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Abstract: This paper deals with the spectral estimation of sea wave elevation time series by means
of ARMA models. To start, the procedure to estimate the ARMA coefficients, based on the use of
the Prony’s method applied to the auto-covariance series, is presented. Afterwards, an analysis on
how the parameters involved in the ARMA reconstruction procedure—for example, the signal time
length, the number of poles and data used—affect the spectral estimates is carried out, providing
evidence on their effect on the accuracy of results. This allowed us to provide guidelines on how to
set these parameters in order to make the ARMA model as accurate as possible. The paper focuses
on mono-modal sea states. Nevertheless, examples also related to bi-modal sea states are discussed.

Keywords: sea waves monitoring; ARMA model; Prony method; spectral estimation

1. Introduction

Knowledge of the weather conditions in the context of marine engineering applications
is often a key point for structural safety, and also for people’s comfort in the case of ships
in navigation. In this context, it is very important to have a reliable estimation of the sea
spectrum because it has a significant influence on ship motion [1,2], but also on the forces
to which ships and offshore structures are subject [3]. Moreover, it constitutes the input of
the procedures for the estimation of the sea parameters which are then used for several
purposes such as fatigue lifetime estimation [3], or to avoid ship dynamic instabilities [4].
Consequently, different approaches were proposed in the literature to estimate the sea
features, starting from either onboard measurements (e.g., ship motion [5–9]) or time signals
of wave level. Taking into consideration the latter approach, on the one hand, it is possible
to successfully use non-parametric methods such as the Welch’s [10] and Thomson’s [11]
methods for estimating sea spectrum [12–14]. On the other hand, parametric methods
could also be employed, with the consequent advantage of obtaining a model of the sea
spectrum, which can be then used for advanced predictions of sea actions on ships and
structures. The availability of a model able to predict the sea state is essential not only in
the fields of navigation, ship safety and for the estimation of the forces acting on offshore
structures, but also, as an example, in the field of the wave energy converters, where the
prediction of the wave elevation allows for the optimization of the control action, leading
in turn to the possibility of maximizing the power extraction [15].

Among parametric methods, here the use of Auto-Regressive Moving Average (ARMA)
models is taken into consideration because it was already evidenced in the literature that it
can be fruitfully employed for output-only identification processes in both sea spectrum
estimation and, more generally, in structural dynamics [16].

Considering the specific problem related to sea wave spectrum estimation, Spanos [17]
and Mandal et al. [18] showed that ARMA models can be successfully applied and provided
examples, mainly related to mono-modal sea state, of their application. Nevertheless,
some points are still missing in the literature about the use of ARMA models in sea
spectral reconstruction. First of all, since the Auto-regressive (AR) and Moving Average
(MA) parts of the ARMA model are usually estimated with a two-step procedure, also
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involving numerical minimisations, a statistical analysis of the results that can be obtained
is important for comprehending the actual potentiality of the ARMA approach in the
context of sea estimation. Currently, such an analysis is missing. This in turn implies that
no specific analysis can be found related to the influence of the different input parameters,
set by the user at the beginning of the identification procedure, on the differences between
the reference and the reconstructed sea power spectral estimate. Indeed, one of the main
drawbacks related to the use of such models is related to the fact that their estimation
procedure requires the setting of some free parameters that can significantly affect the
quality of the estimated model. In the literature, no clear indications are given about how
to choose the values of these input parameters and only generic indications are provided.
In this context, this paper will address some of these points in order to clarify strengths and
drawbacks of the considered identification approach, also providing guidelines for setting
some of the key parameters of the procedure such as the number of samples that can be
used, given a certain time series, and the number of the poles of the ARMA model, which
are shown to strongly affect the effectiveness of the power spectral density reconstruction.

To this purpose, the paper is organised into nine sections where Sections 2–4 are related
to the methods on which the proposed estimation procedure is based, Section 5 describes
the method used to simulate the data for testing this approach, while Sections 6–8 are aimed
at presenting the results and at their discussion. In particular, the paper briefly recalls in
Section 2 the model assumed for the description of the sea wave elevation time series, which
is here considered as a stochastic process, and provides some useful mathematical relations
needed for the subsequent estimates of the model parameters. The estimation procedure is
then described in Section 3; it combines different established techniques such as the Prony’s
and the Shanks’ method, applied to the auto-covariance of the time series and used together
to achieve the best results in terms of parameter accuracy. Despite that the used techniques
are not new, they are recalled in Section 3 to summarize the whole estimation procedure
and to let the reader understand the reasons behind the choice of the selected algorithms
and the subsequent analysis of Section 4, related to the choice of the parameters involved
in the estimation procedure. Section 5 explains how the data of the sea wave elevation and
the sea power spectral density are simulated for given sea state conditions. Then, Section 6
proposes an analysis of the effect of the parameters involved in the proposed estimation
procedure on the estimate accuracy. Particularly, the attention is focused on the effect of
the number of auto-covariance samples used for the estimation process on the accuracy of
the results, also in relation to the whole length of the time series, on the effect of the initial
number of poles selected for the ARMA model and on how to improve the reliability of
the estimates in the case of short-time series. All the analyses presented in Section 6 are
related mono-modal sea states, where only the wind contribution is considered. Section 7
applies instead the procedure to different mono-modal sea states and to a case of bi-modal
sea where both the wind and swell contributions are present. Despite that no detailed
analysis is proposed here about this complex sea condition, the method is shown to be
promising and worthy of further investigation. Finally, Section 8 provides guidelines on
how to set the main parameters of the procedure in order to maximise the accuracy of the
spectral reconstruction.

2. ARMA Modelling of the Wave Elevation Time Series

The wave elevation time series x(n) is considered as a stationary real valued (as all
the other time signals considered in the following), zero-mean stochastic process. For the
Wold’s decomposition theorem, any discrete stationary stochastic process can be expressed
as the sum of two uncorrelated processes: one deterministic and another stochastic. There-
fore, it is possible to model the time series x(n) as a process generated by the filtering of
white noise w(n) with a Linear-Shift-Invariant (LSI) filter, having unit sample response
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h(n). In the considered case, the LSI filter in the z-domain is represented as a stable, causal
rational function with p poles and q zeros (with p ≥ q):

H(z) =
Bq(z)
Ap(z)

=
∑

q
i=0 biz−i

1 + ∑
p
i=1 aiz−i

=
∑

q
i=0 biz−i

∏
p
i=1

(
1− λiz−i

) (1)

where H(z) is the z-transform of h(n) and λi are the poles of the LSI system and are the
solutions of the polynomial equation 1 + ∑

p
i=1 aiz−i = 0.

The random processes x(n) and w(n) are thus linked by the following linear difference
equation with constant coefficients:

x(n) = −
p

∑
i=1

aix(n− i) +
q

∑
i=0

biw(n− i) (2)

where the first summation represents the AR and the second the MA parts of the ARMA
model assumed to describe the stochastic process x(n).

Given the input-output relation between x(n) and w(n), the time series x(n) can
be expressed as the convolution between the driving input w(n) and the unit sample
response h(n):

x(n) = w(n)~ h(n) =
∞

∑
i=−∞

h(i)w(n− i) (3)

where ~ is the convolution operator.
The cross-covariance between the input and output can be then expressed as:

rxw(k) = E{w(n)x(n + k)} = E

{
∞

∑
i=−∞

h(i)w(n− i + k)w(n)

}
=

∞

∑
i=−∞

h(i)rw(k− i) = h(k)~ rw(k) (4)

where E{·} indicates the expected value, w(n) is assumed wide sense stationary and rw is
the auto-covariance of the input. Analogously, the cross-covariance rwx can be derived as:

rwx(k) = h(−k)~ rw(k) (5)

Finally, using Equations (3)–(5), the auto-covariance of the output results:

rx(k) = E{x(n)x(n + k)} = E

{
x(n + k)

∞

∑
i=−∞

h(i)w(n− i)

}
=

∞

∑
i=−∞

h(i)rxw(k + i) = rw(k)~ h(k)~ h(−k) (6)

Noting that h(k)~ h(−k) can be also seen as the auto-covariance of the unit sample
response h(n) and that the auto-covariance of the driving input can be expressed as the
variance σ2

w of the stochastic process w(n) multiplied by the unit sample [19], the auto-
covariance of the process x(n) of Equation (6) can be also expressed as a scaled version of
the auto-covariance, rh(n), of h(n):

rx(k) = σ2
wrh(k) (7)

