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Abstract: Pedometers are popular for counting steps as a daily measure of physical activity, however,
errors as high as 96% have been reported in previous work. Many reasons for pedometer error
have been studied, including walking speed, sensor position on the body and pedometer algorithm,
demonstrating some differences in error. However, we hypothesize that the largest source of error
may be due to differences in the regularity of gait during different activities. During some activities,
gait tends to be regular and the repetitiveness of individual steps makes them easy to identify in
an accelerometer signal. During other activities of everyday life, gait is frequently semi-regular or
unstructured, which we hypothesize makes it difficult to identify and count individual steps. In this
work, we test this hypothesis by evaluating the three most common types of pedometer algorithm
on a new data set that varies the regularity of gait. A total of 30 participants were video recorded
performing three different activities: walking a path (regular gait), conducting a within-building
activity (semi-regular gait), and conducting a within-room activity (unstructured gait). Participants
were instrumented with accelerometers on the wrist, hip and ankle. Collectively, 60,805 steps were
manually annotated for ground truth using synchronized video. The main contribution of this paper
is to evaluate pedometer algorithms when the consistency of gait changes to simulate everyday life
activities other than exercise. In our study, we found that semi-regular and unstructured gaits resulted
in 5–466% error. This demonstrates the need to evaluate pedometer algorithms on activities that vary
the regularity of gait. Our dataset is publicly available with links provided in the introduction and
Data Availability Statement.

Keywords: accelerometer dataset; mHealth; multiple gaits; pedometer; wearable sensors

1. Introduction

Fitness trackers motivate increased physical activity by counting steps during ev-
eryday life [1]. In 2016, 10% of the U.S. population owned at least one wearable fitness
device [2]. Fitness and lifestyle wearable products are expected to experience huge growth
as advances in research make better use of sensors [3]. Fitness tracker sales have increased
since 2016 and are projected to continue increasing [4]. Recommendations for daily step
count range from 8000 to 12,000 steps depending on age and gender [5], with the goal of
10,000 steps/day commonly used to motivate increased physical activity [6]. Pedometer
accuracy is important because inaccuracy can lead to user frustration and low compliance
with device usage [7]. Studies have found that pedometer accuracy is generally high
during exercise activities [8]. However, in the U.S. people dedicate about 30 min per day
on average to exercise activities [9]. This means that a substantial number of steps are
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being taken and counted during activities other than exercise. Several studies conducted in
free-living conditions have found large differences in pedometer accuracy by comparing
steps counted by different pedometer devices worn at the same time [10–13].

The main contribution of this paper is that we are the first to look at the effect of
regularity of gait on pedometer accuracy. All previous works evaluated accuracy while
participants walked with a regular gait resembling mild exercise. Specifically, subjects
were asked to walk for a period of time or distance or step count, with no breaks or other
intermittent activities. We hypothesize that disruptions in walking throughout everyday
life are a large contributor to pedometer inaccuracy. We propose that consistency of gait is a
critical variable to analyze when evaluating accuracy, and we define and test three levels of
this variable: regular gait; semi-regular gait; and unstructured gait. We define regular gait
as what occurs during exercise and other daily activities over extended periods (5+ min)
of consistent walking that is uninterrupted. We define semi-regular gait as what occurs
when moving through buildings, which is primarily composed of periods of time that
resemble regular gait broken up by brief interruptions (e.g., stopping, starting, or changing
direction). We define unstructured gait as what occurs when performing activities within a
room, which is primarily composed of very brief periods of regular gait (approximately
3–10 steps) with more frequent interruptions including periods of rest and change of
direction. Because step detection algorithms were originally designed for exercise, where
many similar steps are taken in a consistent pattern, we hypothesize that these algorithms
perform poorly on the more interrupted, inconsistent motion patterns in everyday life that
occur with semi-regular and unstructured gait. Evaluating step detection algorithms on
these gaits will result in pedometers that are more accurate during everyday use, meeting
modern demands.

To test our hypothesis, we collected a new data set in which gait consistency was ma-
nipulated by having subjects perform three different tasks resembling common everyday
life activities [14]. We evaluated the three most common types of pedometer algorithms
including one based on peak detection [15], one based on threshold crossing [16], and one
based on autocorrelation [17]. The accuracy of these algorithms on regular gait data, regard-
less of body position, were all high (3–8% error). However, they all decreased significantly
when analyzed on semi-regular and unstructured gaits (5–466% error). This demonstrates
the need to evaluate pedometer algorithms on activities that vary the regularity of gait.
Besides evaluating the effect of regularity in gait, this also allows us to determine whether
any particular type of algorithm performs better or worse specifically as gait regularity
varies. In addition to our own dataset, we include two other publicly available datasets
that recorded regular gait activities [18,19]. We do this to determine whether regular gait
accuracy evaluation can be replicated across different datasets. The main contribution of
this paper is to evaluate pedometer algorithms when the consistency of gait changes to
simulate everyday life activities other than exercise. Finally, we recognize that many results
from wearable device analyses are inhomogeneous [20] and, in an effort to provide oppor-
tunities for algorithms to be tested on identical datasets, we have made our data publicly
available at https://sites.google.com/view/rmattfeld/pedometer-dataset (accessed on 21
June 2021).

This paper is organized as follows: In Section 2, we describe related works and
identify regularity of gait as a variable in pedometer algorithm evaluation that has not yet
been researched. In Section 3, we describe the data collection process, ground truth step
identification process and the process used to evaluate three state-of-the-art pedometer
algorithms. Section 4 provides the results of evaluating the three pedometer algorithms on
our dataset as well as two other publicly available datasets. Section 5 discusses our findings.

2. Related Works

Previous works searching for the cause(s) of variability in pedometer accuracy have
tested many variables [21], including the location on the body the device is worn, car-
ried, or used [22–27], the device model or step counting algorithm [23,24,28–31], walk-
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ing speed [23–26,28,30,32–34], age [32], presence of gait aids [35], weight [32], type of
surface [33,34,36], and distance [31]. These variables have all been found to influence
pedometer accuracy, as seen in Table 1. In this table, it can also be seen that our work is
the first to examine pedometer accuracy as regularity of gait changes. It can also be seen
that the regularity of gait affects pedometer accuracy to a larger degree than the previously
examined variables.

Table 1. Related works evaluating pedometer algorithm accuracy categorized by variable examined.
The extent to which the variable affects accuracy is reported. Prior works have not examined regularity
of gait as a variable, however this work finds that it contributes significantly to error.

Variable Examined Citation Error Range Found

Location worn [22–27] 0.5–10.8%

Device model or algorithm [23,24,28–31] 0.3–39.2%

Walking speed [23–26,28,30,32–34] 0.2–96.0%

Age [32] 3.0–19.0%

Gait aids [35] 2.8–91.3%

Participant weight [32] 6.6–14.7%

Type of surface [33,34,36] 0.2–5.5%

Distance [31] 5.4–39.18%

Regularity of gait Our work 5–466%

For example, a test of the accuracy of 10 different popular wearable and smartphone
pedometers, worn at three different body positions (waist, wrist, and pocket) and evaluated
at a regular walking pace, found errors ranging up to 27% [29]. A test of the effect of
distance on five wearables and four smartphone apps was conducted over 100, 500, and
1500 steps at a regular walking pace, finding errors ranging from 5–40% [31]. Walking
speed has been varied by evaluating participants on treadmills taking 100 steps at varied
speeds, identifying errors ranging from 17–96% [28]. Age, weight and walking speed
have been tested by measuring pedometer accuracy in participants with varying ages,
weight classifications and walking speeds, finding accuracies ranging from 2–44% [32]. The
effect that a gait aid has on pedometer accuracy has also been evaluated, showing that a
four-wheeled walker has the most significant effect with an accuracy of 8.7%, while canes,
crutches and stationary walkers also affected pedometer accuracy with accuracies ranging
from 97.2% to 36.1% [35].

