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Abstract: Distributed fiber sensing (DFS) can provide real-time signals and warnings. The entire
length of fiber optic cable can act as a sensing element, but the accuracy is sometimes limited. On the
other hand, point-to-point fiber sensing (PPFS) is usually implemented using one or more fiber Bragg
gratings (FBGs) at specific positions along with the fiber for the monitoring of specific parameters
(temperature, strain, pressure, and so on). However, the cost becomes expensive when the number
of FBGs increases. A hybrid fiber sensing scheme is thus proposed, combining the advantages of
DFS and PPFS. It is based on a Brillouin optical time-domain analysis (BOTDA) fiber system with
additional FBGs embedded at certain positions where it is necessary to detect specific parameters.
The hybrid fiber sensing system has the advantages of full sensing coverage at essential locations
that need to be carefully monitored. In our work, the test results showed that the proposed system
could achieve a sensing distance of 16 km with the single-mode fiber with a 2 m spatial resolution.
For FBG parameter measurements, the temperature variation was 52 ◦C, from 25 ◦C to 77 ◦C, with a
temperature sensitivity of 23 pm/◦C, and the strain was from 0 to 400 µε, with a strain sensitivity of
0.975 pm/µε, respectively, using two FBGs.

Keywords: Brillouin optical time-domain analysis; fiber Bragg grating; distributed fiber sensing;
point to point; hybrid sensing

1. Introduction

In 1966, Kuen Kao demonstrated that fiberglass could be used as a medium for
transmitting light and proposed that if the decay per kilometer were less than 20 dB, optical
communication would be possible [1], bringing the communications industry to the next
generation. As a result, optical fiber research was invested during the 1970s, aiming to
reduce optical fiber attenuation, achieve long-distance transmission, and begin commercial
use. Simultaneously, optical fiber sensing technology also started to develop, which could
measure physical quantities such as temperature, pressure, stress, strain, and acceleration.

Compared to traditional electronic sensors, the advantages of fiber optic sensors
include high sensitivity, long transmission distance, low attenuation rate, small size, anti-
corrosion properties, anti-electromagnetic interference properties, high-temperature toler-
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ance, and long sustainability [1,2]. Optical fiber sensing can be divided into two categories:
point-by-point fiber sensing and distributed fiber sensing. Usually, fiber Bragg gratings
(FBGs) are used for point-to-point sensing. This is based on inserting one or more FBGs at
certain places and fiber links for parameters (temperature, strain, pressure, and so on) mon-
itoring. However, the number of FBGs required is significant if multiple detection points
are necessary. In addition, it may result in substantial total insertion loss and is expensive.

Moreover, in FBGs, there is no sensing ability or fiber link other than at those locations.
Distributed fiber sensing is based on the Brillouin scattering effect along with the fiber
link. The entire fiber point is the sensing element, but the accuracy is limited. In other
words, there is a displacement error between the actual point and the predicted point in
a distributed fiber sensing system. There are two typical applications of distributed fiber
optic sensing: Brillouin optical correlation domain analysis (BOCDA) [3] and Brillouin
optical time-domain analysis (BOTDA) [4]. These two methods rely on analyzing subtle
drifts of Brillouin frequency to achieve higher spatial resolution and a more extended
probing range for temperature and strain sensing. Recent advances in Brillouin OTDA
have achieved sensing ranges of up to ten kilometers with a displacement error of less than
one meter. Although the resolution of BOCDA is more accurate [5], the probing range is
much shorter than BOTDA, which limits the applicability are sensing distances longer than
a kilometer. Therefore, BOTDA is preferred for carbon storage applications.

Brillouin optical time-domain analysis (BOTDA) was first proposed by Horiguchi’s
group in 1989, who realized a system with 1.2 km SMF with 10 m resolution [6]. Later,
Xiaoyi’s group successfully demonstrated a system with a 10 m resolution over a 50 km
distance [7]. Carbon capture and storage is one of the practical options for reducing
greenhouse gas emissions. Carbon dioxide is captured from large stationary emitters and
transported to the storage site, injected into deep geological formations. The operation
of CO2 injection could induce fluctuations in reservoir pressure and temperature, which
would provide information on CO2 plume movement. Improper injection strategy and
pressure control may damage the wellbore and influence reservoir integrity, increasing
overall project risk. Therefore, it is necessary to deploy equipment for pressure and
temperature monitoring. Downhole temperature and pressure gauges are commonly used
for geological storage monitoring. Although they provide accurate measurements, the
spatial coverage is limited. BOTDA, which can act as an array of sensors, can be deployed
to overcome this limitation and provide real-time information on reservoir temperature and
pressure.. Y. Sun et al. presented distributed fiber optic sensing for monitoring geological
CO2 sequestration [8]. It possesses excellent potential to sense minor disturbances in
the deep subsurface. A. Zrelli et al. monitored temperature and pressure in disaster
environments using Brillouin optical sensors [9].

