
According to the previous law, the system presented in Reference [29] is classified as a
good because the accuracy is almost the same for all users. On the contrary, the system
presented in Reference [30] is classified as a bad system due to the accuracy fluctuation
from subject to another.

Performance?

In the brain computer interface community, many evaluation metrics are used to
measure the performance, such as accuracy of classification, Kappa coefficient, mutual
information, information transfer rate (ITR), sensitivity, and specificity [31]. The most
common one is the accuracy of the classification which allows for measuring of the number
of trials classified correctly of total trials. Consequently, in this paper, we evaluate the
existing BCI systems using the obtained accuracy for each subject. The accuracy criterion is
the most important because it measures the success degree of the EEG signal processing
chain to discriminate or to identify trials. For example, in the literature, the BCI systems
that have an accuracy lower than 70% are not acceptable [32], whereas the BCI system
that guarantees a classification accuracy more than 75% is considered as a successful or a
good one. From this point of view, in the study, an evaluation grid based on the accuracy
is defined to compare the existing BCI as presented in Table 1. For example, according
to this grid, the system presented in Reference [33] is classified as a good one because
its accuracy varied between 86% and 100% for all subject. Furthermore, a P300-based
BCI allowing people with severe disabilities to manage electronic devices is proposed in
Reference [34]. The presented system fails to classify the trials for some subjects with a
classification error of about 74%, although, for another subject, the classification accuracy
exceeds 90%. Thus, in these reviews, this system is considered as a poor system due to its
uselessness in some cases.

Table 1. Evaluation grid of the accuracy.

Classification Accuracy Accord

<50 Poor
50–75% Fair

75–100% Good

Power consumption?

The EEG signal processing algorithms are time consumed due to the huge computation
and the traffic load across the whole EBCI system. This matter leads to increase the energy
consumption although the EBCI power budget is still confined to a few watts. Hence, the
energy consumption criterion is used in order to estimate the amount of the power used by
the EBCI system to predict or to translate the brain activities to commands. A consumption
grid is defined, as depicted in Figure 3, to classify the EBCI system into three categories.
According to this grid, a good EBCI system is the one which consumes less than the other
ones where its power consumption does not exceed 1 W. A Fair and a poor system has a
power consumption, respectively, less than 5 W and greater than 5 W.

Online/offline validation?

International research groups have applied two approaches to validate the BCI sys-
tem. According to the offline approach, the BCI systems are validated using an existing
benchmark. These data are recorded by research groups and shared with the community
as a challenge to develop sophisticated signal processing algorithms. For example, the data
proposed by the BCI-competition, physionet, etc. Often, the development of any applica-
tion based on EEG signal processing starts by the validation according to offline approach
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in order to define the appropriate signal processing techniques. Thereafter, the defined
algorithms should be tested with real data according to the online approach to check their
effectiveness to extract and classify trials. Frequently, the performance in classifying the
EEG trials obtained according to the offline approach decreases significantly compared to
the online [35]. For example, the accuracy of the systems presented in Reference [36,37]
decreases, respectively, by 38.8% and 19.8% during the validation of the EEG signal pro-
cessing chain according to the online approach. To that end, we used online/offline criteria
in order to state the presented accuracy with statistical confidence.

The rest of this paper is organized as follows. In Section 2, we evaluate the existing
EBCI systems according to the predefined evaluation criteria. We take a closer look into
EBCI systems for functional substitution and pathological disorder analysis. In Section 3,
we discuss current challenges, the different architecture of EBCI systems, the evaluation
criteria of EBCI systems, and possible future research directions on embedded BCI systems.
Finally, we provide concluding remarks in Section 4.

Figure 3. Evaluation grid of the power consumption.

2. Review of the Embedded BCI Systems

The future of the BCI systems will heavily rely on the computing ecosystem, like any
other application domains [12,38]. Today, despite the tremendous interest in implementing
the BCI systems into embedded platforms, there are a few embedded BCI (EBCI) systems
presented in literature. In fact, at the beginning, the BCI systems are moving slightly from
the laboratory to the real world in order to use these systems in the daily life of people
with severe disabilities or using them to assist doctors during the analysis of pathological
disorders. So, at first, there is a reason in implementing such systems in a personal
computer. Today, with the tremendous advancement in the embedded platforms and
especially the availability of the open source platform, it becomes too easy to implement
complex signal processing algorithms, while maintaining low power consumption, price
and resources, etc.

