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Abstract: Insufficient physical activity is common in modern society. By estimating the energy ex-
penditure (EE) of different physical activities, people can develop suitable exercise plans to improve 
their lifestyle quality. However, several limitations still exist in the related works. Therefore, the aim 
of this study is to propose an accurate EE estimation model based on depth camera data with phys-
ical activity classification to solve the limitations in the previous research. To decide the best location 
and amount of cameras of the EE estimation, three depth cameras were set at three locations, namely 
the side, rear side, and rear views, to obtain the kinematic data and EE estimation. Support vector 
machine was used for physical activity classification. Three EE estimation models, namely linear 
regression, multilayer perceptron (MLP), and convolutional neural network (CNN) models, were 
compared and determined the model with optimal performance in different experimental settings. 
The results have shown that if only one depth camera is available, optimal EE estimation can be 
obtained using the side view and MLP model. The mean absolute error (MAE), mean square error 
(MSE), and root MSE (RMSE) of the classification results under the aforementioned settings were 
0.55, 0.66, and 0.81, respectively. If higher accuracy is required, two depth cameras can be set at the 
side and rear views, the CNN model can be used for light-to-moderate activities, and the MLP 
model can be used for vigorous activities. The RMSEs for estimating the EEs of standing, walking, 
and running were 0.19, 0.57, and 0.96, respectively. By applying the different models on different 
amounts of cameras, the optimal performance can be obtained, and this is also the first study to 
discuss the issue. 

Keywords: activity classification; convolutional neural network; depth camera; energy expenditure; 
machine learning; multilayer perceptron; physical activity 
 

1. Introduction 
Sedentary lifestyles are common in modern society. Insufficient physical activity in-

creases the risk of noncommunicable diseases (NCDs) [1], such as cardiovascular diseases, 
respiratory diseases, cancers, stroke, and diabetes. Studies have indicated that NCDs ac-
count for more than 70% of global deaths [2]. To address the problem of insufficient phys-
ical activity, physical activities must be quantified for the design of appropriate exercise 
plans. However, some elderly are unable to go outside to meet the basic daily require-
ments of physical activities because of certain healthy issues. For those elderly who can 
only stay at home, it is necessary to estimate their EE of indoor activities and ensure they 
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meet the basic requirement of physical activity. Energy expenditure (EE) is one factor used 
for quantifying physical activities. Conventionally, people use the portable metabolic an-
alyzer to measure EE during exercise. The common commercial models of portable meta-
bolic analyzers include COSMED K4b2 [3], PNOĒ, and METAMAX® 3B, and the COS-
MED K4b2 system is the most common system for measuring EE. Although the portable 
metabolic analyzers provide the most direct and accurate method for measuring calorie 
consumption, users of the system find it inconvenient when performing physical activities 
because they must carry an instrument and wear an oxygen mask during exercise. 

Several studies have proposed systems using various sensors to map the EE meas-
ured by metabolic analyzers. Sensor systems can be divided into two types: contact-based 
[4–7] and noncontact [8–12]. In a contact-based sensor system, users must wear devices on 
body segments to measure EE. Most related research on this sensor system has adopted 
inertial measurement units (IMUs) for data collection. Altini et al. [4] adopted a custom-
ized platform that combined electrocardiogram sensors and accelerometers to obtain data 
and measure EE when users performed different physical activities in daily living. Three 
EE estimation methods were compared in the aforementioned study. The sensor number 
and the positioning of each sensor were also evaluated. Cvetković et al. [5] proposed an 
approach for estimating the EE of various activities in different scenarios. In addition to 
evaluating the EE, they analyzed the number and contributions of various sensors. Park 
et al. [6] evaluated the EE of six activities in daily living by combining various sensors, 
including an IMU and electrocardiogram sensor. Three feature selection methods were 
combined with the linear support vector machine (SVM) to find the best input feature set. 
The best feature set was tested in various models. The activity-specific approach was also 
adopted to improve the accuracy of EE estimation. However, the activities were only clas-
sified into two types, including static and dynamic activities. It is also not convenient to 
wear an IMU and electrocardiogram sensor for EE estimation. Hedegaard et al. [7] pro-
posed an EE estimation system for seven activities during which 17 IMU sensors must be 
worn on body segments. Several parameters, such as gender, heart rate, acceleration, cen-
ter of body weight, were input into multiple linear regression to estimate EE. Although 
this system can accurately estimate the EE of seven activities, wearing the clothing with 
17 sensors is inconvenient. The main advantage of contact-based systems is their suitabil-
ity for outdoor activities. However, wearing many sensors when performing physical ac-
tivities is impractical. Sensor positioning greatly affects the accuracy of EE estimation. 
Moreover, the battery life of wearable devices is a critical challenge. Noncontact ap-
proaches have been proposed to solve the problems of using wearable devices to estimate 
EE. Kim et al. [8] developed a system based on Doppler radar to estimate the EE of upper-
limb motions with a regression model. However, the average error of the aforementioned 
system for EE estimation was 12.75%, which is high. The other limitation of the aforemen-
tioned system is its inability to capture vertical motions, which is essential for estimating 
the EE of running activity. Moreover, setting a Doppler radar sensor is difficult in home 
settings. 