Distributed optical fiber sensing can provide real-time signals and warnings, helping
preserve the safety of storage sites. However, there are still some difficulties in determining
the exact locations at which important parameters fluctuate. On the other hand, point-by-
point fiber sensing is capable of accurate positioning. Therefore, we propose the possibility
of combining the point-by-point fiber sensing with distributed fiber sensing within the
same system by placing several FBGs in a BOTDA sensing system. This would offer the
advantages of providing sensing ability along all of the fiber links (distributed), while
the most dangerous/essential points could be applied with pre-located FBGs to achieve
precise measurements of variations in these parameters. We named the sensing scheme a
“hybrid sensing system.” However, this methodology has seldom been seen in prior works.
Only three other prior works have demonstrated BOTDA/FBG sensing. T. Nannipieri et al.
mentioned a hybrid BOTDA/FBG sensor for discrete dynamic and distributed static
strain/temperature measurements [10]. J. Li et al. presented an FBG-based positioning
method for BOTDA sensing [11]. Zhou et al. demonstrated large-scale BOTDA and
localized FBGs [12]. In general, these papers focused only on the measurement of the
strain parameter. In this paper, in addition to the strain parameter, the thermal parameter
is also discussed in detail for long BOTDA fiber sensing systems. Moreover, D. Ba et al.
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demonstrated a temperature-insensitive shape sensor based on BOTDA with a short
distance of 10 cm [13]. H. Iribas et al. studied the effects of pump pulse extinction ratio (ER)
in a BOTDA system. Their experiments confirmed that a long-range BOTDA deploying a
26-dB ER EOM and an optical amplifier could exhibit a Brillouin frequency shift error higher
than 1 MHz, even with minimal probe power [14]. W. Lin et al. demonstrated Brillouin
gain bandwidth reduction in a BOTDA system, obtaining more precise temperature/strain
measurements [15]. Arnaldo G. Leal-Junior et al. proposed a technique for designing and
optimizing springs for specific operating conditions or design requirements, meeting the
instrumentation requirements of soft robots and compliant structures [16]. Daniele Tosi et al.
extended the optical backscatter reflectometry method from a single fiber to multiple fibers
using a high-scattering optical network to scan multiple fiber segments simultaneously,
providing a reference for the use of SLMux in biomedical devices [17]. Arnaldo G.Leal-
Junior et al. proposed a multiplexing technology for sensors based on changes in polymer
optical fiber strength. Tests have also been carried out in multi-parameter applications. This
technology has guided the design of sensor arrays [18]. V.V. Zaharov et al. demonstrated
that Karhunen–Loève treatment could be used as a powerful data de-noising tool in the
proposed sensing applications [19].

This paper aims to design and assemble a sensing system to analyze the Brillouin
frequency drift caused by fluctuations in temperature and strain. Then, the paper proposes
and demonstrates such a hybrid sensing system by putting two FBGs at two locations for
temperature and strain measurement. A sensing range of up to 16 km was implemented
for measurement. The Brillouin frequency drift induced by temperature and strain and the
FBG shift was recorded and presented. Parts of the paper were published as part of the
25th OptoElectronics and Communications Conference (OECC 2020) [20]. In this paper,
further analyses and detailed illustrations of the works are provided.

2. Materials and Methods

Brillouin scattering consists of spontaneous Brillouin scattering and stimulated Bril-
louin scattering. The critical value is referred to as the stimulated Brillouin scattering (SBS)
threshold. When the incident pump laser energy is greater than the stimulated Brillouin
threshold, it is called SBS. If the pump laser energy is lower than the stimulated Brillouin
threshold, it is spontaneous Brillouin scattering.

2.1. Spontaneous Brillouin Scattering

When light is transmitted in optical fiber, sound waves are produced due to the
Brownian motion of optical fiber molecules. The pressure generated by sound waves
causes periodic refractive index changes in the optical fiber material. This phenomenon
can be regarded as Brillouin optical grating, moving in the direction of the incident light
in the optical fiber, producing a random scattering effect on the transmitted light wave.
The interaction between the light and sound waves causes part of the incident light to
backscatter, and the movement of the sound wave leads to the Doppler effect, resulting in
a Brillouin shift. The frequency of the incident light after the frequency reduction is the
frequency of the scattered light, referred to as the Brillouin frequency νB. The relationship
between the Brillouin frequency shift and the acoustic wave is as shown in Equation (1).