2.1. Review of the Acquisition Systems

The BCI systems consist mainly of two parts, signal acquisition and translation. The
embedded signal acquisition part contains electrodes, analog circuit and digital system
for neurophysiological signal recording and transmission. These systems can be wired or
wireless, depending on the type of the connection between the signal acquisition and trans-
lation. The wireless EEG acquiring device plays a vital role in the embedded BCI systems,
especially with the existence of active dry electrodes allowing a convenient installation and
high-fidelity signals. Today, there are many commercial companies producing wireless
acquisition systems: G.tec, Emotiv, Open BCI, Neurosky, etc. For example, G.tec company
offers a wearable EEG headset for research applications known by G. Nautilus, which
integrates 32 analogic-to-digital (ADC) converters that allow for reaching a sampling rate
of 1.024 MHz with high resolution about 24 Bit. It comes with flexible cables to configure
the EEG electrode positions and connect to a dry and Wet EEG electrodes. G. Nautilus
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system is not open-source, and it is connected to an embedded platform which remains
impossible. Furthermore, the price is very expensive compared to other ones, such as Open
BCI Cyton. In fact, the Open BCI Cyton Board is an Arduino-compatible, 8 differential,
high gain and low noise channels. It implements the PIC32MX250F128B microcontroller
and Texas Instruments ADS1299 ADC. The Open BCI Cyton is compatible with active and
passive electrodes and can support until 16 electrodes.

2.2. Embedded BCI Systems for Pathological Disorders

In Reference [13], Chin-Teng et al. proposed an EBCI system that can acquire and
analyze EEG signals in real-time to monitor human physiological, as well as cognitive
states. The system is composed of a four channel physiological acquisition and an amplifi-
cation unit, a wireless transmission unit, a dual core signal processing unit with multitask
scheduling, a sensing real signal display and monitoring unit, and a warning device. The
proposed wireless EBCI system is implemented in a dual core DSP and can predict the
drowsiness state with an accuracy around 75%. The presented system respects the prede-
fined criteria expect the adaptability (Ad) criterion and the runtime, which is considered as
little bit high . In fact, authors did not take into consideration the inter-subject variability
and applied the same signal processing chain for the five subjects which led to a decrease
in the accuracy as the case of the 3rd subject where the obtained classification accuracy was
about 58%.

Wijesinghe et al. proposed a novel architecture of a generalized platform that provides
a set of predefined features and preprocessing steps that can be configured by a user
for BCI applications [15]. The presented system is implemented on a Spartan FPGA
with a XC3S500E-PQ208 chip. The architecture integrates a power line noise cancellation
and baseline removal to enhance the signal-to-noise ratio, while the feature extraction
combines linear and nonlinear, univariate and bivariate measures commonly utilized
in BCIs. The platform is validated by implementing a seizure detection algorithm on
a epileptic seizure detection and it achieved a classification accuracy of over 96%. The
advantage of such architecture is that it integrated different features extraction techniques
allowing for maximization of the accuracy, while decreasing the runtime and the power
consumption and allowing the user to move freely without any constraints.

In Reference [39], to detect and correct seizure, a signal processing algorithms and
control circuit for patient monitoring system is presented. The presented device is designed
using cyclone III FPGA. The EEG signal is preprocessed using the spline wavelet, to remove
the baseline wander signal, and the adaptive threshold and template matching to predict
seizure. The seizure detected control signals are generated and the simulator block was
activated. The proposed architecture reaches a very good performance in terms of the
run-time and power consumption even though the study does not report any evaluation
performance in terms of the accuracy.

Table 2 resumes the existing EBCI systems in literature based on a research in PubMed,
IEEExplore, ScienceDirect, and Google scholar research web engines. The existing systems
are evaluated using the predefined criteria.

2.3. Embedded BCI Systems for Functional Substitution

In Reference [14], Lijun et al. proposed an embedded system to control wheelchair
merely by thinking. The signal processing algorithm implemented, in iPhone, using a
Xcode programming where they are leveraging using the Software Device Kit (SDK).
Other EBCI systems are based on a hardware architecture and they reach a very good
performance in terms of the power consumption and run-time. For example, Aravind
et al. proposed an embedded system that can be used for controlling electrical devices
by thinking using EEG signals [40]. The EEG signal processing chain was composed by
band-pass finite impulse response filter, wavelet, and Support Vector Machine (SVM). The
proposed system was implemented on SPARTAN 6 FPGA Board; unfortunately, there is no
system performance reported.
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Table 2. Summary of related works on embedded BCIs for pathological disorders: N/I: No indication, 0: bad, 1:good.