The power spectral estimate Sx of x(n) can be finally obtained from the z-transform of
Equation (7), that can be expressed, using Equation (1), as:

Sx(z) = σ2
wH(z)H

(
z−1
)
= σ2

w
Bq(z)Bq

(
z−1)

Ap(z)Ap(z−1)
(8)
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3. ARMA Model Estimation Method

With the aim of estimating the model parameters to have a spectral reconstruction
of the wave signal, it is convenient to manipulate Equation (2), multiplying both sides by
x(n− k) and taking the expected values:

E{x(n)x(n− k)}+
p

∑
i=1

aiE{x(n− i)x(n− k)} =
q

∑
i=0

biE{w(n− i)x(n− k)} (9)

using Equation (5) and recalling that h(n) is assumed to be causal (i.e., h(n) = 0 for n < 0),
Equation (9) can be reduced to:

rx(k) +
p

∑
i=1

airx(k− i) = σ2
w

q

∑
i=k

bih(i− k) (10)

Then, calling cq(k) = ∑
q−k
i=0 bi+kh(i) and noting that the right-hand side of Equation (9)

is equal to zero for k > q, Equation (10) becomes:

rx(k) +
p

∑
i=1

airx(k− i) =

{
σ2

wcq(k) 0 ≤ k ≤ q
0 k > q

(11)

Equation (11) are the Yule Walker equations of the ARMA process of Equation (2).
Looking at their expression, it is possible to notice that the second set of equations (i.e., those
for k > q) can be used to solve the linear problem related to the estimation of the AR coeffi-
cients ai. This procedure is referred to as the Modified Yule Walker Method (MYW) [20]
and uses the unbiased sample correlation coefficients as estimates of the auto-covariance rx:

rx(k) '
1

N − k

N

∑
i=k+1

xixi−k (12)

where N is the total number of samples of x(n). However, in order to find the best fit of
the AR parameters in the least square sense and to improve the MYW estimates, one of
the best procedures is to apply the Prony’s method to the auto-covariance function of the
stochastic process x(n) [21–23].

As for the MA parameters, a better approach with respect to Prony’s method is that
suggested by Shanks [24], which allows finding the MA coefficients in a least square sense
as well. Therefore, a two-step procedure is herein followed to find the ARMA parameters.

3.1. Prony Based Estimation of the AR Parameters

Equation (7) expresses the auto-covariance of the stochastic process x(n) as a scaled
version of the auto-covariance of the unit sample response h(n). Since h(n) is a causal
sequence that can be expressed as a sum of non-increasing exponentials, the causal part
of its auto-covariance function can also be expressed as a sum of damped exponentials
with the same set of poles [25,26]. Therefore, recalling Equations (1) and (7), it is possible
to write:

rx(k) =
p

∑
i=1

αi exp(λik) k > q (13)

Recalling that the model of the time series assumed by the Prony’s method [27] has
the same form of the auto-covariance of Equation (13), it is possible to estimate the AR
coefficients by deriving the poles λi applying the Prony’s method to the auto-covariance
sequence rx [22] and solving for β, with a least square approach, the following problem:

[Rx]β = −
~
Rx (14)
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where:

[Rx] =


rx(1) rx(2) · · · rx(p)
rx(2) rx(3) · · · rx(p + 1)

...
...

. . .
...

rx(k0) rx(k0 + 1) · · · rx(p + k0)

 (15)

~
Rx =

 rx(p + 1)
...

rx(p + k0 + 1)

, β =

 β0
...

βp−1

 (16)

where k0 is an integer equal to or higher than p (usually, k0 > p to have more equations
than unknowns) and βi are the coefficients of the polynomial equations having the roots
equal to

β0 + β1λ + β2λ2 + . . . + βpλp = 0, with βp = 1 (17)

It is noticed that, sometimes, the auto-covariance for k = 0 is not used in Equation (15)
(as done here) due to the possible contribution of additional noise to the signal [28]. It is
also noticed that the number of auto-covariance samples used to write Equation (14) will
be referred to as ϕ from here on, where ϕ = p + k0 + 1 ≥ 2p + 1.

Finally, the ARMA poles λi can be found solving Equation (14) for β and then solving
Equation (17), obtaining the roots of the polynomial equation. The AR coefficients can be
then estimated using Equation (1) and the αi values can be found using Equation (13).

3.2. MA Coefficients and Signal Spectral Estimation

The Shanks’ method for the MA coefficient estimation is based on the description of
the one-sided auto-covariance sequence rx as the unit sample response of a linear system
Hr(z), whose poles are those of the ARMA model (see Equation (13)):

Hr(z) =
Nq(z)
Ap(z)

(18)

where Nq(z) = n1z−1 + n2z−2 + . . . + nqz−q.
Therefore, with the aim of estimating the numerator coefficients of Equation (18), it

is possible to minimize the error e(n) between the auto-covariance rx(k) and its estimate
r̂x(k) obtained using Equation (18):

e(k) = rx(k)− r̂x(k) = rx(k)−
q

∑
i=1

nihra(k− i) (19)

where hra is the impulse response of the function 1/Ap(z).
The problem thus reduces to the least square solution with respect to n of the problem

[hr]n = r0:
hra(0) 0 · · · 0
hra(1) hra(0) · · · 0

...
...

. . .
...

hra(ϕ− 1) hra(ϕ− 2) · · · hra(ϕ− q)


 n1

...
nq

 =


rx(1)
rx(2)

...
rx(ϕ)

 (20)

Once that Nq(z) is derived, the power spectral estimate of x(n) can be expressed,
using Equation (18), as:

Sx(z) =
Nq(z)
Ap(z)

+ rx(0) +
Nq
(
z−1)

Ap(z−1)
=

Nq(z)Ap
(
z−1)+ rx(0)Ap(z)Ap

(
z−1)+ Nq

(
z−1)Ap(z)

Ap(z)Ap(z−1)
(21)

Finally, the MA coefficients can be estimated using Equations (8) and (21).
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4. Setting the ARMA Estimation Procedure: The Free Parameter Selection

Section 2 explained how the stochastic process related to the sea wave elevation
can be described by an ARMA model and Section 3 proposed a procedure, based on the
auto-covariance estimates of the time series, to derive the parameters of the model and
thus allowing us to derive, using Equation (21), the sea spectral estimates. However, to
apply the ARMA estimation procedure, the values of some free parameters have to be
defined since they affect the quality of the spectral estimates. Therefore, the involved free
parameters have to be properly set, as described in Sections 4.1 and 4.2.

4.1. AR Order Selection

The first problem to be addressed is related to the choice of the unknown p order
of the AR model of the ARMA process. Several studies show that increasing the AR
order improves the effectiveness of the various available algorithms [29,30]. Moreover,
Friedlander and Porat [31] showed that, since the AR problem (i.e., that related to the AR
part of the ARMA model) can be seen as a least square predictor of an AR process on the
auto-covariance sequence, increasing the p order leads to more accurate estimates and that
the poles of the actual AR model are a subset of those of the higher order predictor p̂.

In order to set the value of the increased order p̂ of the AR problem, several criteria can
be used. Among them, the well-known Akaike Information Criterion [32] (AIC) is used here,
where the order is chosen as the value which minimizes the following expression [31,33]:

AIC = 2p + ϕ ln
er

ϕ− p
(22)

where er = ∑
ϕ
k=1

[
rx(k)−∑

p
i=1 αi exp(λik)

]2
.

Once the increased-order AR model is derived using the procedure of Section 3.1, only
the poles that fit the main signal components have to be selected, discarding those mainly
related to the fit of the noise. This procedure can be carried out following an energetic
criterion. Knowing the poles λi, it is possible to factorise the z-transform of Equation (13)
into first, Li(z), and second, Mi(z), order contributions:

Li =
F1,iz−1

1 + f1,iz−1 , Mi =
S1,iz−1 + S2,iz−2

1 + s1,iz−1 + s2,iz−2 (23)

If Li(z) or Mi(z) are found to be unstable, they can be stabilized by reflecting the
unstable roots into the unit circle [34].