All of these prior works collect data by having participants walk a set number of steps,
a set distance, or a set speed on a treadmill. None alter the regularity of gait by allowing
for the pauses, transitions, or interruptions that are common in everyday motion. While
these changes in the regularity of gait were not important historically, when pedometers
were only used during exercise, they are extremely important today, when smartphones,
activity monitors and smart watches count steps as a motivator for increased daily physical
activity. These devices are worn throughout the entire day, not just during exercise, and
the number of steps reported provide insight into the wearer’s activity levels throughout
the day. Since many of these steps occur within gaits that include irregular patterns of
motion, it is important that pedometer algorithms are developed to perform well on these
gait types.

3. Methods

The goal of this experiment is to evaluate the effect of a novel source of error, regular-
ity of gait, on standard pedometer algorithms. First, we instrumented participants with
accelerometers and had them conduct activities that varied the regularity of gait. Second,
we used synchronized video to annotate the accelerometer data denoting the ground truth
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times of all steps. Third, we searched a publication database to identify a representative set
of popular pedometer algorithms. Lastly, we evaluated the accuracy of these pedometer
algorithms as the error source is varied. Note that the goal of this experiment was to deter-
mine the effect of the error source on pedometer accuracy. It was not our intent to identify
the best possible pedometer algorithm. We seek to determine whether the novel error
source is something that needs to be considered in future pedometer algorithm designs.

3.1. Data Collection

The study was approved by the Clemson University Institutional Review Board for
the protection of human subjects (IRB Number: IRB2017-048). Participants were recruited
vie email and provided a $20 Amazon gift card for their participation. In all, 30 par-
ticipants were selected, including 15 females and 15 males with an average height of
67.3± 4.3 inches (172 ± 10.9 cm), mass of 155.5 ± 38.8 lbs (70.5 ± 17.6 kg), and age of
22± 2.4 years. Each subject provided informed consent and filled out a Physical Activity
and Readiness Questionnaire (PAR-Q) [37]. Participants provided height, mass, and gender
information. Throughout the data collection process, each participant wore 3 Shimmer3
devices, located on the wrist, hip and ankle, as shown in Figure 1. The Shimmer3 devices
recorded at 15 Hz with raw acceleration measurements ranging from −2 to 2 Gravities
and a noise density of 125 µg/

√
Hz. They were synchronized to a single computer’s clock.

Each participant also wore a Fitbit Charge 2, located directly adjacent to the Shimmer3
device worn on the wrist. The participant’s feet and legs were recorded throughout the
experiment as shown in Figure 2.

Figure 1. A participant wearing three Shimmer3 devices, one each on the wrist, hip and ankle.

Figure 2. The procedure used in order to record all steps taken by a participant through each activity.

Each participant was asked to perform three activities, each designed to elicit a gait
seen in everyday life. In the regular gait activity, each participant was instructed to walk
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two laps around an outdoor path approximately 1300 feet (400 m) long at their normal
walking pace. The path contained four turns. This pattern is common in exercise, where
steps are not interrupted. In the semi-regular gait activity, participants were instructed
to perform a scavenger hunt, locating four objects in four different rooms throughout a
building. This is representative of walking around a building, including stopping to open
or close doors and walking up and down stairs. Within-building activities producing
this type of motion include factory work and shopping. In the unstructured gait activity,
participants were asked to build a small Lego toy by assembling pieces distributed among
12 small bins around a room. Participants were only allowed to gather one bin of pieces at
a time and to construct the toy at a central location. This pattern is common in activities
requiring periods of work with no steps interspersed with short periods of walking, in
which participants do not reach a steady stride. Within-room activities producing this type
of motion include office work and meal preparation.

3.2. Ground Truth

The ground truth process was completed with the assistance of a custom tool described
in [14]. Notably, the annotation process revealed that steps could be categorized into two
distinct groups, which we call steps and shifts. In the regular gait activity, because the
motion of walking is repetitive and uninterrupted, each step taken can be clearly counted
and evaluated. Virtually all steps in the regular gait activity can be defined by the inclusion
of three elements: (1) the foot moves; (2) the body weight shifts in the direction of the foot
movement; and (3) the action takes place within a repeating pattern. An activity meeting
these criteria is called a step, and the accelerometer signal generally resembles the signal
shown in Figure 3. In this figure, which displays acceleration captured from the vertical
axis of the ankle accelerometer, it can be seen that between every right step (red solid line)
and left step (blue dashed line), there is a clear peak in the acceleration signal as the left leg
moves forward.

Ac
ce

ler
at

ion
 (g

)

Right foot
Left foot

Figure 3. A sample from the ankle accelerometer signal associated with several ground truth steps in
the regular gait activity. The peak in acceleration between each right step (red solid line) and left step
(blue dashed line) is indicative of the motion of the left leg.

While steps do occur within the semi-regular and unstructured types of gait, a signif-
icant number of motions occur which contain: (1) a foot movement; (2) may or may not
include a weight shift; and (3) are not within a repeating pattern. We specifically refer to
these types of motions as a shifts, and these shifts are most commonly identified as (a) a
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step which causes a sharp change in direction or pace or (b) a step which begins movement
from a complete stop or ends movement. Examples of accelerometer signals produced
when shifts occur are displayed in Figure 4. The acceleration signals shown in the figure
are taken from the vertical axis of the ankle accelerometer. The first two rows in the figure
demonstrate the first and last steps taken and produce a smaller magnitude of acceleration
compared to steps taken while in stride. The third row demonstrates a pivot step, which
occurs as the participant changes direction. The fourth row demonstrates a shuffle, in
which the participant moved their foot and shifted their weight during the unstructured
gait activity. Steps and shifts were differentiated based solely on video review and were
identified separately during the ground truth process.

Ac
ce

le
ra

tio
n 

(g
)

Right foot
Left foot

Figure 4. Samples taken from the ankle accelerometer signal associated with four different types
of shift. The first two rows provide examples of first and last steps being taken. The third row
demonstrates a pivot. The fourth row demonstrates a shuffle.

3.3. Inter-Rater Reliability

In order to investigate inter-rater reliability, each of 3 raters labeled all the steps
for 3 participants across all 3 types of gait, resulting in an average of 6187 steps and
shifts labeled per reviewer. The reviewers varied an average of 0.2% in terms of total
steps labeled. This is a strong but not perfect level of agreement due to differences in
vigilance in the labeling task and potentially differences in opinions on what is a shift
(is there enough movement in the foot to be considered a shift). The average percentage
difference in the number of shifts labeled was 0.1% in regular gait, 3.5% in semi-regular
gait, and 3.3% in unstructured gait. These differences result from the difficulty of accurately
differentiating between steps and shifts. These differences often relate to the “within a
repeating pattern” and “sharp change in direction” portions of the shift and step definitions
provided. Taken together, this process indicates that vigilance can affect the labeling process,
but the difficulty in differentiating steps from shifts or shifts from non-steps is the major
factor in labeling differences.