Work Year Cs Ad Algorithms Accuracy (%) Platform Time (ms) Power
(W)

Online/
Offline

[40] 2008 1 0 Hamming window, STFT, PCA,
Linear regression 74.6 DSP, ARM processor 42 ∼1 Online

[22] 2017 1 0 PSD, ANN 70 Atmega128, AD8553 4000 ∼0.9 Online

[41] 2017 1 0 PSD, RMS, Threshold 85 ADS1298,
STM32F407vgt6 0.7 ∼0.091 Online

[42] 2018 1 0 LP IIR, FFT, SVM 96 STM32F103CB,
LMC6464, L3G4200D, NA 9 Online

[43] 2013 0 1 N/I N/I Zarlink ZL70102,
MSP430 N/I 2.2 Online

[44] 2014 1 1 ICA, FFT, SVM 91 TI CC2564, FPGA, N/I 0.45 Offline

[45] 2010 1 1 Bandpass filter, FFT, SVM 93 SoC 6700 ± 3000 0.0002 Online

[46] 2018 0 0 Long Short-Term Memory (LSTM)
RNNs N/I Xilinx Zynq-7045 769 N/I Offline

[39] 2018 1 1 quadrature spline wavelet (QSW),
PCA N/I FPGA cyclone II 0.145 0.806 Offline

[15] 2014 1 0

FIR, DWT, PSD, AR, Filter bank,
Zero-crossing Histogram,

Correlation, Phase
synchronization, Mann–Whitney

test, LSSVM

96.93 Spartan FPGA with a
XC3S500E-PQ208 277.74 N/I Online

In Reference [47], a pure hardware system based on the FPGA for EEG-MI classification
is presented. The EEG signals are processed as a series of multi-channel images in the
continuous time domain showing the energy changes in the cerebral cortex during the MI
of the subjects. The accuracy in classification reached 80.5% where the presented design
was approximately 8 times faster than the PC in terms of the execution time and decreased
the power consumption by a factor 5600 compared to a standard PC.

In Reference [43], Sawan et al. proposed an embedded Wireless Recording Systems to
measure the brain activity non-invasively and send the recorded data to a host system to
apply the signal processing chain. The suggested system improved the mobility of patients
and is used by a doctor to predict the start of epilepsy in two patients.

Taehwan et al. proposed a wearable neurofeedback system, which supports mental sta-
tus monitoring with EEG and transcranial electrical stimulation for neuromodulation [44].
The proposed architecture includes a self configured independent component analysis
(ICA), implemented purely in hardware to separate the source at a low power. Based on the
predefined criterion, this system can be considered as a good example of the successfully im-
plemented EBCI system in the literature because it takes into consideration the inter-subject
variability, running at a low power, and the overall time is reduced by 34% compared to the
time without pipelined structure. However, the suggested architecture missed the online
validation to check its effectiveness and measure the real classification accuracy.

Kuo-Kai et al. designed a low-cost FPGA-based SSVEP multimedia control system [48].
The proposed system includes a stimulation panel to evoke the subject’s SSVEP signal.
Instead of the bulky personal computer with signal processing software, the SSVEP signal
processing algorithms are implemented into a cyclone FPGA by hand coding VHSIC
hardware description language (VHDL) to accelerate the runtime of the algorithms. Some
existing research works are only focused on the implementation of one block of the signal
processing chain.

Some studies were only focused on the implementation of very used BCI algorithms.
For example, in Reference [49], Plaumbo et al. implemented the spatial filter algorithm,
known by ICA technique which is distinguished by its huge time consuming. The ICA
algorithm is implemented on a NI CompactRIO embedded system based on an industrial
400 MHz Freescale MPC5200 processor that deterministically executes LabVIEW Real-time
applications on the reliable Wind River VxWorks real-time operating system. Hassen et al.,
in Reference [50], proposed a chip design using a sampling rate conversion system for BCI
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machine. The proposed chip only allows us to remove the artefacts from the EEG signals
without any implementation of the feature extraction and classification algorithms.

Table 3 resumes the existing EBCI systems, for functional substitution, in literature
based on a research in PubMed, IEEExplore, ScienceDirect, and Google scholar research
web engines. The existing systems are evaluated using the predefined criteria.

Table 3. Summary of related works on embedded BCIs for functional substitution: N/I: No indication, 0: bad, 1:good.

Work Year Cs Ad Algorithms Accuracy
(%) Platform Time (ms) Power

(W)
Online/
Offline

[13] 2008 0 0 Average filter, PCA, Linear regression 74.6 Virtex 6 2420 1.11 Online

[49] 2010 1 0 FIR, DWT, SVM N/I Compact-RIO N/I 12.81 Offline

[51] 2015 1 0 Theta spectra, threshold 71 FPGA Mobile tablet N/I 4 Online

[52] 2010 1 0 STFFT, ICA, threshold 78.24 DSP N/I 1.11 Online

[53] 2017 0 0 FFT, threshold 99.4 Micro2440SDK ∼8500 24 Online

[54] 2013 1 0 IIR, DWT, threshold hierarchical model 91 CompactDAQ 2 12 Online

[55] 2016 0 1 DWT, SVM 82.1 Odroid-xu4 0.11 20 Offline

[56] 2017 0 0 Band-pass filter, average power, temporal
correlation 70 Arduino Due MCU 2.23 1 Offline