Another noncontact approach for estimating EE involves a depth camera or tradi-
tional camera as a data collection tool. Yang et al. [9] proposed an EE estimation system 
based on smartphone cameras for workouts. The system can accurately count the repeti-
tions and estimate the EE of four types of workouts: sit-ups, push-ups, jumping jacks, and 
squats. However, the system provides quantification for only the four aforementioned 
workouts, which are uncommon in daily living. Koporec et al. [10] developed a noncon-
tact method for EE estimation by using a camera and classical image processing ap-
proaches. However, the error of EE estimation in the aforementioned study was high. 
With the development of artificial intelligence, deep learning approaches have also been 
adopted for EE estimation. Na et al. [11] proposed a deep-learning-based method for es-
timating the EE of different levels of physical activities. A convolutional neural network 
(CNN)-based method was used in their study for EE prediction [13]. The aforementioned 
research is representative of the applications of deep learning algorithms to EE estimation; 



Sensors 2021, 21, 4216 3 of 15 
 

 

however, the EEs of only light physical activities were estimated in the aforementioned 
study. 

Lin et al. [12] proposed an EE estimation system by using Kinect depth cameras. The 
cameras were installed at three locations, namely the rear view, rear side view, and side 
view. Moreover, five regression-based models were compared to determine the model 
with the highest accuracy. Lin et al. estimated the EEs of only moderate-to-vigorous ac-
tivities. Light activities, such as standing, were not considered; however, standing is an 
everyday physical activity. Another limitation of the aforementioned study was the high 
computational time required because of the complicated feature extraction process. 

The proposed study can be regarded as an extension of the study of Lin et al. The 
motivation of the proposed study is to propose a Kinect-based EE estimation system to 
solve the problems and limitations associated with the previous research of Lin et al. This 
study investigated if applying the physical activity classification algorithm to the EE esti-
mation system can improve the accuracy of EE estimation, which has not been confirmed 
in previous studies. Moreover, the proposed study investigated the best model for each 
type of physical activity for different camera settings. The study adopted a physical activ-
ity recognition algorithm to classify the postures captured by Kinect depth cameras into 
three activities, namely standing, walking, and running. Only 18 velocity-based features 
were used for EE estimation in this study to lower the computational complexity for fea-
ture extraction and selection. Three types of models were adopted to develop an inde-
pendent model for each activity, and the model with the best performance for each activity 
was selected. The proposed system hypothesized that using the posture classification al-
gorithm can improve the accuracy of EE estimation and is expected to obtain the optimal 
model for each physical activity for different camera settings. 

2. Methodology 
Figure 1 depicts the system architecture used in this study. The system was used to 

perform five tasks: data acquisition, data preprocessing, feature extraction, physical activ-
ity classification, and EE estimation. The performance of three models, namely linear re-
gression (LR), multilayer perceptron (MLP), and convolutional neural network (CNN) 
models, for estimating the EE of each activity were compared. After physical activity clas-
sification, the independent models for activity prediction were used for training and EE 
estimation. 

 
Figure 1. System architecture used in the proposed method. 
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2.1. Data Acquisition 
The dataset used in this study was obtained from a study conducted in 2019 [12]. 

Three XBOX 360 Kinect cameras (Microsoft Corp., Redmond, WA, USA) were placed 
along three directions, namely the side, rear side, and rear view directions. The positions 
of the Kinect cameras are illustrated in Figure 2. Each Kinect camera was installed and 
fixed to a tripod 0.9 m high. The distance between each camera and the participant was 
set to approximately 2 m, which ensured that the Kinect cameras could capture the par-
ticipant’s entire body. The sampling frequency of Kinect is 30 Hz. 