3.4. Pedometer Algorithms

In order to identify algorithms for implementation and testing, we searched for
papers describing pedometer algorithms. We searched IEEE Xplore using the search terms
“pedometer” and “algorithm”. In addition to the 60 papers yielded by this search, related
works were found through bibliography searches, and 84 papers were reviewed. Of these,
24 implemented pedometer algorithms and provided enough detail to implement the step
detector. From this subset of papers, algorithms were categorized into three groups based
on the methodology used in step identification: peak detection, threshold crossing and
autocorrelation. These results are summarized in Table 2. It is important to note that
there are differences between step detection/counting and other types of analysis, which
may use detected steps as input such as gait analysis, activity recognition, and distance
tracking [38]. Our literature search focused on the former. The methods of each algorithm
are each briefly summarized in the following sections. When evaluating each algorithm, the
parameters used were normalized (e.g., if originally trained on accelerations using m/s2,
parameters were divided by 9.8 to convert to gravities on our dataset) and interpolated
(e.g., if time between steps was between 100 and 200 indices when sampled at 100 Hz, this
would become 15 and 30 indices when sampled at 15 Hz) as needed. The parameters were
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then varied across a range of values, as shown in each algorithm’s flow chart. Whichever
combination of parameters yielded the highest accuracy for the regular gait activity using
the wrist-worn sensor was used throughout further testing in our dataset. The wrist-worn
sensor was selected for training because most commercial pedometers are wrist-worn, as
they are integrated into smart watches or designed to be worn as a watch.

Table 2. Summary of algorithms published since 2004 and algorithms selected for testing.

Type of Algorithms Citation Implemented

Peak detection [15,33,34,39–48] [15]

Threshold crossing [16,26,27,49–54] [16]

Autocorrelation [17,55] [17]

3.4.1. Peak Detector

We implemented the algorithm proposed by Gu et al. to be representative of peak
detection algorithms because it was recently published (2017) and provides enough detail
for reimplementation [15]. The algorithm is summarized in Figure 5. The algorithm first
finds the magnitude of acceleration calculated as the square root of the sum-of-squares
of the X, Y, and Z accelerations. Once this is calculated, peaks in the signal are identified.
Next, the motion state is calculated as idle, walking, or running based on the variance in
the accelerometer signal between peaks (note we used one threshold to classify data as
either idle or walking because running was not present in our dataset). Each peak must
also meet thresholds on periodicity, similarity and continuity. If all threshold requirements
are met, the peak is counted as a step.

Find Magnitude of Acceleration

𝑎𝑐𝑐# = 𝑎𝑐𝑐%#& + 𝑎𝑐𝑐(#& +𝑎𝑐𝑐)#&

Find Peaks
𝑝𝑒𝑎𝑘# = (𝑎𝑐𝑐#|(𝑎𝑐𝑐#	≥ 𝑎𝑐𝑐#12: 𝑎𝑐𝑐#14 	
&&	𝑎𝑐𝑐#≥ 𝑎𝑐𝑐#64: 𝑎𝑐𝑐#62 ))

Classify motion state, 𝑚, (idle, walking, 
running) between peaks using 𝜎:;<

Calculate Periodicity: 𝑇> = 	𝑡@A;BCDE − 𝑡@A;BC

Calculate Similarity
𝑠𝑖𝑚> = − 𝑝𝑒𝑎𝑘;II 𝑖 + 2 −𝑝𝑒𝑎𝑘;II 𝑖
𝑖𝑓	𝑚>	𝑜𝑟	𝑚>6&	𝑖𝑠	𝑖𝑑𝑙𝑒, 𝑡ℎ𝑒𝑛	𝑠𝑖𝑚> = −∞

Calculate Continuity

𝐶> = U1, 𝑖𝑓	𝑠𝑢𝑚 𝑣𝑎𝑟 𝑎𝑐𝑐 𝑖 − 𝑁 +1: 𝑖 + 1 > 𝜎:;< ≥ 𝑀
0,𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Parameters
Peak Search Window, 𝐾, {3, 4, 5}
Minimum Periodicity, 𝑇_> ,̀	{4, 5}
Maximum Periodicity, 𝑇_;%, {15, 25, 35}
Similarity Threshold, 𝑠𝑖𝑚>, {-1, -0.5, -0.1}
Continuity Window Size, 𝑀, {2, 3, 4, 5}
Continuity Threshold, 𝑁, {4, 6, 8, 10}
Variance Threshold, 𝜎:;<, {0.001, 0.07, 0.1}

Figure 5. Flow chart describing the implementation of the peak detector algorithm.

3.4.2. Threshold Crossing

We selected the algorithm developed by Zhao to be our representative sample because
the algorithm provided sufficient detail for reimplementation and utilized techniques com-
mon across many threshold-crossing based algorithms [16]. The algorithm first smooths the
accelerometer signal. Then, a dynamic zero crossing threshold is calculated by averaging
the maximum and minimum values at 1/2 s intervals. Accelerometer values are required
to surpass a precision threshold in order to update stored values. If the change in slope
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is negative when the acceleration values cross the threshold, a potential step is detected.
These steps are summarized in the flowchart shown in Figure 6. Then, a minimum and
maximum time requirement between steps is applied, and a requirement that at least four
consecutive valid steps must be found in order for step detection to occur as shown in
Figure 7. These additional conditions filter out many potential false positives.

Smooth Data by averaging four 
data points

Find Maximum, 𝑚𝑎𝑥, and 
Minimum, 𝑚𝑖𝑛, from previous 

half second of data

Determine “zero” threshold

𝑡ℎ𝑟𝑒𝑠ℎ = 	
(max+𝑚𝑖𝑛)

2

Preliminary Processing Potential Step 
Detection

Yes
𝑜𝑙𝑑 = 𝑛𝑒𝑤

𝑛𝑒𝑤 = next sample

No 𝑜𝑙𝑑 = 𝑛𝑒𝑤
𝑛𝑒𝑤	remains 

unchanged

Is the next 
sample - 𝑛𝑒𝑤 >

𝑃?

Add Index as potential step

Yes

Read in the first 
sample as 𝑛𝑒𝑤

Is 𝑛𝑒𝑤	 < 𝑡ℎ𝑟𝑒𝑠ℎ	
&&	𝑜𝑙𝑑	 > 𝑡ℎ𝑟𝑒𝑠ℎ?

NoParameters
Precision threshold: 
P = {0.001, 0.01, 0.1}

Min indices between steps: 
𝑇=>? = {2, 3, 4, 5}

Max indices between steps: 
𝑇=@A = {25, 30, 35}

Figure 6. Flow chart describing the process for identifying potential steps in the threshold
based algorithm.

Next potential step

Indices to next 
step > 𝑇"#$	and 

< 𝑇"&'?

Is consecutive 
>= 4?

Potential Step 
Filtering

Yes

No

No

Ensure all consecutive potential 
steps are counted as steps

Yes

Increment 
consecutive

consecutive = 0

Figure 7. Flow chart describing the process for using time constraints to filter out potential steps for
the threshold based algorithm.

3.4.3. Autocorrelation

Of the two algorithms using autocorrelation, we reimplemented the algorithm de-
scribed by Rai et al. [17]. Both papers using this algorithm are from the same research
group, so we used the paper providing a greater level of detail regarding algorithm im-
plementation. The process used by the algorithm is summarized in the flow chart shown
in Figure 8. The algorithm calculates the normalized autocorrelation value cross a range
of window sizes within a minimum and maximum time range. Whichever window size
produces the highest autocorrelation value is used, and the range of window sizes to
test on future iterations are updated based on the optimum window size found. Once
autocorrelation windows are found, an additional check is performed to detect segments
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in which participants are idle based on the magnitude of acceleration, and these segments
are removed from further consideration. For all segments not labeled as idle, a threshold is
applied to the normalized autocorrelation score. If the threshold is surpassed, the data is
identified as walking, and the rate of step detection is based on the optimum window size.