[57] 2014 0 0 FFT, SLIC 70 Micro2440 (ARM) 0.1 24 Offline

[58] 2017 0 1 ERD/ERS, Adaptive Threshold 75 Zynq ZC7030 402 4.12 Online,
offline

[59] 2014 0 1 FFT, Mahalanobis distance 82 Blackfin, DSP N/I 4.02 Online

[60] 2014 0 0 FFT 98.8 AT89S51, Tablet (AUSU) 42 12 Online

[48] 2010 0 0 Phase coding, FFT 89.29 Cyclone EP2C20Q FPG 30.14 ∼27 Online

[61] 2012 1 0 FFT, Mardia test, Mahalanobis distance
(MD) 77.6 Cyclone EP2C20Q FPG 30.14 ∼27 Online

[14] 2012 1 0 Threshold 61.6 iPhone 32 ∼6 Online

[62] 2012 0 0 FFT, Morlet Continuous Wavelet,
Threshold N/I Spartan3 XC3S1400AN 1 N/I Online

[63] 2011 0 0 PSD, LDA 73.58 ASIC, MSP430F1611,
NRF24L 200 0.001395 Online

[23] 2017 1 1 Adaptive filter, CSP, MD 94.47 Stratix-IV 394 1.067 Offline

[64] 2018 1 1 WOLA filter bank, CSP, MD 80.2 Stratix-IV 430 0.67 Online,
Offline

[65] 2012 0 0 Forward Filter, FLDA 73.96 Spartan 3E FPGA N/I N/I Online

[66] 2012 0 0 FIR filterbank, Hidden Markov Models 76.5 Spartan 6 FPGA N/I N/I Online

[67] 2016 1 0 adaptive filtering N/I FPGA Virtex-5 LX50T N/I N/I Online

[68] 2020 0 0 PSD, band-pass filtering, canonical
correlation analysis (CCA) 80 XC7K325T-2FFG900C N/I N/I Online

[69] 2017 0 0 Median, FIR filter, FLDA N/I Virtex-5 0.01 0.67 Online

[70] 2015 0 0 ICA, Canonical Correlation Analysis (CCA) 86.5 FPGA 32000 N/I Online

[71] 2016 0 0 Blind Source Separation (BSS), CCA 93.41 FPGA N/I N/I Online

[72] 2018 0 0 Sparse Bayesian Learning (BSBL),
multi-layer perceptron regressor 89.85 Virtex7, ARM N/I N/I Online

[47] 2019 0 1 CNN 80.5 Xilinx BNN-PYNQ 1.97 0.025 Offline

[73] 2015 0 0 FFT, Threshold 88.88 Xilinx & PC Tablet 4430 70 Online

[74] 2018 1 0

Surface Laplacian, Separable Common
Spatio Spectral Pattern (SCSSP), Mutual
Information (MI), Linear Discriminant
Analysis (LDA), and Support Vector

Machine (SVM)

81.9 Virtex-6 FPGA 0.550 83 Online &
offline

[75] 2020 0 0 FIR filter, averaging method 90.62 Cyclone II EP2C35 DSP ∼2000 ∼27 Online

[76] 2019 1 0 Channel selection, wavelet, energy
normalization, LDA 80 Xilinx 7.5 0.102 Offline

[77] 2013 0 0 FFT, threshold 92.5 FPGA, MCP3201
microcontroller 5200 1.74 Online

[78] 2020 0 0 Canonical correlation analysis (CCA) 76 DE0-nano board 0.00052 ∼0.05 Online

[79] 2019 0 0 CCA 87.89 Cyclone IV EP4CE115 1500 ∼0.05 Offline

[80] 2020 0 0 Long Short-Term Memory (LSTM) 87.89 MindReading photonic
ULQ 1500 0.2155 Offline

[81] 2019 0 0 bandpass Butterworth filter, DWT,
Feedforward Neural Network (FFNN) 96.09 Raspberry Pi 3B N/I 5.77 Online
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2.4. Review of the Embedded Architecture of BCI

In this subsection, we only focused on the embedded architecture of the EBCI system
independently from the application domain. The existing EBCI systems are implemented
according to three alternatives: Software architecture (SW), Hardware architecture (HW),
and HW/SW architecture.

2.4.1. EBCI Based on Software Architecture

More than 90% of the existing EBCI systems are implemented as a software code
embedded within a microcontroller, such as ARM, Nios, Microblaze, etc.

The EEG signal processing chain is coded using a et al. Level Language (HLL) as
C/C++ independently from the architecture of the microcontroller. This approach is widely
used because it allows a rapid prototyping within a reasonable time and cost, especially
with the spread of the open-source libraries. The EBCI systems based on SW architecture
do not have a critical time and a power consumption constraints.