 
Figure 2. Locations of the Kinect cameras. 

During experiments, participants were asked to wear a portable metabolic analyzer 
(K4b2, COSMED, Rome, Italy) to record the pulmonary gas exchange by breath with an 
accuracy of deviation of ± 0.02% O2 and ± 0.01% CO2. 

A total of 21 subjects (10 men and 11 women) were recruited for the experiment. Their 
gender, ages, weights, and body fat ratios are listed in Table 1. The mean and standard 
deviation (SD) of the age of the participants is 21.90 ± 1.55 years old. The mean and SD of 
the weight is 60.20 ± 7.60 kg. The mean and SD of the body fat rate is 20.69 ± 7.37%. 

People with infectious or chronic diseases were excluded from this study. All partic-
ipants provided informed consent before participating in the experiments. The experi-
mental procedures used in this study were approved by the Institutional Review Board 
(IRB) of Cathay General Hospital, Taipei, Taiwan (IRB code: CGH-NTPU105001). 

Experimental details for each activity are listed in Table 2. Various physical activities, 
including standing, walking, and running at various speeds, were included in the exper-
iments. Standing, walking, and running are regarded as the light, moderate, and vigorous 
activities in this study. The walking speeds considered were 4.8, 5.6, and 6.4 km/h, and 
the running speeds considered were 8.0 and 8.3 km/h and were set on the treadmill. Par-
ticipants performed each activity for 5 min on a treadmill. In the pilot study, a treadmill 
was used instead of free-living conditions because a stable movement speed can be main-
tained with the treadmill. The resting times between each light-to-moderate activities and 
moderate-to-vigorous activities were 5 and 10 min, respectively. 

  

2 m

2 m

2 m
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Table 1. Participants’ data. 

Number of Subjects 21 
Sex 10 males, 11 females 

Age (years old) 21.90 ± 1.55 
Weight (kg) 60.20 ± 7.60 

Body Fat Rate (%) 20.69 ± 7.37 

Table 2. Experimental details of each activity. 

Type Activity Speed (km/h) Time (min) Rest Time (min) 
Light Standing 0 5 0 

Moderate 
Walking 4.8 5 5 
Walking 5.6 5 5 
Walking 6.4 5 5 

Vigorous Running 8.0 5 10 
Running 8.3 5 10 

The skeleton sequential data were collected with Kinect cameras while the partici-
pants were performing the physical activity on the treadmill. The first 3 min of each activ-
ity represented a non-steady state, and data from this period were discarded in this study 
[14]. Two minutes of steady-state data were used for physical activity classification and 
EE prediction. 

To develop an EE estimation model, the expenditure data for each physical activity 
should be collected as the ground truth. In this study, the metabolic equivalent of task 
(MET) was regarded as the measurement unit. The MET is calculated as the ratio of the 
rate of energy expended during physical activity to the mass of a person. This ratio is used 
by many aerobic training organizations to estimate exercise intensity and EE. 

2.2. Data Preprocessing 
Data preprocessing can be divided into two parts: coordinate system transformation 

and noise reduction. Coordinate system transformation aims to transform the reference 
coordinate of each skeletal value into the body center. The initial reference coordinate of 
skeletal values was the center of a Kinect camera, but the varying object distances from a 
Kinect camera would cause problems of action recognition. For example, when the par-
ticipants were walking or running on the treadmill, their bodies moved back and forth, 
which caused unstable variations in the skeletal data. According to the previous study, 
the referenced coordinate should be translated from the Kinect camera to the origin of 
body center, which is the shoulder center [15]. In this study, the reference coordinate was 
set to the center of the shoulder as the previous study had suggested. The reference coor-
dinate of other joints was transformed by using the relative distance between the joint and 
the shoulder center. The formula for coordinate system transformation can be expressed 
as follows: 

(𝑥𝑥𝑖𝑖′, 𝑦𝑦𝑖𝑖′, 𝑧𝑧𝑖𝑖′) = (𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑟𝑟 , 𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑟𝑟 , 𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑟𝑟), (1) 

where the coordinate of the shoulder center is (𝑥𝑥𝑟𝑟 ,𝑦𝑦𝑟𝑟 , 𝑧𝑧𝑟𝑟), 𝑖𝑖 =  1, . . . , 𝑗𝑗 is the index of the 
joint, 𝑗𝑗 is the total selected number of joints, which is six and will be explained in the 
following section, and (𝑥𝑥𝑖𝑖′,𝑦𝑦𝑖𝑖′, 𝑧𝑧𝑖𝑖′) denotes the skeleton coordinates after transformation. 