Then, the energy associated to each system is calculated as:

e fi
=

1
2πj

∮
z−1

∣∣∣∣∣ F1,iz−1

1 + f1,iz−1

∣∣∣∣∣
2

dz, esi =
1

2πj

∮
z−1

∣∣∣∣∣ S1,iz−1 + S2,iz−2

1 + s1,iz−1 + s2,iz−2

∣∣∣∣∣
2

dz (24)

Finally, only the systems with the highest energy are considered (i.e., those whose
energy is higher than a fixed threshold level tr, see Section 8).

4.2. Number of Equations of the Least-Square Problems

The second parameter that has to be defined is the number of equations used to solve
the minimisation problems. Indeed, the estimates of the ARMA parameters are based on the
least square solution of the two problems of Equations (14) and (20). Therefore, the value of
the auto-covariance samples used in the procedure, ϕ, constrains the number of equations
used to define the problems which in turn affects the accuracy of the results. Particularly,
an increase of the equations is expected to improve the quality of the results. However, it
is noticed that since the problem involves the auto-covariance estimates obtained using
Equation (12), ϕ cannot be increased indefinitely. Indeed, for large lags k, the variance of
the auto-covariance estimates increases also due to a decrease of the denominator N − k in
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Equation (12) [19,35,36], leading to an annulment of the beneficial effect of the increase of
the number of equations.

Further details about how to choose the best ϕ value are given in Section 6.

5. Case-Studies: Wave Elevation Time Series Generation and Spectral Description

The algorithm described in Section 3 for the spectral estimation of the sea wave time
series, based on an ARMA model of the phenomenon, has been tested on simulated signals
representing the sea wave elevation in different sea conditions. To generate these signals,
the reference sea power spectral density (PSD) has been defined at first and then used to
generate the signal time histories x(n).

In general, the sea state can be described by a combination of wind sea and uncorre-
lated swell and its PSD, S(ω), can be obtained joining the two contributions [37,38]:

S(ω) = Swind(ω) + Sswell(ω) (25)

where ω is the circular frequency and the spectral wind, Swind(ω), and swell, Sswell(ω),
components can be modelled by the JONSWAP spectrum SJ(ω) [37]:

SJ(ω) = AγSPM(ω)γ
exp (−0.5(

ω−ωp
σωp )

2
)

(26)

In Equation (26) γ is the peak enhancement factor and Aγ is the normalizing factor
expressed as Aγ = 1− 0.287 ln(γ). Given the wave peak period Tp, ωp = 2π/Tp is the
peak frequency and σ is the spectral width parameter and is equal to 0.07 if ω ≤ ωp,
0.09 otherwise. In the event that no information about Tp is available, it can be expressed,
in the range of γ between 1 and 7, as a function of the wave mean period Tm [37]:

Tm

Tp
= C + Dγ + cγ2 + dγ3 (27)

with C = 0.7303, D = 0.04936, c= −0.006556 and d = 0.000361.
Finally, SPM in Equation (26) is the Pierson–Moskowitz spectrum [39]:

SPM(ω) =
5
16

H2
s ω4

pω−5 exp

(
−5

4

(
ω

ωp

)−4
)

(28)

where Hs is the significant wave height.
Given the sea PSD, S(ω), the random wave elevation time series x(n) can be derived

as the superposition of M equally spaced harmonic components at frequencies ωi = i∆ω,
with random phase ϕi [40]:

x(n) =
M

∑
i=1

√
2S(ωi)∆ωi cos(ωin∆t + ϕi) (29)

where ∆t is the sampling time, defined as the inverse of the sampling frequency fsamp
expressed in Hertz (i.e., ∆t = 1/ fsamp).

The data used in the following analyses are mainly related to sea state conditions
that can be described by single peak wave spectra related to sea wind. Nevertheless, the
method for the sea PSD reconstruction has been applied also to double peak wave spectra
due to both wind and swell to show the effectiveness and reliability of the procedure.
The simulated sea conditions were chosen to represent different sea states from slight to
rough, mono and bi-modal. In the following sections the analyses will be carried out on
three case-studies. The values of the parameters used for the simulations are gathered in
Table 1. Further information about the sampling frequency, the frequency resolution, the
length of the time series and the value of the added noise will be specified each time in the



Sensors 2021, 21, 4280 8 of 24

next sections since they are varied in the different simulations to show their effect on the
accuracy of the spectral estimates.

Table 1. Sea state parameters used for the wave elevation simulations.

Test Signal
Type

Wind Swell

Hs
[m]

Tm
[s]

Tp
[s]

γ
[-]

Hs
[m]

Tm
[s]

Tp
[s]

γ
[-]

1 3.00 12.00 15.51 1.00 - - - -
2 1.00 4.00 4.82 3.00 - - - -
3 2.00 5.00 6.11 2.50 2.00 16.00 18.32 6.50

6. Sea Spectral Estimation: Results and Discussion

In the estimation process of an ARMA model starting from time series, in addition
to the proper choice of the available algorithms and of the procedure to be followed to
estimate the parameters among all those available, great attention must be paid on how to
properly apply the selected method. Indeed, also in the case considered here, and despite
that the selected method—described in Section 3—is based on well-known algorithms, their
effectiveness when used together in estimating ARMA models able to accurately describe
the sea frequency behaviour strongly depends on the choice of the free parameters.

Even if the parameter selection procedure is fundamental for the achievement of good
spectral estimates, no detailed analyses are available in the literature in the field of sea
spectral reconstruction. In light of this, this section aims at explaining how to choose
the parameters (i.e., the ARMA order p̂ and the number of auto-covariance samples, ϕ)
highlighting the limits of both the procedures presented in Section 4 and the effect of the
various parameters on the accuracy of the sea spectral estimates. Moreover, it will be
shown that also the choice related to the global time length T (i.e., T = N∆t) of the wave
elevation time signal x is a parameter to take into account when applying the estimation
procedure since it affects both the accuracy of the spectral estimates and the choice of the
free parameters.

In order to analyse the accuracy of the method in estimating the sea spectral behaviour
as a function of the free parameters, the index Y has been used. It represents the difference
between the reconstructed Sx, see Equation (21), and the actual JONSWAP spectrum S, see
Equation (25), and it is defined as:

Y =

√√√√∑M
i=1(Sx (ωi)− S(ωi))

2

∑M
i=1(S(ωi))

2 (30)

The Y value is evaluated in a frequency range between ω1=10−3 rad/s and ωM = π rad/s,
with a frequency resolution of ∆ω=10−3 rad/s. These bounds allow including all the main
frequency components of the wave elevation signal.

The following analyses will be thus based on the value of the index Y obtained by
applying the method using different values of the free parameters. Before discussing in
detail the results of the analyses, it is important to evidence the meaning of Y in terms of
goodness of fit of the sea spectral reconstruction.

To this purpose, Figure 1 depicts some examples of comparisons in terms of PSD
between Sx and S in the case of test signal 1 in Table 1. The curves are aimed at showing
the meaning of a given percentage Y error, and thus the information about the value of the
free parameters is not relevant at this stage (i.e., the same Y can be obtained with different
combinations of the free parameters). Figure 1a shows the PSD reconstruction associated
with low values of Y expressed in percentage (i.e., Y ≤ 0.1) while Figure 1b shows the
PSDs associated with larger values of Y (i.e., Y > 0.1). Obviously, the lower the value of Y,
the better the PSD reconstruction. However, the maximum admissible error on the spectral
reconstruction depends on the specific application.
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The analyses presented further in this section are related to sea state conditions
characterized just by the wind, and thus the considered spectra are mono-modal. The
sea parameters considered are those related to type 1 signal in Table 1. However, to
show the reliability of the outcomes and of the proposed procedure, also examples related
to a different mono-modal sea state and a bi-modal case, where both wind and swell
components are present, are discussed in Section 7.

Finally, it is worth mentioning that the proposed estimation procedure does not imply
a high computational cost, and that the processing time is of the same order of magnitude
of other competing approaches such as Welch’s and Thomson’s methods.

6.1. Effect of the Number of the Auto-Covariance Samples Used

The first parameter that has to be defined is the number of equations that can be used
to solve the least-square problems involved in the ARMA parameter estimation procedure.
Despite the increased AR order p̂ may seem the first and most important point to be
addressed, it strongly depends on the maximum number of useful information available,
given a certain time series x(n). To understand this point, some considerations about the
auto-covariance series have to be discussed.

