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Abstract: In modern production environments, advanced and intelligent process monitoring strat-

egies are required to enable an unambiguous diagnosis of the process situation and thus of the final 

component quality. In addition, the ability to recognize the current state of product quality in real-

time is an important prerequisite for autonomous and self-improving manufacturing systems. To 

address these needs, this study investigates a novel ensemble deep learning architecture based on 

convolutional neural networks (CNN), gated recurrent units (GRU) combined with high-perfor-

mance classification algorithms such as k-nearest neighbors (kNN) and support vector machines 

(SVM). The architecture uses spatio-temporal features extracted from infrared image sequences to 

locate critical welding defects including lack of fusion (false friends), sagging, lack of penetration, 

and geometric deviations of the weld seam. In order to evaluate the proposed architecture, this 

study investigates a comprehensive scheme based on classical machine learning methods using 

manual feature extraction and state-of-the-art deep learning algorithms. Optimal hyperparameters 

for each algorithm are determined by an extensive grid search. Additional work is conducted to 

investigate the significance of various geometrical, statistical and spatio-temporal features extracted 

from the keyhole and weld pool regions. The proposed method is finally validated on previously 

unknown welding trials, achieving the highest detection rates and the most robust weld defect 

recognition among all classification methods investigated in this work. Ultimately, the ensemble 

deep neural network is implemented and optimized to operate on low-power embedded computing 

devices with low latency (1.1 ms), demonstrating sufficient performance for real-time applications. 

Keywords: real-time process monitoring; recurrent neural network; high-speed infrared imaging; 

convolutional neural network; lack of fusion (false friends); feature importance; AI edge device 

 

1. Introduction 

Process monitoring and fault detection are an essential requirement for a multitude 

of manufacturing processes and are particularly relevant and necessary when human 

safety is at stake (e.g., safety-critical automotive parts, battery parts, aerospace parts). In 

addition, however, for joining processes in the process industry or in power generation 

(e.g., nuclear power plants), early detection of defects and deviations can shorten pro-

cessing time and enable online compensation of process deviations for "first time right" 

production. In particular, complex joining processes such as laser welding (LW) require 

suitable quality monitoring procedures in order to satisfy the constantly increasing de-

mands for high-quality products in modern and flexible production environments. In la-
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ser deep-penetration welding, a laser beam is focused on the material’s surface. The en-

ergy provided by the laser radiation heats the welding material and as a result, the tem-

perature at the focus of the laser beam exceeds the boiling point of the material. This leads 

to a vapor capillary (keyhole) which increases the penetration depth of the laser beam into 

the material due to the occurrence of multiple reflections within the keyhole. Although 

laser welding processes are well known, automated in-line quality diagnosis still remains 

a challenge [1]. In practice, weld quality is affected by several factors, such as thermal 

conditions during laser–material interaction, variations in material properties, impurities 

on the workpiece surface, and changes in the properties of the laser beam, all of which 

may result in an unacceptable product [2,3]. During laser welding the complex interaction 

between laser beam and the weld material can lead to weld imperfections such as cavities, 

solid inclusion, lack of fusion as well as lack of penetration, weld seam deformations, 

cracks, and other deviations from the desired weld quality. A reliable quality diagnosis 

tool must provide high sensitivity for critical defects but also a certain adaptability in case 

of required process changes. 

A common method for monitoring a laser welding process is to observe the radiation 

emitted by the keyhole via high-speed photodiodes. The keyhole is an out-gassing chan-

nel for vaporized material and process gases. As a result of the outflowing gases and the 

incoming laser radiation, a weld plume originates above the material’s surface on the key-

hole position. With respect to in-process monitoring, the electromagnetic signature of the 

keyhole and weld plume can be observed and correlated with quality-related phenomena, 

which occur during the weld process [4,5]. Unfortunately, the correlations of those signals 

to certain quality criteria are often ambiguous, so that statistical proof of quality by de-

structive testing is necessary. 

However, recent advances in sensing technology and an increasing number of sen-

sors applied on laser machines and processes enable online weld quality monitoring with 

higher precision by combining multiple data sources. Similarly, complex sensors such as 

thermal camera systems have become reasonably priced and can be used as a data source 

for in-process weld quality monitoring. Recently used sensors for laser welding process 

monitoring are image-based sensors such as cameras in the infrared wavelength range [6], 

acoustic emission sensors, optical sensor such as high-speed photodiodes and pyrometer 

[7]. Furthermore, techniques such as x-ray imaging, spectrographically sensors [8] and 

combined sensing techniques have been investigated [9]. Especially, camera sensors pro-

vide important information from various process zones that emerge during laser welding. 