Kinect cameras are sensitive to backgrounds, light, and surrounding objects. Noise 
occurs during skeletal tracking [16]. Therefore, a moving average filter, which averages 
the coordinates of two previous and two subsequent frames [17], can be used to remove 
the noise. The formula for applying the moving average filter is: 

(𝑥𝑥𝑘𝑘∗, 𝑦𝑦𝑘𝑘∗, 𝑧𝑧𝑘𝑘∗) =
1
5

( � 𝑥𝑥𝑛𝑛′
𝑘𝑘+2

𝑛𝑛=𝑘𝑘−2

, � 𝑦𝑦𝑛𝑛′
𝑘𝑘+2

𝑛𝑛=𝑘𝑘−2

, � 𝑧𝑧𝑛𝑛′
𝑘𝑘+2

𝑛𝑛=𝑘𝑘−2

) (2) 
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where 𝑘𝑘 represents the current frame, 𝑘𝑘 − 2 to 𝑘𝑘 + 2 represent two previous frames and 
two subsequent frames, and (𝑥𝑥𝑘𝑘∗,𝑦𝑦𝑘𝑘∗, 𝑧𝑧𝑘𝑘∗) is the new skeleton coordinate after processing 
with the moving average filter. 

2.3. Feature Extraction 
Because the speed of each activity is varying, the mean velocity between every two 

consecutive frames might be an important factor to discriminate the activities. The for-
mula is presented in (3). The velocity of a joint is calculated by obtaining the difference of 
velocity between two consecutive frames [18]. 𝑣𝑣𝑥𝑥𝑘𝑘 , 𝑣𝑣𝑦𝑦𝑘𝑘, and 𝑣𝑣𝑧𝑧𝑘𝑘  means the mean velocity in 
x, y, and z directions and will be used to train the models. The accuracy of the positions 
of joints from Kinect was also discussed and validated in the previous study to prove that 
the data used for this study are reliable [19]. 

�𝑣𝑣𝑥𝑥𝑘𝑘 , 𝑣𝑣𝑦𝑦𝑘𝑘 , 𝑣𝑣𝑧𝑧𝑘𝑘� =
(𝑥𝑥𝑘𝑘∗, 𝑦𝑦𝑘𝑘∗, 𝑧𝑧𝑘𝑘∗) − (𝑥𝑥𝑘𝑘−1∗, 𝑦𝑦𝑘𝑘−1∗, 𝑧𝑧𝑘𝑘−1∗)

𝑡𝑡𝑘𝑘 − 𝑡𝑡𝑘𝑘−1
 (3) 

According to the related research [20], treadmill workouts, such as standing, walk-
ing, and running, involve periodic and symmetric movements. Thus, to reduce the com-
putational complexity, only half of the joints in the body were used to analyze physical 
activities. The six joints selected in this study were the shoulder, elbow, wrist, hip, knee, 
and ankle on the left side (red circles in Figure 3). The six selected joints were imaged in 
three directions simultaneously by using the three cameras. Three-dimensional data were 
obtained for each joint. Therefore, 18 velocities were obtained as features for further anal-
ysis. 

 
Figure 3. Map of the Kinect-tracked skeleton joints. The red-marked joints represent the selected 
joints. 

Principal component (PC) analysis (PCA) is used to reduce feature dimensionality. 
In this study, PCs that cumulatively accounted for more than 90% of the overall variances 
were retained [21]. The numbers of feature subsets from the side, rear side, and rear views 
were 10, 9, and 7, respectively. The cumulative explained variance of the retained PCs is 
plotted in Figure 4. 
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(c) 

Figure 4. Cumulative and individual explained variances of the retained PCs for each Kinect place-
ment: (a) side view, (b) rear side view, and (c) rear view. 