Find Magnitude of Acceleration

𝑎𝑐𝑐# = 𝑎𝑐𝑐%#& + 𝑎𝑐𝑐(#& + 𝑎𝑐𝑐)#&

Find the maximum normalized autocorrelation, ψ 𝑚 , for each point
ψ 𝑚 = 𝑚𝑎𝑥-.-/01

-.-/23 χ 𝑚,𝜏
Where normalized autocorrelation, χ(𝑚,𝜏), is calculated as

χ(𝑚,𝜏) =
∑ (𝑎 𝑚 + 𝑘 − 𝜇 𝑚, 𝜏 )(𝑎 𝑚+ 𝑘 +𝜏 −𝜇 𝑚 + 𝜏,𝜏 )=.->?
=.@

𝜏𝜎(𝑚,𝜏)𝜎(𝑚 + 𝜏, 𝜏)
where 𝜇 𝑘, 𝜏 and 𝜎(𝑚, 𝜏) are the mean and sdev of

the sequence of samples < 𝑎 𝑘 ,𝑎 𝑘 + 1 ,…𝑎 𝑘 + 𝜏 + 1 >

Update search window
𝜏FGH = 𝜏IJ# −	3
𝜏FM% = 𝜏IJ# +	3

where 𝜏IJ# is the value of τ which produces a 
max χ(𝑚, 𝜏)

N
𝑠𝑡𝑎𝑡𝑒 = 𝐼𝐷𝐿𝐸	𝑖𝑓	𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 < 	𝜎#[\

𝑠𝑡𝑎𝑡𝑒 = 𝑊𝐴𝐿𝐾𝐼𝑁𝐺	𝑖𝑓	𝑛𝑜𝑡	𝐼𝐷𝐿𝐸	𝑎𝑛𝑑	ψ(𝑚) > ψ#[\
𝑛𝑜	𝑠𝑡𝑎𝑡𝑒	𝑐ℎ𝑎𝑛𝑔𝑒	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

If state = WALKING, then 1 step per 
-ghi
& samples

Parameters
Minimum window, 𝜏FGH = {10, 12, 15} 
Maximum window,	𝜏FM% = {25, 30, 35} 
Variance Threshold, 𝜎#[\ = {0.001,0.01,0.1}
Correlation Threshold, ψ#[\ = {0.6,0.7,0.8}

Figure 8. Flow chart describing the process for identifying steps in the autocorrelation algorithm.

3.5. Datasets

In addition to testing each of the three algorithms on our dataset, we tested each
algorithm on two publicly available datasets: the MAREA (Movement Analysis in Real-
world Environments using Accelerometers) Gait Database [18] and the Sensor-based Gait
Analysis Validation Data dataset [19]. These datasets were selected by searching for public
datasets that identify individual steps taken by participants: these datasets could be used
to evaluate the detection of individual steps. Each dataset was developed to test different
criteria, as summarized in Table 3. The MAREA dataset includes walking and running,
both indoors and outdoors, but only includes regular types of gait. The Kluge dataset
includes healthy people and people with Parkinson’s disease, but only includes regular
types of gait. Our dataset is the first to include activities with less regular types of gait,
allowing for the assessment of pedometers when applied to the irregular motions that are
common in real world activity. These types of gait include a greater proportion of shifts, as
described above, and detecting shifts in an accelerometer signal can be particularly difficult.

Table 3. Summary of criteria varied in each dataset.

Dataset Sensor Positions Pace Types of Gait Health Status

Our dataset Wrist, hip, ankle Walking Regular, Semi-reg, Unstructured Healthy

MAREA Wrist, hip, ankles Walking, running Regular Healthy

Kluge Ankles Walking Regular Healthy, Parkinson’s
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3.6. Evaluation

Each of the pedometer algorithms was evaluated by comparing the number of steps
detected by the algorithm against the number of steps actually taken according to the
ground truth labels for each participant and activity. This is referred to as running count
accuracy (RCA), a metric which is commonly used in pedometer evaluation. RCA is a
comparison of the number of ground truth steps taken over the course of an activity against
the number of steps reported by a pedometer algorithm. The equation used in this work to
calculate RCA is shown in Equation (1).

RCA =
#DetectedSteps

#GroundTruthSteps
. (1)

An ideal RCA value is 1, with values greater than 1 indicating the algorithm overesti-
mates steps, and values less than 1 indicating the algorithm underestimates steps.

Because individual steps were identified in our dataset, we were also able to use the
F1 score as a metric. To calculate this, true positives were identified when a step detected
by an algorithm occurred within 0.5 s of a ground truth step. Once a step detected by the
algorithm and a ground truth step were matched as a true positive pair, they were excluded
from being paired with any additional steps. Once the matching process was complete for
an activity, any ground truth steps that were not matched were considered false negatives
and any detected steps which were not matched were considered false positives. These
values were then used to calculate precision and recall, and from these the F1 score was
calculated and reported.

4. Results
4.1. Algorithm Evaluation

We examined the accuracies for each algorithm across all datasets and across regular,
semi-regular, and unstructured gaits. Presenting all potential evaluations is challenging
because the dimensionality of the analysis grows quickly when considering three sensor
positions, three types of gait, three algorithms evaluated, three datasets used, and (in the
Kluge dataset) two health conditions. In addition, in our dataset, shifts could be included
or excluded from consideration as ground truth steps, yielding 324 potential accuracy
measures. Sensor position and health condition were found to affect accuracy to a lesser
degree than the other metrics, so accuracies were averaged across these dimensions.

The Running Count Accuracies (RCA) of each pedometer algorithm across each
dataset and gait type can be seen in Table 4. These results demonstrate that there are
large differences in RCA across the types of gait observed. In addition, we draw three
conclusions from this data. First, all algorithms showed similar accuracy regardless of
location worn during regular gait, with a wrist accuracy of 0.98± 0.12, hip accuracy of
1.01± 0.23, and an ankle accuracy of 0.91± 0.19. This demonstrates that many algorithms
work well on regular gait regardless of where the sensor is worn, and that all three datasets
are capable of performing this evaluation. Second, the peak detector and threshold based
algorithms had much worse accuracy for semi-regular and unstructured gaits (1.30 to 5.66)
compared to their accuracies on regular gaits (0.92 to 1.03). This demonstrates that semi-
regular and unstructured gaits present very different challenges to pedometer algorithms
compared to regular gaits. Pedometers using these algorithms significantly overestimate
step count during normal daily living. Third, the accuracy of the autocorrelation algorithm
did not vary nearly as much across gait type (0.93 to 1.11) as did the accuracies of the peak
detector and threshold-based algorithms (0.92 to 3.09 and 1.03 to 5.66, respectively). This
demonstrates that some algorithms used for step detection may perform better on the less
regular gaits common in everyday life. This is especially important for pedometers that are
intended to be worn all day, when gait type can be expected to change repeatedly.

Figure 9 demonstrates how pedometer accuracy decreases on semi-regular and un-
structured gait, compared to regular gait. Blue lines indicate ground truth steps. Green
lines indicate true positive steps detected by the peak detector algorithm, and red lines
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indicate false positives. In Figure 9a, it can be seen that, for regular gait, the detected steps
are all true positives. In Figure 9b, it can be seen that, during semi-regular gait, as the
participant opened a door at the end of a hall, transitioning from walking down a hall
to walking on stairs, four false positives were detected. In Figure 9c, it can be seen that
while the participant was walking during unstructured gait, the peak detector did well,
but it picked up many false positives as the participant constructed their Lego. The false
positives were caused by detecting peaks in acceleration when no steps were taken. This
example demonstrates that a large number of false positives are detected when the gait is
not regular.