νB =
2n · νA

λp
(1)

where n is the refractive index of the medium, νA is the group velocity of the sound wave,
and λp is the pump laser wavelength. Therefore, the Brillouin frequency is determined
by the sound wave’s group velocity, the wavelength of the pump laser, and the refractive
index of the medium. Taking the standard single-mode fiber as an example, when the
pump laser wavelength is 1550 nm, the calculated Brillouin frequency is about 11 GHz. The
Brillouin frequency depends on the refractive index n of the optical fiber and the sound



Sensors 2021, 21, 4224 4 of 10

wave’s group velocity νA. The group velocity of the transmitted sound wave in the solid is
shown in Equation (2).

νA =

√
K
ρ

(2)

where K is the bulk modulus of silicon dioxide, and ρ is the average density in the op-
tical fiber. The density varies with ambient temperature or strain. Therefore, Brillouin
scattering can be applied to probe temperature, strain, and other parameters based on
this characteristic.

2.2. Stimulated Brillouin Scattering

When the pump laser power is greater than the SBS threshold, the spontaneous Bril-
louin scattering will be transformed into stimulated Brillouin scattering. The interference
between the backscattered Stokes light and the pulse pump laser results in an electrostric-
tion effect in the fiber. The coherent elastic sound field generated by the electrostriction
effect excites more Brillouin scattering light, and at the same time, the sound field excited
by the scattering light becomes more robust. As a result, a greater degree of power will
be obtained in this scattering light during this repeated process, which is referred to as
stimulated Brillouin scattering—the interference relationship between the incident light
and scattered light and sound wave.

The power threshold formula for stimulated Brillouin scattering is shown in
Equation (3).

PSBS =
21Ae f f

gBLe f f
(3)

where Ae f f is the effective optical fiber area, Le f f is the effective length of optical fiber, and
gB is the Brillouin gain coefficient.

The incident laser pulse power must be less than the stimulated Brillouin scattering
power threshold; otherwise, the incident laser pulse will excite the detection signal’s
acoustic wave. This phenomenon means that if the power of the pump laser pulse is greater
than the stimulated Brillouin scattering power threshold, the frequency difference between
the pump laser and the detection light will fall outside of the Brillouin gain bandwidth of
the fiber. Thus, the Brillouin scattering signal can still be measured, but the measurement
accuracy will be reduced.

When the pulse width of the pump laser is much greater than the phonon lifetime
in the fiber (10 ns), the stimulated Brillouin scattering can be regarded as stationary, not
changing with time, and thus approximating the pump laser acoustic Stokes field. On the
other hand, the amplitudes of the three-wave fields (i.e., the pump laser field, the acoustic
wave, and the Stokes field) do not change with time; a phenomenon called the stimulated
Brillouin scattering steady-state theory. If the steady-state analysis method is adopted, the
simplified formula is as follows:

(1) The pulse width of the pump laser is much larger than the phonon lifetime in the
fiber, and all the time terms in the coupled wave equation are ignored and eliminated.

(2) The frequency of the pump pulse is approximately equal to that of the backscattered
Stokes light.

(3) The attenuation coefficients of the pump pulse light and the backscattered Stokes
light in fiber are the same.

According to these three assumptions, the simplified SBS steady-state coupled wave
equation can be expressed as follows:

dIp

dz
= −gB Ip Is − αIp (4)

dIs

dz
= −gB Ip Is + αIs (5)
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where Ip is the intensity of the pump pulse light, Is is the Stokes intensity, α is the at-
tenuation coefficient of the fiber, gB is the gain coefficient, L is the length of the fiber to
be measured, z is the position in the fiber to be measured, and 0 ≤ z ≤ L. This formula
can be used to calculate the light intensity and Brillouin gain. By measuring the strain
and temperature changes of the fiber grating, the measured value can be compared with
the value measured by the Brillouin optical time-domain analysis system. In Figure 1,
an optical circulator is added to the connection end of the optical fiber to be tested, and
the Photodetector and the optical isolator are removed. Port 3 of the optical circulator is
connected to an optical spectrum analyzer to observe the penetration spectrum of the fiber
grating, which was initially used to amplify the pump. Erbium-doped fiber amplifier 1 of
the laser is now also used as the wide-spectrum light source required by the fiber grating,
as shown in Figure 1. An optical circulator is added instead of an optical isolator to one
end of the FUT to improve the accuracy of the stress and temperature measurements. This
allows the observation of the optical spectra of the FBGs in order to judge the variations in
temperature and stress at two specific points.
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Figure 1. Hybrid system combining fiber grating and BOTDA system.