As mentioned previously, the auto-covariance rx of the signal is modelled as a sum of
damped exponential components, each corresponding to one pole of the ARMA model
(see Equation (13)). Therefore, after some k lags, the value of the estimated auto-covariance
becomes low. Considering this aspect and recalling that the auto-covariance is estimated
on a limited number of samples (see Equation (12)), two factors must be taken into consid-
eration to judge the reliability of the estimated rx values: the unavoidable variance of the
estimated auto-covariance and, in real cases, the presence of electrical noise superimposed
to the physical signal provided by the transducer. Both these factors cause a scatter on the
auto-covariance values, which becomes more and more significant as k increases, when
the oscillations of the auto-covariance become low. Therefore, from the mentioned k-th
auto-covariance sample on, the reliability of the auto-covariance curve becomes low and
this makes its use for estimating the ARMA model improper. Thus, it is not enough to
avoid the use of very large lag values, as suggested in the literature, but it is fundamental to
estimate the length of the reliable part of the auto-covariance curve to the aim of estimating
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the ARMA model. This in turn has consequences on the number of equations that can be
written to solve the Prony’s and Shanks’ problems and thus on the maximum order p̂ of
the AR model.

One possible approach to select the proper length ϕ̂ of rx to use in the estimation
procedure, is to refer to the estimate of the auto-covariance of a white noise random process
with unitary standard deviation (i.e., σw = 1), acquired for N samples. The expected value
of its normalised auto-covariance ρ(k) (i.e., the auto-covariance divided by its value at the
null lag) is null for k > 0 and its standard deviation can be estimated as 1/

√
N. Therefore,

the auto-covariance samples of a white random process, for k 6= 0, are assumed to be
included in a range of ±3/

√
N with a confidence level of approximately 99%. Considering

now the normalised auto-covariance of x (i.e., ρx(k) = rx(k)/rx(0)), the correlation between
the signal and its shifted version can be thus considered as not significant if the ρx curve falls
continuously within a range defined as ±3/

√
N. Thus, in that region, the low oscillations

of ρx are considered as not useful for the estimation process. This implies that only the first
ϕ̂ samples of the auto-covariance rx will be used for the estimation of the ARMA model
because larger k values show a non-significant correlation level. Thus, ϕ̂ indicates the
number of auto-covariance lags ϕ (see Section 3.1) estimated using the ±3/

√
N range, that

has to be used to write Equations (14) and (20).
An example of the application of the proposed ϕ̂ selection procedure is shown in

Figure 2 for signals of type 1 in Table 1, sampled at 1 Hz for 3600 s (i.e., 1 h). In order
to give a reference of the theoretical shape of the signal auto-covariance, a sea-state of
type 1 has been simulated also considering a time length of 24 h with sampling frequency
equal to 1 Hz. Being this auto-covariance computed on a very large number of samples,
it can be considered as the reference since, for the amount of lags depicted in the figure,
the ratio k/N between the lag order and the total number of samples is considerably
low. Figure 2 compares the auto-covariance sequence of three different time-series with
the reference curve and with the corresponding ±3/

√
N range. It is possible to notice

that the auto-covariance sequences obtained for the three different simulations become
significantly different form each other when they are almost contained in the ±3/

√
N

range, highlighting the low reliability associated with these data. Instead, except for small
differences, the three curves follow the reference auto-covariance in the region of small lags
when the ρx values are not contained in the±3/

√
N allowing us to identify the reliable part

of the auto-covariance sequence. In this way it is possible to identify, for each time series,
the ϕ̂ number of samples that can be used in the spectral estimation procedure. Obviously,
the ϕ̂-th sample slightly changes simulation by simulation because of its associated scatter
(for the three time series of Figure 1 it is between 34 and 36). Nevertheless, this difference
has negligible effects on the quality of the ARMA model identification, because the first
and significant oscillations of ρx are properly described.

In order to show the importance of choosing the right number of auto-covariance
samples to be considered, and to show the reliability of the proposed selection procedure,
several simulations have been carried out, varying the number of the auto-covariance
samples used in the estimation process, ϕ. Particularly, 500 simulations for each selected ϕ
value have been performed. For each of them, the Y index has been evaluated to quantify
the accuracy of the estimation procedure. The results are presented in terms of box-plots
(showing the Y percentage values of the median, the minimum, the maximum and the
25-th and 75-th percentiles) and of the number of outliers obtained for different ϕ values,
starting from the minimum needed to solve Equation (14) (i.e., 2p̂ + 1). Figure 3 shows the
results obtained considering signals of type 1 of Table 1, acquired at a sampling frequency
of 1 Hz for 1 h. In this case, the increased number of poles p̂ has been set equal to 10
(details about the order selection procedure are given in Section 6.2) and q has been set
equal to p, without any loss of generality (the same will apply for all the examples further
in the paper). As mentioned previously, for this kind of sea wave elevation signal, the
typical ϕ̂ values are between 34 and 36 (see Figure 2).
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long and sampled at 1 Hz. The typical values of ϕ̂ are between 34 and 36.

Looking at Figure 3 it is interesting to notice that, when ϕ increases over approximately
ϕ̂, the value of Y slightly increases (a larger increase occurs for larger ϕ values, not shown
in the figure) because of the use of non-significant values of the auto-covariance sequence.
Further details and evidence of this aspect are also given in Section 6.2. In the same way,
the use of a number of samples that is too low (i.e., few samples more than those strictly
necessary for solving Equation (14)) leads to poor results. Indeed, the left part of Figure 3,
if compared to the area close to ϕ̂ ' 34, shows higher values of the median error Y, a
wider range between the maximum and the minimum and between the 25-th and 75-th
percentiles, as well as a higher number of outliers, evidencing a higher dispersion of
the estimation results and a greater variability of the spectral estimates. Therefore, the
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proposed approach to find ϕ̂ shows to be effective since the range of the best ϕ values in
the graph (i.e., the lowest Y values) is found to be close to the ϕ̂ values. Moreover, it is
noticed that slight changes of ϕ̂, such as those deriving from the use of different time series
(e.g., ϕ̂ ' 34− 36) does not imply considerable changes in the estimation performance,
but rather a slight increase (i.e., few lags) with respect to ϕ̂ slightly improves the estimates.
Thus, a slight increased value of ϕ̂ is suggested in most of the cases (see also Section 6.3 for
further details).

Therefore, this analysis evidences that it is essential to properly estimate the value
of ϕ to be used in the estimation procedure in order to improve the identification of the
ARMA model.

Other examples of the effect on the estimation accuracy of the choice of the number of
auto-covariance samples used for the estimation are given in the following sections, where
also the effect of the choice of the AR order and the length of the time series are considered.

6.2. Choice of the Increased AR Order p̂

Once the ϕ̂ value is defined, the other parameter that has to be defined is the AR order
of the model, p. As explained in Section 4.1, it is convenient to set the pole number to p̂ > p
and then, once the p̂ poles are identified, only the most significant ones in terms of energy
are selected. Here, in the most part of the simulations the energy threshold tr was set in
order to discard the poles associated with systems whose energy was lower than 10% of the
value associated with the system with the highest energy (see Sections 4.1 and 8 for further
details). In Section 4.1, the use of the AIC index is suggested to properly choose the p̂ value.
Nevertheless, there are cases in which the AIC index (as well as other indexes such as, for
example, the Bayesian Information Criterion [41]) does not provide clear indications about
how to set the value of p̂ (e.g., [31]). In these cases, such as the one considered here (see
Figure 4), the value of p̂ can be chosen as that allowing us to obtain a first stabilization in the
AIC value, even if the AIC is not at its minimum (e.g., it is still slightly decreasing). As an
example, Figure 4 shows the trend of the AIC index, normalized with respect to the number
of auto-covariance samples used in the estimation procedure, ϕ̂. In this case, the signal is
of type 1 in Table 1, acquired for 1 h at a sampling frequency of 1 Hz. The two curves are
related to two different time series for which a different ϕ̂ value was estimated. Looking at
the curves, it is evident that the AIC does not provide a clear indication of the optimal p̂
value to be used. However, it is possible to see that, after a first drop in correspondence of
p almost equal to 4, the curves stabilize. One possibility to set p̂ would be to choose a value
close to the maximum allowed for the considered time series (i.e., that allowing to write a
determined system in Equation (14) for the given ϕ̂). However, this reduces the number
of equations that can be written to solve the Equations (14) and (20), thus worsening the
results of the least square minimisation. Therefore, even if p̂ needs to be larger than p, its
value must be not too high and a balance between the number of equations that can be used
and the increase of the pole number has to be reached. One possible solution is to choose
the p̂ value inside the stabilized region which guarantees a good number of equations to
solve the least square problems and that is, at the same time, far from the first drop of the
normalized AIC. Therefore, p̂ is set to a value lower than the mentioned maximum, taking
care not to move too close to the stabilisation point. In this case, a good balance is a p̂ value
of about 10. Of course, this choice is subjective (e.g., the value could be 8 or 12 as well);
however, this does not modify the obtained results significantly.