(a) Regular gait

(b) Semi-regular gait

(c) Unstructured gait

Figure 9. Examples demonstrating decreased accuracy during semi-regular and unstructured gait.
Blue lines represent ground truth steps. Green lines represent true positives. Red lines represent false
positives. In regular gait, all steps are detected with zero false positives, while in semi-regular and
unstructured gait there is a large number of false positives.

Table 4. The Running Count Accuracy (accuracy ± standard deviation per participant) of three algorithm types (peak
detector, threshold-crossing, and autocorrelation) across three gait types (regular, semi-regular, and unstructured) and three
datasets (ours, MAREA, Kluge). Standard deviation across subjects is reported.

Our Dataset MAREA Dataset Kluge Dataset

Algorithm Regular Semi Unstrct Regular Semi Unstrct Regular Semi Unstrct

Peak 0.92± 0.11 1.30± 0.21 3.09± 2.55 0.94± 0.07 N/A N/A 1.03± 0.35 N/A N/A

Threshold 1.03± 0.17 1.34± 0.17 5.66± 1.88 1.11± 0.46 N/A N/A 1.13± 0.34 N/A N/A

Autocor. 0.95± 0.24 0.93± 0.17 1.11± 0.44 0.92± 0.13 N/A N/A 0.97± 0.55 N/A N/A

Because individual steps are labeled within the data, F1 score was also calculated.
When examining F1 scores calculated for the dataset, two interesting results were found.
First, when F1 score was examined across sensor position, the wrist sensor yielded an
average F1 score of 0.69, the hip 0.73, and the ankle 0.76. Similarly, when examined
across gait type, regular gait resulted in an average F1 score of 0.90, semi-regular 0.77, and
unstructured 0.53. These results demonstrate that changes in gait type affect step detection
to a larger degree than changes in sensor position.
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4.2. Steps and Shifts

The proportion of steps and shifts present in each of the three gait types is shown in
Table 5. Within the experiment, each activity was designed to take approximately 10 min
to complete. Because activities were standardized on time rather than number of steps, the
step count for each activity varies. An average of 1050 steps were taken in the regular gait
activity by each participant, 667 in the semi-regular gait activity, and 175 in the unstructured
gait activity. The recorded motions in the regular gait activity were 99.6% steps. The shifts
that do occur in regular gait are primarily composed of the starting and stopping of steps
taken by each participant.

Table 5. Total steps and shifts manually recorded through each of the three activities across all
30 participants.

Activity Steps Shifts

Regular 31,401 (99.6%) 133 (0.4%)

Semi-regular 18,444 (82.9%) 3795 (17.1%)

Unstructured 4542 (64.6%) 2490 (35.4%)

Overall 54,387 (89.4%) 6418 (10.6%)

In the semi-regular gait activity, the number of shifts increased to 17.1% of the total
steps taken. The majority of the steps recorded were taken while walking down hallways
and up and down staircases, which more closely resembles regular gait. However, shifts
increased because there were a larger number of starting and stopping steps taken as
participants stopped to open doors throughout the activity. In addition, while hunting for
the hidden items throughout rooms, participants started, stopped, shifted their weight
and pivoted.

In the unstructured activity, the percentage of shifts increased again, where 35.4% of
the motions recorded were shifts. In this activity, participants spent most of their time
building the Lego toy at a central location, periodically interrupted with brief periods of
walking as participants collected additional pieces from bins located around the room.
While building, participants shifted their weight, causing some shifts. The starting and
stopping steps taken while getting additional pieces were the source of many of the shifts.
Another significant portion of the shifts resulted from pivots performed when participants
picked up a bin of pieces and turned to walk back to the main location to continue building.

The accuracy of the pedometer algorithms evaluated changes depending on whether
shifts are included or excluded as ground truth steps. Shifts are a subclass of steps that we
have classified, but other works have not identified these. Some prior experiments were
designed such that what we define as a shift would not appear, but other experiments have
included motions that we would call shifts and treated them as steps. In our evaluation,
when only steps are counted and accuracy is averaged across all metrics other than gait
type, the overall RCA for regular gait is 0.97, semi-regular gait is 1.19, and unstructured
gait is 3.29. These values change to 0.96 for regular gait, 0.99 for semi-regular gait, and 2.13
for unstructured gait if both steps and shifts are counted as ground truth steps. This could
indicate that, in semi-regular gait, the accelerometer signal for many of the shifts generally
resembles that of steps.

To demonstrate the effect shifts can have on pedometer accuracy, we evaluated a com-
mercial pedometer (Fitbit Charge 2) by having participants wear the pedometer throughout
the activities performed and comparing the reported step count to the actual step count.
The Fitbit demonstrated an RCA of 0.96± 0.07 (accuracy ± standard deviation per partici-
pant) for regular gait, 0.90± 0.10 for semi-regular gait, and 0.65± 0.15 for unstructured
gait when all steps and shifts are included. When only steps are counted in the analysis,
Fitbit accuracy improved to 0.97± 0.07 for regular gait, 1.08± 0.21 in semi-regular gait
(indicating a slight overestimation of steps), and 1.00± 0.38 for unstructured gait. These
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results suggest that the algorithm used in Fitbit devices may be designed to ignore shifts,
possibly because they are difficult to detect and count, but this is a sub-optimal solution. It
would be best to count them accurately, especially because they comprise 17–35% of steps
in non-regular gaits.

5. Discussion

This work evaluates pedometer accuracy across multiple types of gait through the
use of sensors located on each participant’s wrist, hip and ankle. During regular gait, we
found that varying sensor position resulted in an error rate ranging from 1–9%, similar
to other studies examining how this condition affects pedometer accuracy. However,
when examining semi-regular or unstructured gaits common in everyday life, we saw
a substantially larger error rate in pedometer accuracy. While error ranged from 3–8%
during regular gait, it ranged from 7–34% during semi-regular gait and 11–466% during
unstructured gait. We evaluated the same pedometer algorithms on two additional datasets
that examined regular gaits and found error ranging from 6–11% (MAREA dataset) and
3–13% (Kluge dataset). This finding, combined with prior studies, indicates that pedometer
error rates are similar across many metrics, including health, age, walking surface, location
worn, algorithm and distance travelled, but they vary significantly when gait changes.
The gait types recorded in this dataset are not available in any other public dataset, and
evaluating pedometer algorithms on these gaits provides valuable feedback regarding the
accuracy of pedometer algorithms designed for sensors worn throughout everyday life
(including smartwatches and most fitness trackers).

Three approaches to step detection (peak detection, threshold crossing and autocorre-
lation) were tested on each gait type. It was found that during regular gait, each algorithm
demonstrated relatively similar error rates (3–8%), but during semi-regular gait, error
varied from 7–34%, and during unstructured gait, error varied from 11–466%. Specifically,
the peak detection and threshold crossing algorithms both significantly overestimated steps
(by as much as five times) in semi-regular or unstructured gait. The autocorrelation-based
algorithm had more consistent accuracy across the semi-regular and unstructured gaits,
demonstrating an error rate of less than 12%, independent of gait type. This further demon-
strates the need to evaluate pedometer algorithms on different gait types, as algorithm
performance can vary significantly depending on the gait being analyzed.