The keyhole is typically surrounded by molten material, the weld pool. Size and shape of 

weld pool are important geometrical parameters that correlate with weld shape and qual-

ity [10,11]. 

Due to high process dynamics and partially chaotic keyhole behaviors [12], an ap-

proach based on precise physical modelling of the welding process is not practical for real-

time quality diagnosis of laser welds [13]. On the other hand, the incorporation of new 

technologies such as Industrial Internet of Things (IIoT) and advanced analytics into man-

ufacturing systems aims to produce individualized products at high quality and low costs. 

In the manufacturing domain, such data-driven approaches have been extensively stud-

ied in the past and are based on autoregressive (AR) models, cluster analysis, fuzzy set 

theory or on supervised learning algorithms such as multivariate regression, multi-layer 

perceptron and decision trees, as well as k-nearest neighbors [14,15]. Therefore, recent 

development led to advanced process monitoring systems which integrate machine learn-

ing techniques for process control and prediction of critical defects [16,17]. An advantage 

of data-driven methods is that it is not necessary to explicitly model the physical behavior 

of the system in order to build a statistical model. However, process understanding can 

help to design and develop the right feature set and to select relevant sensors and signal 

sources as input for the data-driven model. A data-driven model utilizes input variables 

(features) extracted from the raw signals to establish a statistical model between those 

features and the observed phenomena, e.g., weld defects during the welding process. 
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Therefore, features that describe the significant characteristics of the signal are required 

for classical supervised learning algorithms and are often manually designed and depend 

on signal type (e.g., image data, data from high-speed photo diodes) and the output vari-

able. For example, You et al. [18] proposed a diagnosis system for autonomous laser beam 

welding. This system is based on extracting features with wavelet packet decomposition 

and dimensionality reduction techniques (PCA) in combination with SVM-based classifi-

cation for defect detection. An extensive experimental setup has been established to eval-

uate the proposed methods comparing measurements signals from photodiodes, image 

sensors and x-ray analysis. However, the question remains which features are necessary 

to achieve high defect detection accuracies and how different learning algorithms may 

improve the detection performance. 

From the field of computer vision and pattern recognition, deep learning methods 

have emerged as an effective technique to solve signal- and image-processing tasks 

[19,20]. Deep learning is different from classical machine learning as it integrates the pro-

cess of feature extraction within the data-driven model. Deep learning models with mul-

tiple layers of artificial neurons are based on the findings in neuroscience that multi-stage 

deep neural networks allow humans to perform complex signal processing tasks such as 

object and voice recognition [21,22]. As a result, deep learning models are capable of ex-

tracting more refined and complex image characteristics and are therefore expected to 

provide higher classification accuracies than conventional approaches based on feature 

engineering and traditional classifiers. With the advent of deep learning, especially con-

volutional neural networks (CNN), top rankings in classification performance were 

achieved in several image recognition competitions such as ImageNet in 2012. CNNs have 

therefore become a common solution for many computer vision tasks [23]. Nowadays, it 

is possible to train large multilayered CNN networks, typically consisting of many types 

and numbers of layers on GPU-hardware, with the help of open source deep learning 

frameworks such as TensorFlow [24], PyTorch [25] or Caffe [26]. 

This has led to various applications of CNNs in industrial production sector to rec-

ognize defects and improve product quality [27–30]. Therefore, it is no surprise that deep 

learning has recently been used in laser welding applications to predict defects [11,31]. 

For example, in 2014, Günther et al. [32] suggested a deep learning scheme for ex-

tracting relevant features from in-process laser welding data. They used a deep learning-

based auto-encoder with fully connected layers to create a new latent feature space of 16 

features that describe the welding images. 

Thermal images and convolutional neural networks work well in combination, as 

shown by Gonzales-Val et al. [33]. The authors proposed a CNN architecture to predict 

dilution in laser metal deposition as well as defects in laser welding based on infrared 

images. First experiments show promising results with respect to the prediction accuracy. 

For CO2 laser welding, a combination of CNN and a recurrent neural network (RNN) was 

applied to extract primary features from weld pool images. Although RNNs are used to 

model sequence-based problems such as voice recognition, in this approach, RNNs were 

used to fuse features extracted via CNN from a single image with the help of a RNN to 

recognize good and imperfect weld images [34]. 