For example, a low-cost FPGA-based BCI speller application is presented in Refer-
ence [65]. The proposed system included a data acquisition system and a real-time signal
processing chain implemented within a multiprocessor architecture based on Microblaze
soft-core. The signal processing chain, integrated Forward Filter and FLDA algorithm, is
coded in C/C++ language and implemented within a Xilinx Spartan 3E FPGA board. A
master soft-core processor is integrated to manage the communication between the two
other slaves, which are allowed, respectively, to filter the EEG signal and control the simu-
lation panel. The P300 enables a user to type without using his hands and to communicate
directly with the application and spell out words by merely looking at the screen. The
system achieved an accuracy of 65.37%. The presented study missed the architecture eval-
uation in terms of the runtime and the power consumption which is certainly decreased
compared to the power consumption of a standard Laptop.

In Reference [52], an EEG-based smart living environmental control system to auto-
adjust the living environment is proposed. The real-time signal processing unit is integrated
down-sampling, Hanning window multiplier, short-time FFT, normalization, moving aver-
age, ICA decomposition and drowsy state estimator, etc. These algorithms are implemented
on a dual-core processor within OMAP1510 platform. The signal processing unit is coded
in C/C++ language and includes an embedded task management algorithm called the
multi-task scheduling mechanism, which allows for the management tasks and ensures
the accurate sampling rate for EEG signal acquisition and data process. The average ac-
curacy of the proposed system reached 78%. The system took about 2 s to estimate the
physiological state and consumed about 1 W.

2.4.2. EBCI Based on Hardware Architecture

EBCI system based on HW architecture are implemented on Field-Programmable
Gate Arrays (FPGAs) using the Hardware Description Language (HDL) at the register
transfer level to get the complete EEG-based signal processing. In this case, the EEG signal
processing chain is exported as an Intellectual Properties (IP) coded in Verilog or Very High
Description Language (VHDL). The HW architecture remains the appropriate approach
when the timing constraints and the power budget are very stringent. The prototyping
time of such architecture is highly important, and the cost of the design complexity and the
design time is significantly increased in comparison with the SW architecture.

For example, in Reference [39], Tamilarasi and Sundararajan proposed an EBCI system
to detect and cure seizure automatically without physician intervention. The proposed
system is implemented in Cyclone III/II development kits. A hardware IP is developed
to remove the baseline and the artefacts from the acquired EEG signal. An adaptive
thresholding technique is implemented to detect the seizure and generate control signals to
activate the stimulator block. The suggested platform achieved a very good performance
in terms of processing time and power consumption which are, respectively, ∼120 ns and
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∼610 mw. The obtained performances remain discussable due to the miss of the evaluation
in terms of the accuracy of the EEG signal processing chain.

In Reference [45], a low-power SoC is presented for the continuous detection of seizure
onset in epilepsy patients. The proposed system continuously acquires the EEG signal from
18 electrodes and extracts the EEG features before sending them wirelessly to a central
device to predict the start of the seizure via a machine-learning classifier. The feature
extraction is done in the SoC to reduce 14× the power consumption by reducing the rate of
wireless EEG data transmission. The SoC consumes approximately 9 J per feature vector
per one channel. Although the extracted features are classified in a standard laptop which
is a power consuming, the proposed system achieved a very good performance in terms of
the classification accuracy, the power consumption and even in c time consumption. These
performances can be easily enhanced by implementing the classification block based on an
embedded processor, which allows patients to move freely without any constraints.

2.4.3. EBCI Based on Hardware/Software Architecture

The HW/SW architecture consists of combining both hardware and software com-
ponents with respect to the embedded system and operating a co-simulation around the
FPGA-based processor architecture to meet the timing constraints, which cannot be sat-
isfied by the software solution. According to this design methodology, the critical blocks
of the EEG signal processing chain are implemented using the HDL languages and the
non-critical blocks are kept in HLL language. This approach allows us to get more flexibility,
while it decreases the EEG signal processing run-time, and even the power consumption.

For example, in Reference [23], Belwafi et al. proposed an efficient HW/SW architec-
ture integrating the entire EEG signal processing chain. In this EBCI system, the artefacts
removal block, which is time consuming, is exported as hardware accelerators. The re-
maining blocks are developed as an embedded software running on an embedded Nios-II
soft-core processor. The same team proposed a HW/SW architecture to detect motor
imagery signal using a dynamic filter based on WOLA technique [64]. The EBCI system
performs fast classification within a time delay of 0.430 s/trial, achieving an average accu-
racy of 76.80% according to an offline approach and 80.25% using our own recording. The
estimated power consumption of the proposed architecture is approximately 0.7 W.

3. Challenges and Future Research Directions for EBCI Systems

Our vision of BCI developments that might emerge in the next 10–20 years includes
a fully customized, low power, and real-time embedded BCI system. The ECBI system
will be mounted on the scalp allowing in the same time to acquire the EEG signal, derived
from thousands of neurons, process, and to analyze the brain activities in order to send the
decision to the practitioner or the EBCI’s user. Figure 4 shows an overview of the future of
the BCI systems.