2.4. Physical Activity Classification 
To improve the accuracy of EE estimation, physical activities were classified as stand-

ing, walking, or running. An SVM algorithm was adopted to classify physical activities 
[22]. SVM is a widespread method to solve the classification problems. It can convert the 
raw data from lower to higher dimension using the kernel functions. After converting to 
higher dimension, the optimal hyper plane can be found to separate the data from differ-
ent classes with the maximized margin. The advantage of SVM is that it can solve linear 
inseparable problems after projecting the raw data to a higher dimension. In this study, 
three SVM classifiers were built to classify the physical activities into three activities with 
one-against-all approach, and radial basis function kernel was used as the kernel function. 

2.5. EE Prediction 
To obtain the optimal model for estimating the EE during physical activities, the es-

timation results obtained by using three models, namely LR, MLP, and CNN, were com-
pared. The reason of testing the three models is that these are the most common models 
in statistical, machine learning, and deep learning fields. The LR model can be used to 
determine whether the ground truth and estimated output are highly correlated. The MLP 
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model is a type of feedforward artificial neural network, which comprises an input layer, 
an output layer, and several hidden layers [23]. The MLP model used in this study con-
tained five layers: one input layer, three hidden layers, and one output layer, as presented 
in Figure 5. Different numbers of nodes n were tested to obtain the optimal number of 
neurons in the hidden layers to achieve optimal regression results. The logistic function 
was used as the activation function to estimate EE for different numbers of neurons, and 
mean square error (MSE) was used to evaluate the performance of different numbers of 
nodes. The number of nodes varied from 10 to 90 in increments of 10 neurons. 

 

Figure 5. Structure of the constructed MLP model. 

CNN is widely used to recognize objects and patterns in images [24]. In this study, 
CNN was used to automatically extract the features of kinematic data. The structure of 
the constructed CNN model is depicted in Figure 6. The CNN model used in this study 
comprised one input layer, two convolutional layers, two max-pooling layers, and one 
dense layer. The kernel size for each convolutional layer was 3 × 3. The rectified linear unit 
activation function was used in each convolutional layer [25]. Eighteen velocity data were 
input as the 18 × 1 input layer. The two convolutional layers were used to detect the fea-
tures of the input data and create the feature maps automatically. The fully connected 
layers comprised two hidden layers with 16 hidden units per layer. In addition, the final 
output layer will output the result of the MET. 

. 

Figure 6. Structure of the constructed CNN model. 

To evaluate the performance of EE estimation and compare the performance with the 
related research, three indicators used in the related research [5–7,10,12], mean absolute 
error (MAE), MSE, and root MSE (RMSE), were adopted to evaluate the performance. The 
formulas for calculating MAE, MSE, and RMSE are as follows: 

MAE =
1
𝑁𝑁
��𝑌𝑌�𝑘𝑘 − 𝑌𝑌𝑘𝑘�
𝑁𝑁

𝑘𝑘=1

 (4) 

MSE =
1
𝑁𝑁
�(𝑌𝑌�𝑘𝑘 − 𝑌𝑌𝑘𝑘)2
𝑁𝑁

𝑘𝑘=1

 (5) 
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RMSE = ��
(𝑌𝑌�𝑘𝑘 − 𝑌𝑌𝑘𝑘)2

𝑁𝑁

𝑁𝑁

𝑘𝑘=1

 (6) 

where 𝑌𝑌�𝑘𝑘 denotes the estimated EE from each model, and 𝑌𝑌𝑘𝑘 denotes the actual EE from 
K4b2  portable calorimetry system. k = 1, …, N is the index of the data point. N is the 
amount of the data points. The unit for the MAE and RMSE was the MET. The ranges for 
MAE, MSE, and RMSE are [0, ∞]. 

Ten-fold cross-validation was used to evaluate the accuracy of different EE predictive 
models [26]. The final accuracy of each model was the average accuracy obtained through 
10-fold cross-validation. 

3. Results 
For the MLP model, different nodes were tested to obtain the optimal model for the 

further comparisons. Figure 7 indicated that the lowest MSE was achieved when 70 neu-
rons per hidden layer were used. The MLP with three hidden layers which contains 70 
neurons per layer was adopted for the further comparisons. 

 
Figure 7. MSEs for different numbers of nodes (from 10 to 90) in the MLP model. 

The performance evaluation of the models was divided into three parts. The EE esti-
mation performance of (i) a general model for all physical activities, (ii) the physical ac-
tivity classification method, and (iii) independent models for different physical activities 
were evaluated. 