In addition to the manufacturing domain, architectures based on CNN and RNN 

turned out to be successful in applications such as action and emotion recognition in video 

data [35,36] and wearable activity recognition [37]. Additionally, a group of researchers 

utilized CNN and RNN architectures to improve prediction accuracy of the steering angle 

of an autonomous vehicle. They achieved the lowest error compared to other approaches 

in the literature [38]. 

In this study, a new ensemble deep learning approach for data-driven feature extrac-

tion and weld defect detection is introduced and investigated. The architecture is based 

on convolutional neural networks (CNN) which are often used for image classification 

and is further described in Section 2.2. Although in-process data are available in the form 

of images, some important information may only be available in the time domain of the 
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welding video stream. Therefore, the CNN is combined with a recurrent neural network 

(RNN), specifically the gated recurrent unit (GRU) architecture as described in Section 

2.3., that was recently used to solve pattern recognition tasks in the time domain [39]. The 

advantage of CNNs to extract relevant spatial information and the ability of GRUs to learn 

meaningful temporal characteristics are combined to automatically extract a spatio-tem-

poral feature representation of a given image sequence. Furthermore, high performance 

classification algorithms, namely, k-nearest neighbors (kNN) and support vector ma-

chines (SVM) are used to build an ensemble deep learning model with the goal to obtain 

better generalization performance and higher classification robustness. 

The ensemble deep learning framework is compared with established architectures 

such as ResNet50V2 [40], MobileNetV2 [41] and InceptionV3 [42] and a baseline CNN 

architecture without GRU layer and the ensemble strategy. In addition, a comparison of 

the proposed framework with conventional machine learning using manual feature ex-

traction methods is given. For that, geometrical and statistical features are extracted from 

thermal image data (MWIR and NIR) to determine the keyhole and weld pool character-

istics for each time step. The features are based on higher-order image moments, shape 

descriptors and descriptive image statistics as well as statistics in the time domain, that 

are used to establish a high-dimensional feature vector. In addition, we determine the 

significance of individual features and the relevance of different feature subsets in terms 

of their classification performance. Subsequently, all models are optimized using a grid 

search process combined with nested cross validation. In a further step, the deep learning 

architectures are compared with classical machine learning approaches based on the in-

dividual prediction performance in four unseen welding trials. Finally, the proposed en-

semble deep learning model is optimized for real-time inference as well deployed and 

evaluated on an embedded computing board (NVIDIA Jetson AGX Xavier). A schematic 

overview of the data processing and evaluation steps applied in this work is given in Fig-

ure 1. 

 

Figure 1. Schematic overview of the evaluation process established in this work. 

Overall, the main contributions of this work include the following points: 

 Development and evaluation of a unique ensemble deep learning architecture com-

bining CNNs and GRUs with high performance classification algorithms (i.e., SVM, 

kNN) for real time detection of six different welding quality classes; 
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 Comparison of the proposed architecture with available deep learning architectures 

as well as classical machine learning methods based on manual feature extraction; 

 Assessment of the significance of geometric and statistical features extracted from the 

keyhole and weld pool region of two different image data sources (i.e., MWIR and 

NIR) with respect to the ability to detect particular weld defects; 

 Development and evaluation of a real-time inference pipeline for the proposed 

method operating on low-power embedded computing devices. 

From here, the remaining part of this paper shows the following structure. Section 2. 

provides the background knowledge for different classification algorithms as well as a 

definition of the proposed ensemble CNN-GRU architecture. Section 3. describes the ex-

perimental setup and the process of feature extraction. Experimental results are presented 

and analysed in Section 4. Finally, a conclusion is given in Section 5. 

2. Methodology and Background Knowledge 

In this work, several conventional machine learning algorithms are compared in 

terms of prediction performance and processing time. These algorithms and the resulting 

prediction model often require feature engineering as a preliminary stage, especially in 

the field of image recognition, in order to create predictive models not only with a high 

prediction performance and less overfitting, but also with a high degree of comprehensi-

bility. The investigated conventional machine learning algorithms are listed below: 

• Decision tree (DT); 

• K-nearest neighbors (kNN); 

• Random forest (RF); 

• Support vector machine (SVM); 

• Logistic regression (LogReg); 

• Artificial neural network (ANN). 