To show the effect of the number of poles on the accuracy of the spectral estimates as
a function of the number of the auto-covariance samples ϕ, many simulations were carried
out on different wave elevation signals where both the sea state conditions and the length
of the time histories were changed. For sake of clarity, and coherently with the test case
study of the previous section (so that a straight comparison can be carried out), the results
related to 1 h signals of type 1, sampled at 1 Hz, are shown. The considered p̂ range in this
case was between 10 and 40 poles. The value of the maximum number of poles was set
equal to 40 in the simulations to also test values very far from the maximum achievable
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with the usual ϕ̂ in order to see its effect on the accuracy of the PSD estimates. The results
are summarized in Figure 5, which shows a comparison in terms of accuracy of the spectral
estimates, measured by the index Y, when the increased order of the poles is p̂ = 10, 20 and
40. In the figure, the trends of the median and the 75-th percentile values of Y associated to
each p̂ value are shown as functions of the value of ϕ. Comparing the curves in the figure,
it is evident that, at a given value of ϕ, the value of Y is lower for the lowest value of p̂ and
increasing p̂ makes the identification worse (higher values of Y), with the only exception of
the right part of the plot where the curves related to p̂ = 10 and 20 merge. Nevertheless,
this part of the plot is related to ϕ values providing results that are not satisfactory.
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auto−covariance samples used to write Equation (14) for p̂ = 10, 20 and 40. x is 3600 s long and
sampled at 1 Hz.

The use of a lower level of overestimation of p proves to provide better results because
of two main reasons: (i) the use of high values of p̂ obliges to employ auto-covariance
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samples in the lag range where the auto-covariance is low and (ii) for a given value of ϕ,
the number of equations used to solve the least square problems of Equations (14) and (20)
is larger for lower values of p̂.

Finally, it is worth highlighting that, as already shown in Section 6.1, the use of a
number of auto-covariance samples higher than ϕ̂ can significantly worsen the achievable
performance. Indeed, the curves in Figure 5 show an increase of the Y index for high
ϕ values.

6.3. Effect of the Length of the Time Series

So far, all the examples used to support the presented analyses were related to long
time histories, in particular 1 h time series were considered. Despite the proposed pro-
cedure and all the results are valid whichever signal is taken into account, it is worth
paying attention to the problems that can arise when short-time signals are considered and
showing the results that can be achieved in terms of accuracy of the estimated sea PSD.
Indeed, in these cases, problems can arise, making the use of the proposed procedure more
cumbersome. To this purpose, sea wave elevation signals of 30 and 10 min are analysed,
using a sea state of type 1 of Table 1, also to allow for a comparison with the already
presented results. The first point that has to be analysed is the auto-covariance behaviour
of the time series. Figures 6 and 7 present normalised auto-covariances ρx achieved using
x signals of 30 min and 10 min length, respectively. As mentioned in Section 6.1, the
auto-covariance plot allows us to select the reliable portion of the samples that have to
be used in the estimation procedure, since this allows for more accurate PSD estimates.
However, the identification of the ϕ̂ value using the ±3/

√
N can be not so straightforward

if the length of the time series decreases too much. Indeed, looking at Figure 6, it is possible
to notice that ρx for the 30 min signal, after entering the ±3/

√
N band, starts oscillating

and the amplitude of these oscillations increases as the lag increases. It can be also seen
that one of the curves in Figure 6 overcomes the upper threshold due to the large scatter.
Comparing Figures 2–6, it appears that this behaviour is instead not evident for the 1 h
time series. Actually, also in the case of long time series (e.g., 1 h long) the behaviour is
similar; however, it is related to higher lag values. This happens because, decreasing the
time length (e.g., from 1 h to 30 min), even if the ±3/

√
N bounds become larger, at the

same lag value the scatter associated with the auto-covariance of the short signal, is larger
compared to the case of long signals since the considered lag is closer to the tail of the
auto-covariance (i.e., higher k/N value).

Therefore, it is evident that, lowering the total number of samples, the auto-covariance
shows a larger scatter for a fixed lag value. This can become a problem in identifying
the significant portion of ρx. However, the important point for the application of the
method proposed to choose ϕ is to have the auto-covariance series within the ±3/

√
N

for a significant number of lags in order to recognize when the auto-covariance becomes
non-significant for the purpose of the ARMA identification. Looking at Figures 2 and 6,
it is easy to notice that this is verified for time signals of 1 h and 30 min. Therefore, the
procedure of Section 6.1 allows us to identify ϕ̂ values related to portions of the auto-
covariance series that are close to the reference auto-covariance curve, implying employing
a part of rx that is significant (i.e., ϕ̂ ' 25− 27 for 30 min signals, see Figure 6). However,
in the two cases, the identified value of ϕ̂ is different and in particular decreases from 1 h
to 30 min signals (i.e., from ϕ̂ ' 34− 36 to ϕ̂ ' 25− 27) because of the larger value of
±3/
√

N. This helps in avoiding using portions of the rx that are too affected by its scatter,
but in turn it limits the number of available points, and this has an effect on the achievable
identification performance, as described in Section 6.1. To show this effect and the accuracy
of the PSD estimates achievable with time histories of 30 min and 10 min, Figure 8 presents
the results in terms of box plots and number of outliers, as those of Figure 3 for series 1 h
long. Considering signals 30 min long, from Figure 8b it can be noticed that, as in the
previous case, the best results are achieved for a ϕ value close to ϕ̂. Moreover, even if the
quality of the reconstruction is lower reducing the time length (see Figures 3 and 8b), as
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expected, it is still satisfactory, which in turn means that 30 min is an acceptable time length
for a proper ARMA identification.
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If the length of the time signal is further decreased, for example to 10 min, the problems
discussed previously become more and more evident. Considering Figure 7, which shows
the auto-covariance for signals 10 min long, it is clear that it becomes difficult to clearly
identify a lag range after the first oscillations where the curve remains within the ±3/

√
N

range. Moreover, the four auto-covariance series are different even for small lag values
(e.g., at lag 15), because of the lower ratio between the lag value and the total amount of
samples of the original signal, meaning that the usable portion of the auto-covariance curve
is strongly decreased. Therefore, sometimes, it can occur that the criterium proposed to
find ϕ̂ leads to a very small number of usable lag values. In these cases, there are various
possibilities to manage the situation. One possibility is to use a small value for p̂. This case
is treated in Section 6.4, as well as the possibility to use an increased sampling frequency for
the time series x. The other possibility is to use a p̂ values that is usually fine for longer time
series (e.g., p̂ = 10) and accepting to increase ϕ to a value allowing to write a determined
(or slightly overdetermined) system for the solution of the Prony’s problem. This case is
treated in this section in order to compare the identification results when the time length of
x is changed. For example, Figure 7 shows that, in the case of 10 min signals in some cases
the ϕ̂ lag is around 24 while for some others the value of ϕ̂ can be around the 17-th lag. In
these latter cases, ϕ̂ is not enough for writing all the required equations in Equation (14)
with p̂ = 10. Therefore, the number of the auto-covariance points that has to be considered
must be increased at least up to 21. In order to show the effect of these problems on the
accuracy of the estimated PSD, Figure 8a presents the box plot for the signals 10 min long
with p̂ = 10. Since the observed phenomenon is always the same (i.e., sea state of type 1),
the choice of maintaining the p̂ value equal to the previous cases is reasonable. Figure 8a,
shows that increasing ϕ over 21 (i.e., the number of auto-covariance samples to be used for
having as many equations as the number of unknowns in Equation (14)), provides a very
slight decrease of the value Y and the number of outliers. Conversely, if the number of the
used auto-covariance samples increases over about 24, the value Y starts increasing due
to the fact that the added auto-covariance samples are already unreliable. Indeed, even
if using 26 lag samples (as an example) means to employ few unreliable auto-covariance
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samples, their number is not negligible compared to the total number of auto-covariance
samples used for the identification, thus turning out in a worsening of the procedure results.
Therefore, in the cases of short time series, it is not convenient to slightly increase ϕ̂ value,
as instead occurred in the case of long-time signals. Moreover, Figure 8a shows that the Y
results for 10 min are far from those achievable with either 30 or 60 min for all the possible
ϕ values.