3.1. EE Estimation Performance of the General Model 
A general model was built for estimating the energy expenditure of all physical ac-

tivities for two purposes. The first is for comparison with independent models for physical 
activity classification. The second is that if only one Kinect camera is available, the optimal 
position of the general model can be used. 

Data for different physical activities were used to evaluate the EE estimation perfor-
mance of the LR, MLP, and CNN models. The performance of the models with and with-
out PCA was also examined to evaluate whether PCA improves the performance of the 
general model. The performance of the models with and without PCA is presented in Ta-
bles 3–5. According to Tables 3–5, when data from all physical activities were used, the 
models without PCA outperformed those with PCA. The MLP and CNN models exhibited 
smaller errors than did the LR model. Moreover, the smallest estimation error was ob-
tained when a Kinect camera was set along the side view and the MLP model without 
PCA was adopted. The MAE, MSE, and RMSE under the aforementioned settings were 
0.55, 0.66, and 0.81, respectively. 
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Table 3. LR model results obtained with and without PCA. 

 Side Rear Side Rear 
 Without PCA With PCA Without PCA With PCA Without PCA With PCA 

MAE (MET) 1.29 1.38 1.51 1.54 1.25 1.50 
MSE (MET2) 2.94 3.46 3.85 4.04 2.62 3.69 
RMSE (MET) 1.71 1.86 1.96 2.01 1.62 1.92 

Table 4. MLP model results obtained with and without PCA. 

 Side Rear Side Rear 

 Without PCA 
With 
PCA 

Without PCA With PCA 
Without 

PCA 
With PCA 

MAE (MET) 0.55 0.67 0.85 1.06 0.61 0.82 
MSE (MET2) 0.66 1.12 1.65 2.52 0.81 1.52 
RMSE (MET) 0.81 1.06 1.28 1.58 0.90 1.23 

Table 5. CNN model results obtained with and without PCA. 

 Side Rear Side Rear 
 Without PCA With PCA Without PCA With PCA Without PCA With PCA 

MAE (MET) 0.63 0.78 0.92 1.08 0.70 0.89 
MSE (MET2) 0.81 1.30 1.66 2.36 0.95 1.60 
RMSE (MET) 0.90 1.14 1.29 1.53 0.98 1.26 

3.2. Accuracy of Physical Activity Classification 
Because the EE estimation method proposed in this study is mainly based on physical 

activity classification, the accuracy of physical activity classification must be examined. 
The performance of physical activity classification with and without PCA is presented in 
Table 6. 

Table 6. Accuracy of the SVM algorithm with and without PCA for classifying different activities at 
three Kinect camera locations. 

 Side Rear Side Rear 
Without PCA 99.55% 96.33% 98.70% 

With PCA 98.49% 92.16% 95.72% 

The performance differences in physical activity classification with and without PCA 
were nonsignificant. Moreover, the accuracy of physical activity classification without 
PCA was higher than that with PCA. Accuracy without PCA could reach 99.55%. 

Therefore, PCA was not adopted for further comparisons of the models and experi-
mental settings for different activities.  

3.3. EE Estimation Performance with Physical Activity Classification 
Tables 7–9 indicate the EE estimation performance with physical activity classifica-

tion. The smallest error in the EE estimation for standing was achieved when a Kinect 
camera was installed along the rear view and the CNN model was used. The MAE, MSE, 
and RMSE of the EE estimation for standing were 0.15, 0.04, and 0.19, respectively. The 
smallest error in the EE estimation for walking was achieved when a Kinect camera was 
set along the side view and the CNN model was used. The MAE, MSE, and RMSE of the 
EE estimation for walking were 0.45, 0.33, and 0.57, respectively. The smallest error in the 
EE estimation for running was obtained when a Kinect camera was set along the rear view 
and the MLP model was used. The MAE, MSE, and RMSE of the EE estimation for running 
were 0.66, 0.94, and 0.96, respectively. 
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Table 7. EE estimation performance of independent LR models for different activities. 

 Side Rear Side Rear 
 Standing Walking Running Standing Walking Running Standing Walking Running 

MAE 
(MET) 0.24 0.70 1.13 0.22 0.75 1.23 0.20 0.62 1.12 

MSE 
(MET2) 0.09 0.82 2.26 0.08 0.90 2.55 0.06 0.62 2.11 

RMSE 
(MET) 

0.30 0.90 1.50 0.28 0.95 1.60 0.25 0.78 1.45 

Table 8. EE estimation performance of independent MLP models for different activities. 