Figure 4. The main application domain of BCI [11].
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The advancement in the development of the acquisition BCI, such as NAUTILUS
PRO from G.tech company, OpenBCI, and Emotive headset, allows us today to acquire
the EEG signals using dry electrodes and send them wireless to a base station for further
processing. In Reference [22], Rifai et al. proposed a hybrid BCI which senses a combination
classification of mental task, SSVEP, and eyes closed detection using two EEG channels.
The brain activities are acquired, through an embedded platform based on Atmega128
microcontroller, and sent to a computer to treat and classify them. The vision of the future
BCI systems becomes too easy today, mainly with the existence of the diversity open-source
library that allow for easy implementation of the EEG signal processing algorithms. In
this respect, as any other expanding domains, as well as with the existing convenient
infrastructures, the focus of the BCI community will go in the coming two decades to the
embedded implementation of the BCI systems.

The embedded implementation of the BCI systems surely will go faster with the ad-
vancement and the capabilities of the existing embedded platforms. A first proof of concept
prototype is usually validated on a desktop computer, possibly using a programming
language with features that facilitates early prototyping, such as MATLAB, and relies on
the emulation of external interfaces [82]. If this initial prototype does not meet its functional
requirements, the developer must iterate and modify the application, possibly changing its
data types, applying code transformations, and if any refactoring codes to meet the desired
requirements. This process is guided by developers knowledge about the impact of these
modifications on the final embedded BCI version. Once the prototype is validated on a
Desktop computer, the embedded implementation becomes much easier and it remains to
explore or identify the appropriate architecture of the EBCI system. In order to simplify
this review, we have divided the embedded implementation of the BCI system according
to three criteria which represent the keywords to select the appropriate architecture of the
EBCI systems.

Some considerations about the limitations and challenges related to the BCI usage
and applications are revealed even before moving to the embedded implementation of BCI
technology [10,83]. Such limitations we found are:

• Inaccuracy of the BCI in terms of prediction or classifying brain signals.
• The artifacts and outliers that can limit its usability and the interpretability of the

extracted features which can be noise-affected due to the low signal-to-noise ratio
characterizing the EEG signals.

• Limited ability to read brain signals for those BCIs placed outside the skull.
• Number of ethical issues due to reading people’s inner thoughts [83].
• The security of personal data not being guaranteed against attackers or intruders [83].
• In some cases, requirement for drastic surgery.

3.1. Pure Software Architecture

This alternative defines the software architecture as a high level abstraction with an
embedded infrastructure within which BCI application is deployed and executed [84]. For
example, in Reference [42], an embedded BCI system is proposed for driver drowsiness
detection. The EEG signal processing algorithm are coded using C/C++ language and
implemented within STM32 platform based on an embedded ARM processor. In Refer-
ence [14], an EBCI system is proposed based on iPhone to control a wheelchair. An iOS
application is developed and integrated with the iPhone to process the EEG signal and
generate the control signals of the wheelchair. In this respect, the EBCI system can be a
pure software architecture but implemented on an embedded platform. Figure 5 shows
the general layers of the EBCI system based on a software architecture. The components
at the lowest layers talk directly to the hardware. The top-most layer is aptly called the
application layer as it implements the device’s highest level logic and glues together the
rest of the components and layers. This solution remains the appropriate alternative for
the EBCI systems that do not have timing constraints. Furthermore, the pure software
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architecture allows a rapid virtual prototyping and implements the application within a
reasonable time and cost [64].

Figure 5. Layers of the EBCI based on software architecture.

The EEG signal processing requires advanced algorithms to filter, extract, and classify
trials, where often these algorithms are based on complex mathematical operations. For this
reason, at the beginning, the implementation of the EBCI system based on a pure software
architecture, within an embedded microcontroller, was too hard and required a huge time
to propose a virtual prototype of BCI applications. Today, by dint of the spread of the
open source library, it becomes easy to design and deploy EEG signal processing, feature
extraction techniques, and intelligent machine-learned onto resource constrained platforms
and small single board computers, like FPGA, Raspberry Pi, Arduino, etc. The deployed
signal processing chain run locally, without requiring a network connection and without
relying on servers in the cloud. As an example of open-source libraries , we found GNU
Scientific Library (GSL), CBLAS, ATLAS, OpenCL, OpenCV, SHARK, MLPACK, etc. For
instance , Shark is a fast modular library, and it has overwhelming support for supervised
learning algorithms, such as linear regression, neural networks, clustering, k-means, etc.
It also includes the functionality of linear algebra and numerical optimization. These are
key mathematical functions or areas that are very important when performing the EEG
signals processing. The prototype and data definitions of these functions are present in
their respective header files. To use these functions, it obviously requires compilation and
inclusion of the header file in the EEG signals processing chain.