As mentioned, other possible ways to deal with short-time series are: the use of a lower
number of poles p̂ and the increase the sampling frequency. These methods, explained in
the next section, will also allow to slightly improve the estimation accuracy.

6.4. Short-Time Series: Effect of the Number of Poles and the Sampling Frequency

The analyses of the previous section showed the problems that can arise when dealing
with short-time series, due to the scatter of the auto-covariance samples that occur even for
low lag values. One possibility to try to improve the achievable estimates is to reduce the
increased order p̂ of the AR problem. This would allow increasing the overdetermination
level of the least square problems of Equations (14) and (20) and thus to improve the
accuracy of the estimates. However, the increase of the poles used to solve the first step
of the estimation procedure will be lower than in the previous case (i.e., the difference
between p̂ and p will be lower). This choice can have consequences in the pole-selection
procedure based on the energetic criterion and also implies the risk of choosing a p̂ value
too close or even lower than p. In order to evaluate the effect of the order reduction on the
estimates, a new lower p̂ value has been selected for the 10 min long time series, following
the criterion described in Section 6.2. The trend of the normalized AIC index is shown in
Figure 9 for two different 10 min long time series. In this case the p̂ value must be close
to the first drop of the AIC value in order to be able to solve in the least square sense the
minimisation problem of Equation (14). Therefore, Figure 9 suggests in this case a value
of p̂ of about 5, though, as in the previous case, its interpretation is not straightforward.
With this value of p̂, new simulations have been carried out to evaluate the accuracy of
the obtained sea PSD estimates, which are shown in Figure 10b. In this case, in order to
allow for a straight comparison with the results related to the case where the sampling
frequency is increased (see further in this section), also some noise has been added to the
wave elevation signal. The signal-to-noise ratio has been set equal to 30 dB (assuming a
noise having flat power spectrum). Before analysing the results, it is worth mentioning
that the effect of an increased noise level does not affect significantly the results shown
for 30 min and 1 h time series as well as for 10 min, as mentioned further in this section,
mainly thanks to the use of auto-covariance series in the estimation process and to the
least square solution of the problems involved in the proposed procedure. Comparing
Figure 10a where p̂ = 10 to Figure 10b where p̂ = 5, and the signal-to-noise-ratio is the
same, it is evident that the results obtained using p̂ = 5 shows an improvement of the
accuracy of the spectral reconstruction of few percentage points (i.e., about 5%), though
the achieved results do not reach the accuracy values achievable with longer time series
(see Figures 3 and 8b).

Another possible way to improve the results achievable with short-time series is to
slightly increase the sampling frequency of the signal. In order to verify if this could
provide benefits, simulations have been carried out increasing the sampling frequency of
the original time sequence x. When the sampling frequency fsamp is increased, different
factors must be considered:

• in real cases, electrical noise is superimposed to the physical signal in the time sequence
x, and an increase of the sampling frequency turns into an increase of the noise power.
This implies a larger scatter associated to the auto-covariance sequence, especially
when its value is low. Therefore, this worsens the ARMA identification;

• on the other hand, a larger number of samples can be used to write Equation (14),
thus improving the least square solution, because, for the same lag value in the time
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domain (i.e., for the same k∆t), a larger number of lag samples is obtained due the
smaller value of ∆t;

• given the spectral content of the wave elevation signals (i.e., far below 1 Hz) and the
values of sampling frequency considered (i.e., 1 Hz), the expected improvement of
the auto-covariance estimates provided by an increase of the sampling frequency is
low. Indeed, according to [42], only a slight decrease of the auto-covariance scatter is
obtained increasing fsamp from 1 Hz.
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According to the above points, no large improvements can be obtained by increasing
fsamp. Simulations using fsamp = 2 Hz for the case of 10 min long signals, p̂ = 10 and noise
added (signal-to-noise ratio equal to 30 dB for fsamp = 1 Hz and to approximately 27 dB for
fsamp = 2 Hz, assuming noise with a flat power spectrum) confirmed this expectation. It is
noticed that is straightforward to adapt the procedure described in Section 3 to non-unitary
sampling frequency. Comparing Figure 10a,c, where only the sampling frequency changes,
the best performance obtained for the highest sampling frequency is slightly better than
that obtained with fsamp = 1. The main benefit provided by employing fsamp = 2 Hz is
related to the fact that changes in the number of lags used to write Equation (14) generate
less changes of the results (see the right part of plot (c)), compared to the case of 1 Hz.
Furthermore, as mentioned, comparing Figures 8a and 10a, it is evident that the noise does
not cause significant worsening of the ARMA identification because the two figures show
similar Y results, regardless of the presence of noise. Moreover, comparing Figure 10b,c, it
is clear that both the proposed strategies (i.e., decrease of p̂ and increase of fsamp) provide
the same slight performance improvement; thus, neither the use of one nor the other is
preferred. Finally, it is worth mentioning that use of the two strategies together leads to
further slight improvements (i.e., about 1 percentage point).

Finally, to summarize, this analysis evidenced that a decrease of the time length of x
(e.g., under 20 min) always implies a worsening of the model identification. Furthermore,
for signals x with short duration, the variance associated to ρx is significant compared to the
range ±3/

√
N even at low order lag values, thus making difficult the use of the proposed

criterion for the choice of ϕ̂. Therefore, the two proposed strategies can be applied to
slightly improve the estimation accuracy, that are to choose a low p̂ value or to slightly
increase the sampling frequency.

7. PSD Estimation Results for Different Sea Conditions

Finally, to show the reliability of the proposed procedure, some results are shown
for different mono-modal and bi-modal sea state conditions. In particular, sea states 2
and 3 of Table 1 have been considered and signals of 3600 s long, with p̂ = 10 and with
fsamp = 1 Hz have been simulated using the procedure of Section 5. The box plot of Y is
shown in Figure 11 for sea state 2. It is evident that the performance of the reconstruction
is not far from that obtained for sea state 1 using the same simulation parameters (see
Figure 3). Some reconstructed PSDs compared to the reference one are also provided in
Figure 12. The shown PSDs are related to Y values close to the median, 25-th percentile
and 75-th percentile values and are found using a number of auto-covariance samples
equal to ϕ̂. Finally, some identifications have been carried out for sea state 3 (bi-modal
sea state) using again the number of samples obtained applying the range ±3/

√
N for the

model identification process. The median value of Y resulted equal to approximately 13%,
while the 25-th and 75-th percentiles to approximately 10% and 17%, respectively, thus
evidencing a good match between the original and reconstructed PSD. Some reconstructed
PSDs are compared to the reference one in Figure 13, for Y values close to the median, 25-th
percentile and 75-th percentile values. Therefore, the proposed method and the suggested
procedures to set the parameters involved in the analysis show good results even when
different sea states are considered. Indeed, the method allows for achieving good sea PSD
reconstructions even though, especially in the case of bi-modal sea state, a deeper analysis
needs to be carried out and just a first analysis is presented.
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8. Guidelines 
The discussions presented in the previous sections showed the effect of the parame-

ters involved in the ARMA model estimation process on the accuracy and on the effec-
tiveness of the proposed approach when the frequency behaviour of sea wave elevation 
has to be estimated. The main parameters that have to be set are the number of poles of 
the increased order AR model, 𝑝̂, and the number of auto-covariance samples that can be 
used in the estimation process, 𝜑. These two parameters are shown to be strictly related 
and to significantly influence the effectiveness of the procedure. The analyses carried out 
allow for defining guidelines that can be followed to set the 𝑝̂ and 𝜑 value. They can be 
chosen as follows: 
• the value of 𝜑 can be estimated by plotting the normalised auto-covariance 𝜌௫ of 

the considered time series 𝑥(𝑛) and finding the lag for which its oscillations remain 
within a range ±3/√𝑁. It is also noticed that simulations suggest to increase of some 
samples the 𝜑 value obtained with the range ±3/√𝑁 because this slightly improves 
the spectral reconstruction. This latter consideration does not hold for short time se-
ries; 