 Side Rear Side Rear 
 Standing Walking Running Standing Walking Running Standing Walking Running 

MAE 
(MET) 

0.18 0.44 0.69 0.17 0.59 0.88 0.16 0.47 0.66 

MSE 
(MET2) 

0.06 0.34 0.96 0.05 0.59 1.64 0.04 0.41 0.94 

RMSE 
(MET) 0.24 0.58 0.98 0.23 0.77 1.28 0.20 0.64 0.96 

Table 9. EE estimation performance of independent CNN models for different activities. 

 Side Rear Side Rear 
 Standing Walking Running Standing Walking Running Standing Walking Running 

MAE 
(MET) 0.16 0.45 0.76 0.17 0.56 0.87 0.15 0.47 0.73 

MSE 
(MET2) 

0.04 0.33 1.18 0.05 0.54 1.43 0.04 0.37 0.98 

RMSE 
(MET) 

0.21 0.57 1.08 0.22 0.74 1.19 0.19 0.60 0.99 

4. Discussion 
In the proposed method, physical activity classification is performed before the EE 

estimation model is developed. To compare with the performance in different models and 
experimental settings, the performance evaluation was divided into three parts. First, the 
performance of a general model for all physical activities was investigated. According to 
the results in Tables 3–5, the smallest error in EE was obtained when the Kinect camera 
was set along the side view and the MLP model was used. The MAE, MSE, and RMSE in 
the EE under the aforementioned settings were 0.55, 0.66, and 0.81, respectively. Thus, 
when only one Kinect camera is available, optimal EE estimation performance is obtained 
when the camera is set along the side view and the MLP model is used. For an individual 
who weighs 60 kg and exercises for 1 h, the error between the EE estimated with the gen-
eral model and the actual EE is 33 kcal. 

Second, the accuracy of physical activity classification was examined with and with-
out PCA. The classification accuracies with and without PCA were examined because the 
primary aim of this study was to determine whether physical activity classification im-
proves EE estimation accuracy. Therefore, evaluating the accuracy of physical activity 
classification was crucial. As presented in Table 6, the accuracy of EE estimation along the 
side view was 99.55% without PCA and 98.49% with PCA. Therefore, superior EE estima-
tion performance was obtained without PCA. A possible reason for this finding is the loss 
of velocity characteristics after using PCA because PCA results in the projection of data 
from high to low dimensions. Although the accuracy of using PCA is lower in this study, 
it was still helpful while collecting a larger dataset in future works because larger dataset 
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will increase the computational cost of the model, and PCA can reduce the complexity of 
classification problems and make the predictive model more stable. 

Third, the performance of EE estimation with physical activity classification was in-
vestigated. Tables 7–9 present the EE estimation performance of different models under 
different experimental settings for three physical activities. The results indicated that the 
CNN model provided the highest EE estimation accuracy for light and moderate-intensity 
activities, such as standing and walking. The MLP model exhibited the highest EE estima-
tion accuracy for vigorous activities such as running. The optimal setting for achieving 
optimal EE estimation performance with physical activity classification is illustrated in 
Figure 8. The optimal setting involves two Kinect cameras along the side and rear views 
as well as a combination of MLP and CNN models. After physical activity classification, 
if the physical activity is classified as standing, walking, or running, then the EE is esti-
mated using the CNN model for standing, CNN model for walking, or MLP model for 
running, respectively. The combination of various models reduced computational com-
plexity because fewer data were required for independent model training than for general 
model training. 

 
Figure 8. Optimal setting of the proposed system. 

The data from the rear side view did not provide optimal results for any experimental 
setting possibly because the data provided by the camera on the rear side view have al-
ready been projected on the other two planes. Therefore, the skeletal data from the Kinect 
cameras along only the side and rear views should be used in future studies. Moreover, 
the results show that after applying physical activity classification for EE estimation, the 
performance of estimating EE for light to moderate activity, such as standing and walking, 
will be improved; however, the performance for vigorous activity will not be improved 
by applying physical activity classification according to the results. 