Training the parameters for the evaluation performed could be accomplished in multi-
ple ways. We chose to train the parameters on the wrist-worn sensor during regular gait
because it is the most common type of gait in exercise and is the type of gait that pedometer
algorithms are most commonly trained for. However, regular gait is probably not optimal
for everyday life because thresholds that are trained for periodicity, similarity and conti-
nuity will likely cause the algorithm to perform poorly on the more aperiodic data that is
present in semi-regular and unstructured gait. One limiting factor is that the parameters
for the pedometer algorithms are only trained once. This experiment demonstrates that the
algorithms could benefit from switching parameter values for different types of gait. This
is a topic for future work.

While the dataset presented in this work allows for more detailed evaluation of
pedometer algorithms across multiple gait types and sensor positions, there are limitations.
Three sensor positions—the wrist, hip and ankle—were recorded, but additional locations
could be examined. In addition, the activities examined represent exercise, walking around
a building, and moving within a room, but additional activities may produce additional
challenges. All the types of gait examined are performed at a walking pace or slower,
and the dataset only considers college-aged, healthy participants. In addition, we only
simulated real-life scenarios in our experiment; we did not actually examine accuracy
during everyday life.

Evaluating semi-regular and unstructured gaits is particularly challenging because
it includes a sizeable portion of motions that may or may not be considered steps. We
called these motions shifts to differentiate. They exist across a wide spectrum of motions
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that range from very step-like motions to small motions that barely resemble steps. One
argument in favor of counting them is that they require energy expenditure (so contribute
to exercise). An argument in favor of removing them from analysis is that they are more
difficult than steps to detect and count. Either way, because they are not specifically
modeled in current pedometer algorithms, we believe they contribute significantly to step
count error.

Because the dataset is being made publicly available, additional algorithms can be
implemented and quantitatively compared. Specifically, the identification of individual
steps within our dataset allows future researchers to not only evaluate algorithms on
types of gait similar to those used in free-living but to also develop and improve these
algorithms through the identification of false positives and false negatives within the
accelerometer signal.

Future work could include expanding the dataset to include data collected from a
wider range of activities suspected to cause inaccurate step counts, such as vacuuming,
mowing the lawn and folding laundry. Accelerometer data collected from sensors located in
a bag, in a pocket, attached to a shoe, or in a hand could also be added. One other approach
for improving accuracy may be to consider synchronizing the Shimmer3 sensors [56,57] and
fusing data from all three to detect steps. Another direction for future work is identifying
the differences between steps and shifts based solely on accelerometer signals. In addition,
we are developing a method for actively identifying the type of gait being exhibited by
a participant [58]. The detection of gait type could then be used to develop a pedometer
algorithm which adjusts parameters in real time in order to provide a more accurate step
count. To our knowledge, this is the first dataset and comparison of pedometer algorithms
across varying types of gait representative of everyday life. The experiment performed
indicates that gait type affects pedometer accuracy more than sensor position. Future work
should seek to improve pedometer algorithm accuracy on the more varied gaits common
in everyday life.

Author Contributions: Conceptualization, R.M., E.J. and A.H.; methodology, R.M., E.J. and A.H.;
software, R.M. and A.H.; validation, R.M. and A.H.; formal analysis, R.M. and A.H.; investigation,
R.M.; resources, R.M. and A.H.; data curation, R.M. and A.H.; writing—original draft preparation,
R.M., E.J. and A.H.; writing—review and editing, R.M., E.J. and A.H.; visualization, R.M. and A.H.;
supervision, A.H.; project administration, R.M., E.J. and A.H.; funding acquisition, R.M. and A.H.
All authors have read and agreed to the published version of the manuscript.

Funding: The work in this paper is supported by a Brooks Sports Science Institute grant.

Institutional Review Board Statement: The study was approved by the Clemson University Institu-
tional Review Board for the protection of human subjects (IRB Number: IRB2017-048).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data publicly available at https://sites.google.com/view/rmattfeld/
pedometer-dataset, accessed on 21 June 2021.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Henriksen, A.; Mikalsen, M.H.; Woldaregay, A.Z.; Muzny, M.; Hartvigsen, G.; Hopstock, L.A.; Grimsgaard, S. Using fitness

trackers and smartwatches to measure physical activity in research: Analysis of consumer wrist-worn wearables. J. Med Internet
Res. 2018, 20, e110. [CrossRef]

2. Statista. Global Wearable Fitness Device Adoption Rate by Country 2016. Available online: https://www.statista.com/statistics/
651681/wearable-fitness-device-adoption-by-country/ (accessed on 30 November 2019).

3. Aroganam, G.; Manivannan, N.; Harrison, D. Review on Wearable Technology Sensors Used in Consumer Sport Applications.
Sensors 2019, 19, 1983. [CrossRef]

4. Statista. Fitness Tracker Device Shipments Worldwide 2016–2022. Available online: https://www.statista.com/statistics/610390
/wearable-healthcare-device-shipments-worldwide/ (accessed on 30 November 2019).

https://sites.google.com/view/rmattfeld/pedometer-dataset
https://sites.google.com/view/rmattfeld/pedometer-dataset
http://doi.org/10.2196/jmir.9157
https://www.statista.com/statistics/651681/wearable-fitness-device-adoption-by-country/
https://www.statista.com/statistics/651681/wearable-fitness-device-adoption-by-country/
http://dx.doi.org/10.3390/s19091983
https://www.statista.com/statistics/610390/wearable-healthcare-device-shipments-worldwide/
https://www.statista.com/statistics/610390/wearable-healthcare-device-shipments-worldwide/


Sensors 2021, 21, 4260 15 of 16

5. Tudor-Locke, C.; Bassett, D.R., Jr.; Rutherford, W.J.; Ainsworth, B.E.; Chan, C.B.; Croteau, K.; Giles-Corti, B.; Masurier, G.L.;
Moreau, K.; Mrozet, J.; et al. BMI-referenced cut points for pedometer-determined steps per day in adults. J. Phys. Act. Health
2008, 5, S126–S139. [CrossRef]

6. Tudor-Locke, C.; Bassett, D.R. How many steps/day are enough? Sport Med. 2004, 34, 1–8. [CrossRef]
7. Clemes, S.A.; O’Connell, S.; Rogan, L.M.; Griffiths, P.L. Evaluation of a commercially available pedometer used to promote

physical activity as part of a national programme. Br. J. Sport. Med. 2010, 44, 1178–1183. [CrossRef]
8. Ayabe, M.; Aoki, J.; Ishii, K.; Takayama, K.; Tanaka, H. Pedometer accuracy during stair climbing and bench stepping exercises. J.

Sport. Sci. Med. 2008, 7, 249.
9. Unites States Department of Labor: Bureau of Labor Statistics.

Avg Hrs Per Day–Participating in Sports, Exercise, and Recreation (Includes Related Waiting and Security). Available online:
https://beta.bls.gov/dataViewer/view/timeseries/TUU10101AA01014521 (accessed on 30 November 2019).