• the value of 𝑝̂ has to be overestimated compared to 𝑝, that is unknown, however, it 
must not be increased excessively not to worsen the ARMA identification. To select 
a suitable value of 𝑝̂, the AIC index can be used and 𝑝̂ can be chosen as the value 
which allows to obtain a stabilization in the AIC value after the first drop, even if the 
AIC is not at its minimum, and at the same time to solve the Prony’s and Shanks’ 
problems in the least square sense. The simulations carried out showed that when 
the sea state is mono-modal, a reasonable value of 𝑝̂ can be about 10. Higher values 
showed to be useless. For short-time series, this value can be decreased to 5 allowing 
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8. Guidelines

The discussions presented in the previous sections showed the effect of the parameters
involved in the ARMA model estimation process on the accuracy and on the effectiveness
of the proposed approach when the frequency behaviour of sea wave elevation has to
be estimated. The main parameters that have to be set are the number of poles of the
increased order AR model, p̂, and the number of auto-covariance samples that can be used
in the estimation process, ϕ. These two parameters are shown to be strictly related and to
significantly influence the effectiveness of the procedure. The analyses carried out allow
for defining guidelines that can be followed to set the p̂ and ϕ value. They can be chosen
as follows:

• the value of ϕ can be estimated by plotting the normalised auto-covariance ρx of
the considered time series x(n) and finding the lag for which its oscillations remain
within a range ±3/

√
N. It is also noticed that simulations suggest to increase of

some samples the ϕ value obtained with the range ±3/
√

N because this slightly
improves the spectral reconstruction. This latter consideration does not hold for short
time series;

• the value of p̂ has to be overestimated compared to p, that is unknown, however, it
must not be increased excessively not to worsen the ARMA identification. To select a
suitable value of p̂, the AIC index can be used and p̂ can be chosen as the value which
allows to obtain a stabilization in the AIC value after the first drop, even if the AIC is
not at its minimum, and at the same time to solve the Prony’s and Shanks’ problems
in the least square sense. The simulations carried out showed that when the sea state
is mono-modal, a reasonable value of p̂ can be about 10. Higher values showed to
be useless. For short-time series, this value can be decreased to 5 allowing the use
of a reasonable number of auto-covariance samples in the minimisation procedure.
For bi-modal sea, few analyses on long time histories were carried out so far, which
showed similar results and suggested similar values of p̂. However, the procedure
described in Section 5 allows for simulating different sea states, making it possible to
have a more detailed estimate of the possible value of p̂ in case of given sea states.

• A slight increase of the sampling frequency provides little improvement in the estima-
tion accuracy when short time series are used.

• A final remark is related to the energy threshold tr used for the selection of the final
AR order of the ARMA model, starting from an increased AR order model, p̂. In these
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analyses, it was set equal to an energy level at least equal to a given percentage Pe of
the energy of the subsystem with the highest energy (see Equation (24)). Usually, in
these analyses, Pe was set to 10%. Therefore, the discarded poles were those associated
to systems whose energy was lower than 10% of the value associated to the system
with the highest energy. For mono-modal sea states, this choice often led to a final AR
order equal to 4. Nevertheless, it was found that lowering Pe to 5% does not generate
significant changes of the results for mono-modal sea state, while it provides benefits
in case of bi-modal sea state.

Finally, in light of these considerations, the whole spectral estimation procedure can
be summarised by the workflow depicted in Figure 14. In case of applications aimed
at continuous sea state monitoring, the values of the input parameters p̂ and tr can be
periodically checked and updated, following the abovementioned procedure.
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9. Conclusions

The paper proposes a procedure to estimate an ARMA model for the purpose of the
spectral reconstruction of wave elevation time series and to properly set the involved
parameters. Indeed, its main focus was on an analysis aiming at comprehending the
performance in terms of reconstruction accuracy when the identified ARMA model is used.
Specific focus has been given to three different parameters that must be set before carrying
out the identification and the spectral reconstruction: the global length of the signal x, the
number of poles p̂ to be initially assigned to the model to be estimated, and the number
of auto-covariance samples ϕ̂ to be employed for the identification procedure. The paper
proposes some guidelines to properly set these parameters in order to obtain the best
possible accuracy for a given time series.

Moreover, the analysis of Section 6 has shown that the total time length T of the signal
x is a critical parameter for a proper frequency reconstruction of the sea state. Indeed, for T
lower than 1800 s (i.e., 30 min), that corresponds to N equal to 1800 for fsamp = 1 Hz, the
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quality of the reconstruction worsens significantly even when optimal parameters are used.
Conversely, for larger T values the results are satisfactory, and the strategy proposed to find
the number of auto-covariance samples and the AR order works properly. When T is low,
an increase of the sampling frequency can lead to some benefits, even if the reconstruction
performance remains far from those achieved increasing T.

The main part of the analysis has been focused to mono-modal sea states, even if
preliminary analyses show good performances also on bi-modal sea states. A deeper insight
will be necessary in this case in order to understand how to take into consideration the
different decay rates of the different components of the auto-covariance function. Moreover,
the authors are currently studying some approaches to improve the spectral reconstruction
through ARMA models in case of signals of short duration. The paper demonstrated the
potentiality of the approach and the feasibility of its use in the field of sea state analysis
when the parameters involved in the estimation process are properly chosen. This justifies
future studies, currently in progress, on the comparison of the present approach with
other competing spectral estimation methods, presently investigated for the purpose of sea
spectral reconstruction.

Author Contributions: Conceptualization, M.B., G.B.R. and F.C.; methodology, M.B., G.B.R. and
F.C.; software, M.B.; validation, M.B. and F.C.; formal analysis, M.B. and G.B.R.; data curation, M.B.;
writing—original draft preparation, M.B.; writing—review and editing, M.B., G.B.R. and F.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gaglione, S.; Piscopo, V.; Scamardella, A. The overall motion induced interruptions as operability criterion for fishing vessels.

J. Mar. Sci. Technol. 2016, 21, 517–532. [CrossRef]
2. Scamardella, A.; Piscopo, V. Passenger ship seakeeping optimization by the Overall Motion Sickness Incidence. Ocean Eng. 2014,

76, 86–97. [CrossRef]
3. Böhm, M.; Kowalski, M. Fatigue life estimation of explosive cladded transition joints with the use of the spectral method for the

case of a random sea state. Mar. Struct. 2020, 71. [CrossRef]
4. IMO. Revised Guidance to the Master for Avoiding Dangerous Situations in Following and Quartering Seas; MSC.1/Circ.1228; Interna-

tional Maritime Organization: London, UK, 2007.
5. Nielsen, U.D. A concise account of techniques available for shipboard sea state estimation. Ocean Eng. 2017, 129, 352–362.

[CrossRef]
6. Montazeri, N.; Nielsen, U.D.; Juncher Jensen, J. Estimation of wind sea and swell using shipboard measurements—A refined

parametric modelling approach. Appl. Ocean Res. 2016, 54, 73–86. [CrossRef]
7. Iseki, T.; Ohtsu, K. Bayesian estimation of directional wave spectra based on ship motions. Control Eng. Pract. 2000, 8, 215–219.

[CrossRef]
8. Piscopo, V.; Scamardella, A.; Gaglione, S. A new wave spectrum resembling procedure based on ship motion analysis. Ocean Eng.