The EEG signal processing chain is based on a deep learning or pattern recognition
algorithms. These algorithms are fields with intense computational requirements. Using
the software architecture, the EEG chain can be implemented on GPU occupied with Tensor
Cores. There are now enough cheap and embedded GPUs that almost everyone can afford a
GPU with Tensor Cores in an embedded platform. For example, there are many embedded
platforms occupied with GPU, such as Nvidia Jetson Xavier, Jetson Nano, Jetson TX2,
NVIDIA Clara AGX, etc. The GPU occupied with tensor flow can be a good choice to
implement EEG signal processing chain which is mainly based on matrices computation.
In fact, the tensor cores reduce the used cycles needed for the calculation , multiplication,
and addition operations, 16-fold in my example, for a 32 × 32 matrix, from 128 cycles
to 8 cycles. Furthermore, tensor cores reduce the reliance on repetitive shared memory
access, thus saving additional cycles for memory access. The prototyping time of the
EBCI based on GPU is reasonable compared to another alternative due to the offered Deep
learning frameworks, such as MXNet, PyTorch, TensorFlow, while others rely on GPU
accelerated libraries, such as cuDNN, NCCL, and DALI. The EBCI system based on GPU is
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very powerful and will surely enhance the consuming time but the power consumption of
these platforms is too high and can reach 350 W.

3.2. Hardware/Software Architecture

Co-design, HW/SW architecture, is based on the system specification, architectural
design, hardware, and software partition. The hardware and software components are
combined with respect to the embedded system and are operating a co-simulation around
the FPGA-based processor architecture to meet the timing constraints, which cannot be
satisfied with the software architecture. In this case, the critical function is exported as a
custom logic instruction approach and accelerator co-processor. Figure 6 shows the general
layers of the EBCI system based on hardware/software architecture. The components
at the lowest layers talk directly to the hardware. The top most layer is aptly called the
application layer as it implements the device’s highest level logic and glues together the
rest of the components and layers. The architecture of this solution is almost the same as
the previous one where the main difference is at the hardware layers which integrates new
IPs core. These cores implement the critical parts of the software layers, while profiting
from the advantages of the hardware implementation, which executes many instructions in
one clock signal instead of executing one instruction in one clock signal as the case of the
processor. Using this design methodology, the timing constraint will surely be improved
even the power consumption within an increase in the design complexity.

Figure 6. Layers of the EBCI based on hardware/software architecture.

The HW/SW architecture also offers the possibility us to use an open-source library,
such as the OpenCL, OpenCV, CBLAS, ATLAS, SHARK, MLPACK, etc. This architecture
allows us to get at the same time high throughput and low latency. In fact, it allows us to
achieve throughput using low-batch size and processes each input as soon as it is ready,
resulting in low latency in contrast to the pure software architecture which allows us to
get high throughput OR low latency. The pure SW architecture achieves throughput using
low-batch size and processes each input as soon as it is ready, resulting in low latency.
For example, Xilinx company offers the Vitis AI development environment allowing the
acceleration of AI inference on Xilinx hardware platforms. It consists of optimized IP cores,
tools, libraries, models, and example designs. It is designed with a high efficiency and
ease of use in mind to unleash the full potential of AI acceleration on Xilinx FPGAs and on
adaptive compute acceleration platforms (ACAPs). Figure 7 shows the flow to build and
design an EBCI system based on Xilinx platform according to the HW/SW architecture.
First, the Vitis AI toolchain is used to build the model in the host machine using the caffe,
Pytorch, and TensorFlow library. Second, a custom hardware platform is built using the
Vitis software platform to include the deep learning processing Unit IP and other kernels.
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In the Vitis AI release package, pre-built SD card images and Alve shells are included for
a quick start and an application development. Finally, developers can build executable
software which runs on the built hardware. The applications can be coded with C++ or
Python, which calls the Vitis AI Runtime and Vitis AI Library to load and run the compiled
model files.

Figure 7. EBCI flow based on Xilinx platforms [85].

3.3. Pure Hardware Architecture

Building an EBCI based on hardware architecture is a challenging task. Here, the
key design challenge is to build an extremely powerful system (in terms of the features
provided by the system so as to make it easy to use for EBCI users) at a very low power
consumption, a low EBCI cost and at the same time meeting all the timing constraints [86].
This alternative consists of implementing the complete EEG signal processing chain within
an FPGA using the Hardware description language (HDL) which is a specialized computer
language used to program electronic and digital logic circuits. The three common HDLs
are Verilog, VHDL, and SystemC. This approach can be used when the timing constraints
are very stringent, and it is impossible to respect it with the pure software architecture. The
time to obtain the prototype is highly important, and the cost of the design complexity and
the design time is significantly increased in comparison with the two previous alternatives.