10. Le Masurier, G.C.; Lee, S.M.; Tudor-Locke, C. Motion sensor accuracy under controlled and free-living conditions. Med. Sci.
Sport. Exerc. 2004, 36, 905–910. [CrossRef]

11. Leong, J.Y.; Wong, J.E. Accuracy of three Android-based pedometer applications in laboratory and free-living settings. J. Sport.
Sci. 2017, 35, 14–21. [CrossRef] [PubMed]

12. Tanaka, C.; Hikihara, Y.; Inoue, S.; Tanaka, S. The Choice of Pedometer Impacts on Daily Step Counts in Primary School Children
under Free-Living Conditions. Int. J. Environ. Res. Public Health 2019, 16, 4375. [CrossRef] [PubMed]

13. Tyo, B.M.; Fitzhugh, E.C.; Bassett, D.R., Jr.; John, D.; Feito, Y.; Thompson, D.L. Effects of body mass index and step rate on
pedometer error in a free-living environment. Med. Sci. Sport. Exerc. 2011, 43, 350–356. [CrossRef] [PubMed]

14. Mattfeld, R.; Jesch, E.; Hoover, A. A new dataset for evaluating pedometer performance. In Proceedings of the 2017 IEEE
International Conference on Bioinformatics and Biomedicine, Kansas City, MO, USA, 13–16 November 2017.

15. Gu, F.; Khoshelham, K.; Shang, J.; Yu, F.; Wei, Z. Robust and Accurate Smartphone-Based Step Counting for Indoor Localization.
IEEE Sens. J. 2017, 17, 3453–3460. [CrossRef]

16. Zhao, N. Full-Featured Pedometer Design Realized with 3-Axis Digital Accelerometer. Analog Dialogue 2010, 44, 1–5.
17. Rai, A.; Chintalapudi, K.; Padmanabhan, V.; Sen, R. Zee: Zero-Effort Crowdsourcing for Indoor Localization. In Proceedings of

the MobiCom’12, Istanbul, Turkey, 22–26 August 2012; pp. 293–304.
18. Khandelwal, S.; Wickström, N. Evaluation of the performance of accelerometer-based gait event detection algorithms in different

real-world scenarios using the MAREA gait database. Gait Posture 2017, 51, 84–90. [CrossRef]
19. Kluge, F.; Gaßner, H.; Hannink, J.; Pasluosta, C.; Klucken, J.; Eskofier, B. Towards Mobile Gait Analysis: Concurrent Validity and

Test-Retest Reliability of an Inertial Measurement System for the Assessment of Spatio-Temporal Gait Parameters. Sensors 2017,
17, 1522. [CrossRef]

20. Cosoli, G.; Spinsante, S.; Scalise, L. Wrist-worn and chest-strap wearable devices: Systematic review on accuracy and metrological
characteristics. Measurement 2020, 159, 107789. [CrossRef]

21. Mahloko, L.; Adebesin, F. A Systematic Literature Review of the Factors that Influence the Accuracy of Consumer Wearable Health
Device Data. In Proceedings of the I3E 2020: Responsible Design, Implementation and Use of Information and Communication
Technology Skukuza, South Africa, 6–8 April 2020; p. 12067. [CrossRef]

22. Trong Bui, D.; Nguyen, N.D.; Jeong, G.M. A Robust Step Detection Algorithm and Walking Distance Estimation Based on Daily
Wrist Activity Recognition Using a Smart Band. Sensors 2018, 18, 2034. [CrossRef]

23. Nakae, S.; Oshima, Y.; Ishii, K. Accuracy of spring-levered and piezo-electric pedometers in primary school Japanese children. J.
Physiol. Anthropol. 2008, 27, 233–239. [CrossRef]

24. Park, W.; Lee, V.; Ku, B.; Tanaka, H. Effect of walking speed and placement position interactions in determining the accuracy of
various newer pedometers. J. Exerc. Sci. Fit. 2014, 12, 31–37. [CrossRef]

25. Singh, A.; Farmer, C.; Berg, M.V.D.; Killington, M.; Barr, C. Accuracy of the FitBit at walking speeds and cadences relevant to
clinical rehabilitation populations. Disabil. Health J. 2016, 9, 320–323. [CrossRef]

26. Sheu, J.; Huang, G.; Jheng, W.; Hsiao, C. Design and Implementation of a Three-Dimensional Pedometer Accumulating Walking
or Jogging Motions. In Proceedings of the 2014 International Symposium on Computer, Consumer and Control (IS3C), Taichung,
Taiwan, 10–12 June 2014; pp. 828–831.

27. Tang, Z.; Guo, Y.; Chen, X. Self-adaptive Step Counting on Smartphones under Unrestricted Stepping Modes. In Proceedings of
the 2016 IEEE 40th Annual Computer Software and Applications Conference, Atlanta, GA, USA, 10–14 June 2016; Volume 1,
pp. 788–797.

28. Beevi, F.H.; Miranda, J.; Pedersen, C.F.; Wagner, S. An Evaluation of Commercial Pedometers for Monitoring Slow Walking Speed
Populations. Telemed. e-Health 2016, 22, 441–449. [CrossRef]

29. Case, M.; Burwick, H.; Volpp, K.; Patel, M. Accuracy of smartphone applications and wearable devices for tracking physical
activity data. JAMA 2015, 313, 625–626. [CrossRef]

30. Crouter, S.; Schneider, P.; Karabulut, M.; Basset, D. Validity of Ten Electronic Pedometers for Measuring Steps, Distance, and
Kcals. Med. Sci. Sport. Exerc. 2003, 35, S283. [CrossRef]

31. Stavropoulos, T.G.; Andreadis, S.; Mpaltadoros, L.; Nikolopoulos, S.; Kompatsiaris, I. Wearable Sensors and Smartphone Apps as
Pedometers in eHealth: A Comparative Accuracy, Reliability and User Evaluation. In Proceedings of the 2020 IEEE International
Conference on Human-Machine Systems (ICHMS), Rome, Italy, 7–9 September 2020; pp. 1–6. [CrossRef]

http://dx.doi.org/10.1123/jpah.5.s1.s126
http://dx.doi.org/10.2165/00007256-200434010-00001
http://dx.doi.org/10.1136/bjsm.2009.061085
https://beta.bls.gov/dataViewer/view/timeseries/TUU10101AA01014521
http://dx.doi.org/10.1249/01.MSS.0000126777.50188.73
http://dx.doi.org/10.1080/02640414.2016.1154592
http://www.ncbi.nlm.nih.gov/pubmed/26950687
http://dx.doi.org/10.3390/ijerph16224375
http://www.ncbi.nlm.nih.gov/pubmed/31717474
http://dx.doi.org/10.1249/MSS.0b013e3181e9b133
http://www.ncbi.nlm.nih.gov/pubmed/20543755
http://dx.doi.org/10.1109/JSEN.2017.2685999
http://dx.doi.org/10.1016/j.gaitpost.2016.09.023
http://dx.doi.org/10.3390/s17071522
http://dx.doi.org/10.1016/j.measurement.2020.107789
http://dx.doi.org/10.1007/978-3-030-45002-1_9
http://dx.doi.org/10.3390/s18072034
http://dx.doi.org/10.2114/jpa2.27.233
http://dx.doi.org/10.1016/j.jesf.2014.01.003
http://dx.doi.org/10.1016/j.dhjo.2015.10.011
http://dx.doi.org/10.1089/tmj.2015.0120
http://dx.doi.org/10.1001/jama.2014.17841
http://dx.doi.org/10.1097/00005768-200305001-01571
http://dx.doi.org/10.1109/ICHMS49158.2020.9209441


Sensors 2021, 21, 4260 16 of 16

32. Melanson, E.L.; Knoll, J.R.; Bell, M.L.; Donahoo, W.T.; Hill, J.; Nysse, L.J.; Lanningham-Foster, L.; Peters, J.C.; Levine, J.A.
Commercially available pedometers: Considerations for accurate step counting. Prev. Med. 2004, 39, 361–368. [CrossRef]

33. Jayalath, S.; Abhayasinghe, N. A gyroscopic data based pedometer algorithm. In Proceedings of the 2013 8th International
Conference on Computer Science & Education (ICCSE), Colombo, Sri Lanka, 26–28 April 2013; pp. 551–555.