The scheme of the system is shown in Figure 1. The narrow linewidth distributed
feedback (DFB) laser operates at 1550 nm, and Erbium-doped fiber amplifiers (EDFAs)
are used to boost the optical signals attenuated by the fiber. Two polarization controllers
are used to appropriately control the signal polarization states. The arbitrary waveform
generator (AWG) provides an external time pulse to the pulse pattern generator (PPG). A
signal generator (SG) can provide 10.5–11.0 GHz continuous wave to the upper electro-
optical modulator (EOM1) in order to modulate the probe light, while the PPG is used to
provide a pulse signal to the bottom electro-optical modulator (EOM2) to modulate the
pump light. The pulse width generated here is closely related to the spatial resolution.
The real-time oscilloscope (RTO) is used to conduct the time-domain positioning analysis.
The modulator bias controller (MBC) has the function of modulating the bias controller of
EOM1. The fiber ratio coupler on the left-hand side is used to split the DFB laser power
evenly. Please note that the BOTDA system required two coherent light sources to interact
with each other. The built-in optical isolators in optical circulators (OCs) and EDFAs can
prevent damage due to reflected amplified optical signals and Rayleigh backscattering.
Another function of the OCs is to route the optical signal to the correct direction. The
tunable filter can suppress sideband power and improve the optical signal-to-noise ratio
(OSNR). In a BOTDA system, the pulse light acts as the sensing probe. When it passes
through the optical fiber, a Brillouin gain value is obtained. In Figure 1, the fiber under test
(FUT) is presented, including 16 km single-mode fiber (SMF) and two pieces of dispersion-
shifted fiber (DSF). An optical circulator (OC) is located on the right-hand side of the
FUT. The signal generator is adjusted from 10.5 GHz to 11 GHz at frequency intervals of
0.01 GHz.
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3. Results and Discussion
3.1. 2D and 3D Graphic of Brillouin Frequency

In order to demonstrate the spatial resolution of 2 m over a FUT distance of up to
16 km achievable in the proposed BOTDA system, we added 3 m and 2 m DSFs in the
middle of the 16 km optical fiber at room temperature, while the rest of the fiber spool was
SMF. The Brillouin gain spectrum (BGS), which takes an average of 300 acquisitions, can be
calculated and transformed into 2D and 3D graphics using MATLAB software, as shown
in Figure 2a,b. The results were reconstructed for 51 frequencies at measurement intervals
of 10 MHz. Frequency drifts at around 10 km were observed and measured. The different
fiber cores of SMF and DSF have corresponding Brillouin frequencies of 10.88 GHz and
10.57 GHz, respectively. Please note that DSF has a smaller fiber core than SMF, simulating
the shift in the frequency of SMF to 10.57 GHz under specific strain. The pump pulse
width was set at 20 ns, corresponding to a spatial resolution of 2 m. The X-axis label is
the distance (km), and the Y-axis label is Brillouin frequency (GHz). The oscilloscope was
used to observe the BGS at two different frequencies. Here, we aim to analyze the Brillouin
frequency drift induced by the fiber core diameter. The spatial resolution was optimized
following the pulse width used in this experiment. The spatial resolution was reduced
from 3 m to 2 m. The optimal BGS was obtained by adjusting the filter to increase the total
fiber distance to 16 km. Two pieces of DSF were observed at 10 km and 14 km from the
starting points.
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3.2. Integration of FBG Sensing in the BOTDA System

To assess the impact of temperature on Brillouin frequency drift, a piece of 3 m DSF
was immersed in the heater to simulate an increase in temperature. In Figure 3a, two FBGs
are deployed between the SMF spools on both sides of the 3 m DSF. Two C band FBGs
were made in-house using the standard phase mask method. The length, reflectivity, and
3-dB bandwidth of this FBG were 1.2 cm, about 90%, and 0.25 nm, respectively. The KrF
Excimer Laser had a lasing wavelength of 248 nm. A commercial phase mask is used to
create a periodic refractive index variation structure.