In many ways, the choice of an application framework for use in an embedded plat-
form is the most important design decision, at least in the case of the embedded systems
with human users, such as mobile handsets. In fact, most contemporary users seem to ex-
hibit strong opinions about which application environment their chosen handset supports.

3.4. Evaluation Criteria of the Future EBCI Systems

In addition to guidelines, our survey also enabled us to identify a common classifica-
tion criterion that must be used to compare the EBCI systems. The suggested evaluation
criterion takes into consideration the suggested criteria defined in the introduction. So
far, the majority of the BCIs has been evaluated based on the accuracy criteria, which
computes the percentage of the trial classified correctly [31]. Information Transfer Rate
(ITR) is a general evaluation metric devised for BCI systems that determines the amount
of information that is conveyed by a system’s output [87].

ITR = L[plog2(p) + log2(N) + (1 − p)log2(
1 − p
N − 1

)], (1)

where L is the number of decisions per minute, and p is the accuracy of the decision made
for the N targets. The ITR is the appropriate criterion in the context of the evaluation of the
EBCI systems. It will be more suitable to add the criteria: Concentration (Cs), adaptability
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(Ad), power consumption (Pw), and the offline/online (O) in the ITR equation, where the
main objective is to easily compare between the future EBCI systems. The Ec is suggested
to evaluate the EBCI systems in the future by taking into consideration the predefined
criteria. Thus, the Ec represents the average bits of information contained in each selection.

Ec = αβγ
ITR

Pw
Nch

. (2)

Table 4 resumes the parameters of the the Equation (2). The weights of α, β, and γ are
defined logically in order to establish a comparison grid. The number of channels Nch is
integrated in the Ec evaluation criteria because this factor is too important, it differs from
one study to another, and has a significant weight in the power consumption of the EBCI
systems. An EBCI system outperforms better than other ones when it reaching a greater
value of Ec.

Table 4. Parameters of the evaluation criteria Ec.

Parameter Value Reason

ITR Computed according to the equation (Equation (1)).

The ITR takes into consideration the system accuracy
and the timing, which represent two criteria from the
predefined criteria and are important to evaluate the
EBCI systems.

α

=1/3, if the EBCI system is controlled by the evoked
potential signals. The EBCI system is more comfortable when it is

controlled by SP. Thus, we are given the highest weight
for the EBCI system controlled by SP.=2/3, if the EBCI system controlled by the spontaneous

signals (SP).

β

=1/3, if the EBCI system is static (same parameters for
all subjects).

The EBCI system is more accurate when the EBCI
parameters are defined for each subject. Thus, the
highest weight is given for the EBCI system toke in
consideration the inter-subject variability.=2/3, if the EBCI is adaptive.

γ

=1/3, if the EBCI system is checked and validated
according to the offline approach only. The accuracy of the EBCI system is validated according

to the online approach and is more reliable which
reflects the usefulness of the EBCI system.=2/3, if the EBCI system is checked and validated

according to the online approach.

Pw The measured power of the EBCI system. One of the important criteria to evaluate the EBCI
systems.

Nch
Number of channels that is used during the recording of
the brain signals.

The number of channels differ from one system to
another and has an effect on the runtime and the power
consumption. For this reason, it should be taken into
consideration during the comparison between EBCIs.

4. Conclusions

This paper is an attempt to summarize the last two decades of embedded Brain-
Computer Interface mostly because of the electroencephalography influence on these
systems. Numerous noninvasive EBCIs have been developed, described, and tested.
Noninvasive nature of the EEG-based BCIs made them the most popular BCI systems.
Their main purpose was to assist practitioner to analyze some pathological disorders
and to enable direct non-muscular communication for people with severe disabilities.
This resulted in issuing various inexpensive, consumer-grade headsets. Their application
potential is vast and ranges from clinical to home-entertainment applications. In this paper,
we have delimited our review in the application related to the functional substitution and
pathological disorder analysis only.

Six important criteria are defined to evaluate the existing EBCI systems and are repre-
sented as a unified ruler applied during our evaluation. The adaptability criterion allows
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for identification of the EBCI systems that have taken into consideration the inter-subject
variability. Concentration/simulation criteria permit to identify the more comfortable EBCI
systems. The runtime and the power consumption reflect the performance of the used
embedded platform. The last criterion is the validation approach which gives a glance
about the stability of the EBCI system and its use in the daily life. The existing EBCI
systems are evaluated according to these criteria and allow us to define a few indexes
to estimate the EBCI technology’s performance. Furthermore, we have discussed in the
future trends the design of the EBCI systems and the limitation and challenges related to
the design of EBCI.

In the future, we plan to perform a quantitative analysis of the optimization ap-
proaches for EBCI system using machine learning and deep learning algorithms.
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