2020, 201, 107137. [CrossRef]
9. Pascoal, R.; Guedes Soares, C.; Sørensen, A.J. Ocean wave spectral estimation using vessel wave frequency motions. J. Offshore

Mech. Arct. Eng. 2007, 129, 90–96. [CrossRef]
10. Brandt, A. Noise and Vibration Analysis—Signal Analysis and Experimental Procedures, 2011th ed.; John Wiley and Sons: Chichester,

UK, 2011.
11. Percival, D.B.; Walden, A.T. Spectral Analysis for Univariate Time Series; Cambridge University Press: Cambridge, UK, 2020.
12. Rossi, G.B.; Crenna, F.; Piscopo, V.; Scamardella, A. Comparison of Spectrum Estimation Methods for the Accurate Evaluation of

Sea State Parameters. Sensors 2020, 20, 1416. [CrossRef]
13. Rossi, G.B.; Crenna, F.; Berardengo, M.; Piscopo, V.; Scamardella, A. Data processing for the accurate evaluation of combined

wind sea and swell spectra. In Proceedings of the 2020 IMEKO TC-19 International Workshop on Metrology for the Sea, Naples,
Italy, 5–7 October 2020; pp. 208–212.

http://doi.org/10.1007/s00773-016-0373-2
http://doi.org/10.1016/j.oceaneng.2013.12.005
http://doi.org/10.1016/j.marstruc.2020.102739
http://doi.org/10.1016/j.oceaneng.2016.11.035
http://doi.org/10.1016/j.apor.2015.11.004
http://doi.org/10.1016/S0967-0661(99)00156-2
http://doi.org/10.1016/j.oceaneng.2020.107137
http://doi.org/10.1115/1.2426986
http://doi.org/10.3390/s20051416


Sensors 2021, 21, 4280 24 of 24

14. Rossi, G.B.; Crenna, F.; Berardengo, M.; Piscopo, V.; Scamardella, A. Investigation on Spectrum Estimation Methods for Bimodal
Sea State Conditions. Sensors 2021, 21, 2995. [CrossRef]

15. Ge, M.; Kerrigan, E.C. Short-term ocean wave forecasting using an autoregressive moving average model. In Proceedings of the
2016 UKACC 11th International Conference on Control, Belfast, UK, 31 August–2 September 2016; pp. 1–6. [CrossRef]

16. Spanos, P.D.; Zeldin, B.A. Efficient Iterative Arma Approximation of Multivariate Random Processes for Structural Dynamics
Applications. Earthq. Eng. Struct. Dyn. 1996, 25, 497–507. [CrossRef]

17. Spanos, P.T.D. ARMA algorithms for ocean wave modeling. J. Energy Resour. Technol. Trans. ASME 1983, 105, 300–309. [CrossRef]
18. Mandal, S.; Witz, J.A.; Lyons, G.J. Reduced order ARMA spectral estimation of ocean waves. Appl. Ocean Res. 1992, 14, 303–312.

[CrossRef]
19. Kohn, A.F. Autocorrelation and Cross-Correlation Methods. In Wiley Encyclopedia of Biomedical Engineering; Akay, M., Ed.; John

Wiley and Sons: Hoboken, NJ, USA, 2006; pp. 260–283. ISBN 047124967X.
20. Gersch, W. Estimation of the autoregressive parameters of a mixed autoregressive moving-average time series. IEEE Trans.

Autom. Control 1970, 15, 583–588. [CrossRef]
21. Hu, S.; Wu, S.M. Prony estimation of AR parameters of an ARMA time series. Mech. Syst. Signal Process. 1989, 3, 207–211.

[CrossRef]
22. Michelini, R.C.; Rossi, G.B. The PSD measurement of ARMA processes correlation by exponential modelling. In Proceedings

of the IASTED International Symposium on Applied Signal Processing and Digital Filtering, Paris, France, 19–21 June 1985;
pp. 303–305.

23. Michelini, R.C.; Rossi, G.B. Test validation of the PSD measurement for exponentially correlated processes. In Proceedings of the
IASTED International Symposium on Applied Signal Processing and Digital Filtering, Paris, France, 19–21 June 1985; pp. 306–309.

24. Shanks, J.L. Recursion Filters for Digital Processing. Geophysics 1967, 32, 33–51. [CrossRef]
25. Pandit, S.M. Modal and Spectrum Analysis: Data Dependent Systems in State Space; John Wiley & Sons: Hoboken, NJ, USA, 1991.
26. James III, G.H.; Carne, T.G.; Lauffer, J.P. The Natural Excitation Technique (NExT) for Modal Parameter Extraction from Operating

Structures. Int. J. Anal. Exp. Modal Anal. 1995, 10, 260–277.
27. Ewins, D.J. Modal Testing: Theory, Practice and Application, 2nd ed.; John Wiley & Sons Inc.: Baldock, UK, 2009.
28. Hasan, M.K.; Fattah, S.A.; Khan, M.R. Identification of noisy AR systems using damped sinusoidal model of autocorrelation

function. IEEE Signal Process. Lett. 2003, 10, 157–160. [CrossRef]
29. Cadzow, J.A. High Performance Spectral Estimation—A New ARMA Method. IEEE Trans. Acoust. 1980, 28, 524–529. [CrossRef]
30. Kay, S.M. A new ARMA spectral estimator. IEEE Trans. Acoust. Speech Signal Process. 1980, 28, 585–588. [CrossRef]
31. Friedlander, B.; Porat, B. The Modified Yule–Walker Method of ARMA Spectral Estimation. IEEE Trans. Aerosp. Electron. Syst.

1984, AES-20, 158–173. [CrossRef]
32. Akaike, H.; Nakagawa, T. Statistical Analysis and Control of Dynamic Systems; Kluwer: Dordrecht, The Netherlands, 1988.
33. McQuarrie, A.; Shumway, R.; Tsai, C.L. The model selection criterion AICu. Stat. Probab. Lett. 1997, 34, 285–292. [CrossRef]
34. Eichstädt, S.; Elster, C.; Esward, T.J.; Hessling, J.P. Deconvolution filters for the analysis of dynamic measurement processes: A

tutorial. Metrologia 2010, 47, 522–533. [CrossRef]
35. Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis—Forecasting and Control, 5th ed.; Wiley: Hoboken, NJ,

USA, 2016.
36. Anderson, O.D. The Box-Jenkins Approach To Time Series Analysis. RAIRO Rech. Oper. 1977, 11, 3–29. [CrossRef]
37. DET NORSKE VERITAS, Recommended Practice DNV-RP-C205—Environmental Conditions and Environmental Loads. 2014.

Available online: https://rules.dnv.com/docs/pdf/dnvpm/codes/docs/2014-04/RP-C205.pdf (accessed on 29 April 2021).
38. Ewans, K.C.; Bitner-Gregersen, E.M.; Soares, C.G. Estimation of wind-sea and swell components in a bimodal sea state. J. Offshore

Mech. Arct. Eng. 2006, 128, 265–270. [CrossRef]
39. Pierson, W.J.; Moskowitz, L. A proposed spectral form for fully developed wind seas based on the similarity theory of S. A.

Kitaigorodskii. J. Geophys. Res. 1964, 69, 5181–5190. [CrossRef]
40. Chakrabarti, S.K. Handbook of Offshore Engineering; Elsevier: Amsterdam, The Netherlands, 2005.
41. Ljung, L. System Identification: Theory for the User, 2nd ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 1999.
42. Kay, S.M. The Effect of Sampling Rate on Autocorrelation Estimation. IEEE Trans. Acoust. 1981, 29, 859–867. [CrossRef]

http://doi.org/10.3390/s21092995
http://doi.org/10.1109/CONTROL.2016.7737594
http://doi.org/10.1002/(SICI)1096-9845(199605)25:5&lt;497::AID-EQE565&gt;3.0.CO;2-4
http://doi.org/10.1115/1.3230919
http://doi.org/10.1016/0141-1187(92)90034-H
http://doi.org/10.1109/TAC.1970.1099560
http://doi.org/10.1016/0888-3270(89)90017-4
http://doi.org/10.1190/1.1439855
http://doi.org/10.1109/LSP.2003.811590
http://doi.org/10.1109/TASSP.1980.1163440
http://doi.org/10.1109/TASSP.1980.1163448
http://doi.org/10.1109/TAES.1984.310437
http://doi.org/10.1016/S0167-7152(96)00192-7
http://doi.org/10.1088/0026-1394/47/5/003
http://doi.org/10.1051/ro/1977110100031
https://rules.dnv.com/docs/pdf/dnvpm/codes/docs/2014-04/RP-C205.pdf
http://doi.org/10.1115/1.2166655
http://doi.org/10.1029/JZ069i024p05181
http://doi.org/10.1109/TASSP.1981.1163634

	Introduction 
	ARMA Modelling of the Wave Elevation Time Series 
	ARMA Model Estimation Method 
	Prony Based Estimation of the AR Parameters 
	MA Coefficients and Signal Spectral Estimation 

	Setting the ARMA Estimation Procedure: The Free Parameter Selection 
	AR Order Selection 
	Number of Equations of the Least-Square Problems 

	Case-Studies: Wave Elevation Time Series Generation and Spectral Description 
	Sea Spectral Estimation: Results and Discussion 
	Effect of the Number of the Auto-Covariance Samples Used 
	Choice of the Increased AR Order   
	Effect of the Length of the Time Series 
	Short-Time Series: Effect of the Number of Poles and the Sampling Frequency 

	PSD Estimation Results for Different Sea Conditions 
	Guidelines 
	Conclusions 
	References