A detailed overview and discussion of these algorithms can be found in several text-

books such as [43,44] and [45,46]. The method of feature engineering and classification 

using conventional algorithms is additionally compared to modern deep learning ap-

proaches, which include the process of feature extraction as part of the model. Both con-

ventional and deep learning approaches use the following data set � as input to establish 

a data-driven model: 

� = {(��, ��)| �� ∈ ℝ�, �� ∈ ℝ�, � = 1,2 … , �} (1) 

where �� denotes the �th feature vector, which for conventional machine learning meth-

ods consists of numerous features �, that are explained in Tables A1 and A2 in further 

detail. For deep learning algorithms, the feature vector �� represents a raw image or im-

age sequence in the data set. The label vector, described by ��, belongs to the feature vec-

tor �� while � denotes the number of classes, which in this work represents the six dif-

ferent welding quality states as stated in Section 3.3. For this study, the DT, LogReg, SVM, 

ANN, kNN and RF implementations of scikit-learn 0.22.1 and Python 3.6 were used to 

train classification models [47]. All hyperparameters that were optimized via grid search 

and 4-fold nested cross validation can be obtained from Table A3. For all other hyperpa-

rameters not listed in Table A3, the default values of the scikit-learn implementation are 

used. In the subsequent section, a more detailed description regarding the combination of 

CNN and GRU architectures used in this work is given. 

2.1. Convolutional Neural Network (CNN) 

CNNs can not only be used for image data, but they bring certain advantages to these 

applications, such as translation invariance through weight sharing, and local connectiv-

ity that takes the spatial structure of images into account. For some other applications, 

where spatial relations are important, these CNN model assumptions of may also be ap-

plicable. 
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A simple CNN usually consists of three types of layers, which are stacked to create a 

deep neural network model. These layers are usually defined as pooling layer, fully con-

nected layer and convolutional layer. In the convolutional layer, small patches (filter) con-

volve over the input array, which in the first convolutional layer is the original image. The 

coefficients of each filter kernel defined in a certain convolutional layer are determined 

during the training process. The output of a convolutional layer can be denoted as follows 

[48]: 

��
� = �(� ��

���

�∈��

× ���
� + ��

� ). (2) 

where ��
�  is the �th output feature map (image) of the �th convolutional layer. On the 

right side, the �th output feature map ��
���of the previous layer � − 1 is convolved with 

the ��th kernel � of the current layer. ��
�  denotes the offset (bias), and �� represent the 

input feature maps while � represents the activation function. 

The convolutional layer is frequently followed by a pooling layer to reduce the input 

dimensions for the following layers by down-sampling feature maps from the previous 

layer. Typical types of pooling layers are max pooling and average pooling. The output 

��
�  is stated by the following equation: 

��
� = �(δ�

�  subsample(��
���) + ��

�  (3) 

where � is the number of the pooling layer, � can be an activation function, δ�
�  denotes 

the resample factor and subsample(. ) represents the down-sampling function (e.g., mean 

or max pooling), and ��
�  is the bias (offset). Pooling, especially max pooling, is a convo-

lution-based operation that is applied to reduce overlapping in feature maps and can help 

to avoid overfitting and may lead to a more generalized model [19]. 

2.2. Recurrent Neural Networks and Gated Recurrent Units (GRU) 

In this work, CNNs are utilized to automatically extract relevant characteristics from 

raw camera images. It is also possible to extract spatio-temporal information from video 

streams using 3D-CNNs, to extract patterns from temporal changes between adjacent 

frames. For example, 3D-CNNs are often used to recognize gestures or emotion in videos 

[35,36,49]. However, compared with approaches that combine CNN with RNN structures 

such as long short-term memory (LSTM) or gated recurrent units (GRU), 3D-CNN has a 

disadvantage that derives from its high computational complexity and excessive memory 

consumption, which can be a major burden for several applications that require high in-

ference rates, especially on embedded devices [50]. Additionally, RNN architectures can 

be used to extract long-term temporal characteristics, whereas 3D-CNNs are mostly used 

for the extraction of short-term temporal pattern [51]. Therefore, the combination of CNN 

and LSTM has been used recently for action recognition in video data that is still a chal-

lenging problem in computer vision [34,52]. LSTMs have become especially popular due 

to high performances achieved in domains such as natural language processing, but recent 

findings suggest that GRU architectures offer very comparable accuracies compared to 

LSTM with lower computational costs. [39,53]. 