34. Zhong, S.; Wang, L.; Bernardos, A.; Song, M. An accurate and adaptive pedometer integrated in mobile health application. In
Proceedings of the IET International Conference on Wireless Sensor Network, Beijing, China, 15–17 November 2010; pp. 78–83.

35. Kooner, P.; Schubert, T.; Howard, J.; Lanting, B.; Teeter, M.; Vasarhelyi, E. Evaluation of the Effect of Gait Aids, Such as Canes,
Crutches, and Walkers, on the Accuracy of Step Counters in Healthy Individuals. Orthop. Res. Rev. 2021, 13, 1–8.

36. Akahori, A.; Kishimoto, Y.; Oguri, K. Estimate activity for M-health using one three-axis accelerometer. In Proceedings of the
2006 3rd IEEE/EMBS International Summer School on Medical Devices and Biosensors, Cambridge, MA, USA, 4–6 September
2006; pp. 122–125.

37. Chisholm, D.; Collis, M.; Kulak, L.; Davenport, W.; Gruber, N. Physical Activity Readiness. Br. Columbia Med. J. 1975, 17, 375–378.
38. Zhang, C.; Patras, P.; Haddadi, H. Deep learning in mobile and wireless networking: A survey. IEEE Commun. Surv. Tutor. 2019,

21, 2224–2287. [CrossRef]
39. Cho, Y.; Cho, H.; Kyung, C. Design and Implementation of Practical Step Detection Algorithm for Wrist-worn Devices. IEEE Sens.

J. 2016, 16, 7720–7730. [CrossRef]
40. Liu, B.; Wang, D.; Li, S.; Nie, X.; Xu, S.; Jiao, B.; Duan, X.; Huang, A. Design and implementation of an intelligent belt system

using accelerometer. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 2043–2046.

41. Lee, H.; Choi, S.; Lee, M. Step Detection Robust against the Dynamics of Smartphones. Sensors 2015, 15, 27230–27250. [CrossRef]
42. Lin, A.; Zhang, J.; Lu, K.; Zhang, W. An efficient outdoor localization method for smartphones. In Proceedings of the 2014 23rd

International Conference on Computer Communication and Networks (ICCCN), Shanghai, China, 4–7 August 2014; pp. 1–8.
43. Oner, M.; Pulcifer-Stump, J.; Seeling, P.; Kaya, T. Towards the run and walk activity classification through step detection—An

android application. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 1980–1983.

44. Li, S.; Ling, Z.; Cao, J.; Li, K.; Liu, G. A step detection algorithm based-on Chain Code. In Proceedings of the 2011 IEEE 3rd
International Conference on Communication Software and Networks (ICCSN), Xi’an, China, 27–29 May 2011; pp. 164–167.

45. Chon, J.; Cha, H. LifeMap: A smartphone-based context provider for location-based services. IEEE Pervas. Comput. 2011,
10, 58–67. [CrossRef]

46. Goyal, P.; Ribeiro, V.J.; Saran, H.; Kumar, A. Strap-down Pedestrian Dead-Reckoning system. In Proceedings of the 2011
International Conference on Indoor Positioning and Indoor Navigation, Guimarães, Portugal, 21–23 September 2011; pp. 1–7.

47. Mladenov, M.; Mock, M. A Step Counter Service for Java-Enabled Devices Using a Built-In Accelerometer. In Proceedings of the
1st International Workshop on Context-Aware Middleware and Services: Affiliated with the 4th International Conference on
Communication System Software and Middleware (COMSWARE 2009), Dublin, Ireland, 19 June 2009; pp. 1–5.

48. Wang, J.S.; Chuang, F.C. An Accelerometer-Based Digital Pen With a Trajectory Recognition Algorithm for Handwritten Digit
and Gesture Recognition. IEEE Trans. Ind. Electron. 2012, 59, 2998–3007. [CrossRef]

49. Chien, J.; Hirakawa, K.; Shieh, J.; Guo, H.; Hsieh, Y. An effective algorithm for dynamic pedometer calculation. In Pro-
ceedings of the 2015 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Okinawa, Japan,
28–30 November 2015; pp. 366–368.

50. Pan, M.; Lin, H. A step counting algorithm for smartphone users: Design and implementation. IEEE Sens. J. 2015, 15, 2296–2305.
[CrossRef]

51. Bebek, O.; Suster, M.; Rajgopal, S.; Fu, M.; Huang, X.; Cavusoglu, M.; Young, D.; Mehregany, M.; van den Bogert, A.;
Mastrangelo, C. Personal navigation via shoe mounted inertial measurement units. In Proceedings of the 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Taipei, Taiwan 18–22 October 2010; pp. 1052–1058.

52. Jang, H.; Kim, J.; Hwang, D. Robust step detection method for pedestrian navigation systems. Electron. Lett. 2007, 749–
751.:20070478. [CrossRef]

53. Beauregard, S. A helmet-mounted pedestrian dead reckoning system. In Proceedings of the 3rd International Forum on Applied
Wearable Computing, Bremen, Germany, 15–16 March 2006; pp. 1–11.

54. Kim, J.; Jang, H.; Hwang, D.; Park, C. A Step, Stride and Heading Determination for the Pedestrian Navigation System. J. Glob.
Position. Syst. 2004, 3, 273–279. [CrossRef]

55. Montoye, H.; Kemper, H.; Saris, W.; Washburn, R. APFiLoc: An Infrastructure-Free Indoor Localization Method Fusing
Smartphone Inertial Sensors, Landmarks and Map Information. Sensors 2015, 15, 27251–27272.

56. Coviello, G.; Avitabile, G.; Florio, A. The Importance of Data Synchronization in Multiboard Acquisition Systems. In Proceedings
of the 2020 IEEE 20th Mediterranean Electrotechnical Conference ( MELECON), Palermo, Italy, 16–18 June 2020; pp. 293–297.
[CrossRef]

57. Coviello, G.; Avitabile, G. Multiple Synchronized Inertial Measurement Unit Sensor Boards Platform for Activity Monitoring.
IEEE Sens. J. 2020, 20, 8771–8777. [CrossRef]

58. Mattfeld, R. Evaluation of Pedometer Performance Across Multiple Gait Types Using Video for Ground Truth. Ph.D. Thesis,
Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC, USA, 2018.

http://dx.doi.org/10.1016/j.ypmed.2004.01.032
http://dx.doi.org/10.1109/COMST.2019.2904897
http://dx.doi.org/10.1109/JSEN.2016.2603163
http://dx.doi.org/10.3390/s151027230
http://dx.doi.org/10.1109/MPRV.2011.13
http://dx.doi.org/10.1109/TIE.2011.2167895
http://dx.doi.org/10.1109/JSEN.2014.2377193
http://dx.doi.org/10.1049/el:20070478
http://dx.doi.org/10.5081/jgps.3.1.273
http://dx.doi.org/10.1109/MELECON48756.2020.9140622
http://dx.doi.org/10.1109/JSEN.2020.2982744

	Introduction
	Related Works
	Methods
	Data Collection
	Ground Truth
	Inter-Rater Reliability
	Pedometer Algorithms
	Peak Detector
	Threshold Crossing
	Autocorrelation

	Datasets
	Evaluation

	Results
	Algorithm Evaluation
	Steps and Shifts

	Discussion
	References