FBG1 has an original central wavelength of 1542.79 nm at 25 ◦C, and FBG2 has an
original central wavelength of 1549.41 nm before the application of strain, as shown in
Figure 3b. In Figure 3c, the transmitted spectra of FBG1 is shown to be 1544.0 nm at
77 ◦C, while that of FBG2 is 1549.8 nm; when the strain stage elongates, it moves 0.3 mm,
corresponding to 400 µε. The measured wavelength variations as a result of temperature
and strain are 2311 pm/◦C and 0.975 pm/µε, respectively, for FBG1 and FBG2. Based
on the above experiments, we determined that the BOTDA system integrating FBGs was
a good platform for observing both Brillouin frequency drift and the distributed fiber
and variation in FBG central wavelengths due to changes in temperature and strain. The
temperature against the Brillouin frequency of DSF was measured twice, and the results
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are shown in Figure 4. We found that the experimental curves were entirely linear, with an
R2 of 0.9983. These results confirm the feasibility of integrating point-to-point fiber sensing
and distributed fiber sensing in a system. Using cost-effective equipment and devices, the
sensing resolution was 2 m, compared to the expensive one presented in [21], which had a
spatial resolution of 1 m over a 50 km range. Moreover, our hybrid sensing system is built
with FBGs in the proposed BOTDA system.
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The hybrid system adds FBGs in the fiber under the test (FUT) region. The FBGs
measure the temperature and strain change precisely at specific points. This makes it
possible to accurately detect disturbances within small ranges, compensating for the limited
spatial resolution of BOTDA sensing systems. Additionally, a point-to-point sensing system
could solve the dead zone problem. The temperature and strain can therefore be precisely
detected and measured.
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3.3. Reproducibility and Repeatability Test

In order to address the reproducibility issue, two sections of 2 m DSF were inserted
at 10 km and 14 km in the BOTDA system, and the data were measured once every day
for five days. A different student measured each day. As a result, the optical intensity
against the fiber distance data, which is the frequency intensity at 10.88 GHz against the
distributed fiber distance, overlaps very well, as shown in Figure 5a. The overlapping data
at a frequency of 10.57 GHz are also shown in Figure 5b. In order to address the repeatability
issue, the setup is the same. Two pieces of 2 m DSF were inserted at 10 km and 14 km in
the BOTDA system, and the data were measured five times with an interval of 1.5 h by the
same person. The data overlap very well, as shown in Figure 5c, which is the frequency
intensity at 10.88 GHz against the distributed fiber distance. The overlapping data at a
frequency of 10.57 GHz are also shown in Figure 5d. Therefore, we could confirm that the
proposed BOTDA system has good performance of reproducibility and repeatability.
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Figure 5. (a) The optical intensity against fiber distance data in BOTDA at 10.88 GHz, (b) the optical
intensity against fiber distance data in BOTDA at 10.57 GHz addressing the reproducibility issue,
(c) the optical intensity against fiber distance data in BOTDA at 10.88 GHz, (d) the optical intensity
against fiber distance data in BOTDA at 10.57 GHz addressing the repeatability issue.

The innovation and novelty of this work involve the integration of point-to-point
fiber sensing with distributed fiber sensing. That is the use of individual FBGs to test
temperature and strain along with a distributed fiber system. Most prior works have only
tested the temperature or strain parameters individually. We also suggest that the FBGs
should be located at the places most likely to experience temperature/strain variation. The
FBGs could also be located in the dead zone of the distributed fiber sensing (DFS) system,
where the DFS system cannot detect parameters variation.

4. Conclusions

Distributed fiber sensing (DFS) can provide real-time monitoring for various applica-
tions. The entire fiber link is the sensing element, but the resolution accuracy is limited.
In this paper, distributed fiber sensing and point-by-point FBG sensing were integrated
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into a single system called a hybrid fiber sensing system for monitoring temperature,
pressure, vibration, and strain. However, both the insertion loss and cost increase when
more FBGs are added. In this paper, a hybrid fiber sensing scheme was constructed by
combining FBGs in DFS. It was constructed by putting several FBGs at certain places
where the temperature and strain change in BOTDA fiber systems.The hybrid fiber sensing
system has the advantage of all fiber links, and the most dangerous/important locations
are sensed precisely. The 16 km BOTDA fiber system has a 2 m spatial resolution overall for
temperature and strain monitoring in our work. Furthermore, two FBGs were deployed in
the observation zone to improve the temperature and strain sensitivity, corresponding to an
FBG shift of 1.21 nm and 0.39 nm, respectively. In summary, the advantages of integrating
distributed and point-to-point fiber sensing strategies were demonstrated and analyzed
with good results.
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