Table 10 presents a comprehensive comparison of the proposed method with meth-
ods presented in related studies. Several criteria, such as sensors, accuracy, indoor/out-
door usage, limitation of battery time, and requirement of wearable devices, are discussed 
among all the listed studies in Table 10. The proposed method can estimate the EE of light-
to-vigorous activities. Only Kinect cameras were used in this study. Of all the compared 
methods, only the proposed method does not require personal data, such as weight, heart 
rate, and gender. The proposed method does not have the problem of battery life but can 
be used for indoor activities only. None of the compared camera-based systems require 
wearable devices. The accuracy of the proposed general model is the same as that of the 
system proposed by Cvetković et al. [5] but lower than that of the system proposed by Lin 
et al. [12]. However, in the EE estimation for standing and walking, the proposed system 
outperforms that of Lin et al. This result is acceptable because standing and walking ac-
count for most of the exercising time. The proposed method only uses velocity-based fea-
tures (only 18 features) for EE estimation. Thus, the computational complexity of the pro-
posed method is lower than that of other methods. 
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Table 10. Comparison of the proposed method with methods proposed in related studies. 

 Cvetković et al. [5] Park et al. [6] Koporec et al. [10] Lin et al. [12] Hedegaard et al. [7] The Proposed Method 
Year 2016 2017 2018 2019 2020 2020 

Activity Light to vigorous Light to vigorous Light to vigorous Moderate to vigorous Light to vigorous Light to vigorous 
Sensors Multi-sensors Multi-sensors Camera Kinect camera IMU sensors Kinect camera 

Personal Data Yes Yes No Yes Yes No 
Indoor/Outdoor Both Both Indoor Indoor Both Indoor 

Limitation of bat-
tery time 

Yes Yes No No Yes No 

Wearable devices 
are needed 

Yes Yes No No Yes No 

RMSE (MET) 0.81 0.89 2.22 0.76 

Sedentary—0.29 General model—0.81 
 Standing—0.19 

Dynamic—1.14 Walking—0.57 
 Running—0.96 

This study has certain limitations. First, not all models considered in this study were 
fine tuned to their optimal parameters. In this study, only the neurons of the hidden layers 
in the MLP model were fine tuned. Second, two Kinect cameras are still required to obtain 
the best EE prediction performance. However, a practical solution requiring the use of 
only one Kinect camera would be more appropriate. 

To solve the aforementioned limitations, in the future studies, the optimal parame-
ters for all models will be investigated. Deep learning approaches for sequential datasets, 
such as the algorithms based on recurrent neural networks [27,28] and long short-term 
memory networks [29], will also be considered for EE estimation. Moreover, it is necessary 
to build a robust model with only one Kinect camera for more practical usage. The ap-
proaches for converting the coordinates of a Kinect camera from one direction to other 
direction will be considered for improving the performance and efficiency of the EE esti-
mation model on any direction. 

5. Conclusions 
This paper proposed an EE estimation system based on physical activity classifica-

tion. Three depth cameras were set at three locations, namely the side, rear side, and rear 
views, to obtain the kinematic data and test the performance of EE estimation. Three EE 
estimation models, including LR, MLP, and CNN models, were compared and deter-
mined the model with optimal performance in varying experimental settings. 

The experimental results indicated that when only one camera is available, the opti-
mal solution involves setting the camera along the side view and estimating EE with the 
MLP model. The MAE, MSE, and RMSE of the EE under the aforementioned settings were 
0.55, 0.66, and 0.81, respectively. In physical activity classification, the highest EE estima-
tion accuracy for light-to-moderate activities, such as standing and walking, was obtained 
when Kinect cameras were set along the side and rear views and the CNN model was 
used. The highest EE estimation accuracy for vigorous activities, such as running, was 
obtained when Kinect cameras were set along the side and rear views and the MLP model 
was used. The RMSEs for estimating the EEs of standing, walking, and running were 0.19, 
0.57, and 0.96, respectively. The camera on the rear side view did not yield optimal per-
formance in all the experimental settings in this study. The results indicated that after 
applying physical activity classification, the performance of estimating EE of standing and 
walking was improved compared with that of the general model; however, the perfor-
mance of running was not improved after applying physical activity classification. By us-
ing the proposed system, the EE of physical activities can be accurately estimated. 

The main innovation of this research is that this is the first study to discuss the per-
formance of EE estimation in different experimental settings, including one and two cam-
eras, and the speed of different types of activities. With the proposed system, the subject 
can choose the best setting depending on their exercising environments to estimate EE. 
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