GRUs were proposed by Cho et al. [54] in 2014 as an alternative architecture to the 

commonly used long short term memory (LSTM), which was proposed in 1997 [55]. The 

GRU is a slightly more simplified variation of the LSTM, as it has fewer parameters and 

thus may train faster and needs less data to generalize. Compared to LSTM, the entire 

memory is exposed to the network, while for LSTMs the exposure to other units is con-

trolled by the output gate. Additionally, GRU can control the information flow from the 

previous activation, whereas LSTM is not able to manage this information flow [53]. Po-

tentially lower calculation costs and the data-efficient structure are the reason why GRU 

is used for this work. The main advantage is that gated units in RNNs can store infor-

mation in their units that is accessible in a later time step. The decision when to store, read 
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or erase information is learned from the data. A GRU with unit � in layer � can be de-

scribed as follows [56]: 

ℎ��,�
� = ��(��,� �� + ��,���

��� + ��,�
� ) (4) 

ℶ�,�
� = ��(��,� �� + ��,���

��� + ��,�
� ) (5) 

h�,�
� = ℶ�,�

� ℎ��,�
� + �1 − ℶ�,�

� �ℎ�,�
��� (6) 

��
� = �ℎ�,�

���, … , ℎ�,�_����
��� � (7) 

��
� = ��(��,��

� + ��,�
� ) (8) 

where the parameter vectors ��,� �� , ��,� ,, ��,�, ��,� and ��, as well as the parameter 

��,�
� , ��,�

� , ��,�
�  are determined during the training via backpropagation through time. �� 

represents the tanh activation function and �� is implemented as sigmoid function. If the 

gate value ℶ�,�
�  is close to zero, the GRU keeps the state values ℎ�

���, but saves a new state 

ℎ��,�
�  if the gate value is close to 1. The input of the GRU is a feature vector  �� at time step 

� and a vector ��
��� that contains state values from all units in the previous layer. �� is 

an activation function and is represented in this work by the sigmoid function. In our 

architecture, the feature vector extracted by the CNN is consecutively fed into the RNN 

layer, which is represented by a GRU. The overall CNN-GRU architecture is shown in 

Figure 2.  

 

Figure 2. Proposed spatio-temporal ensemble deep neural network architecture based on convolutional layers, gated re-

current units (GRU) and different classification heads for weld defect detection. 

For each measurement, the network takes a sequence of ���������  consecutive weld 

images as input. Instead of using only the most recent image, the network is able to use 

information from the last ���������  images to predict the local weld quality. The image 

sequence represents the input of the first convolution layer, where convolution kernels 

with a size of 2 × 2 are applied on the input images. Based on Equation (2), this results 

in a specific number of feature maps defined by the hyperparameter ����_1_����ℎ. A 

second convolution layer uses the previously calculated feature maps as input and con-

volves a 3 × 3 kernel to compute the second layer feature maps with the help of the acti-

vation function (����������), number of feature maps ����_2_���ℎ and Equation (2). 
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The results are transmitted to the pooling layer that applies maximum pooling on each 

feature map, where a kernel of size 2 × 2 moves with a step size of 2 in both directions 

(Equation (3)). 

The GRU network is implemented at the end of the convolutional stack of the net-

work. The flattened feature maps (i.e., 25 × 2352 matrix) of the 25 images are used as input 

for the GRU layer that consists of a specific number of units (���_�����) that use tanh 

activation function. Based on Equation (8), the GRU layer combines the feature vectors of 

a sequence of ���������  consecutive weld images to obtain a spatio-temporal feature rep-

resentation. 

The last fully connected layer represents a hidden layer that consists of a specific 

number (�����_�����) of nodes and uses the activation function (����������). The soft-

max function is selected as the activation function of the last output layer. 

Additionally, a reference CNN was trained based on a modified architecture com-

pared to Figure 2, that uses a single image as input and has no GRU layer (i.e., CNN-

baseline). For both architectures, hyperparameters such as depth of each convolutional 

layer ( ����_1_����ℎ)  and (����_2_����ℎ)  as well as the activation function 

(����������), the number of units of GRU layer (���_�����), the number of units in the 

fully connected layer (�����_�����)  and the length of the input image sequence 

���������  were determined via grid search on the basis of the values provided in Table 

A3. For each training process, Nesterov-accelerated Adaptive Moment Estimation 

(Nadam) optimizer was used to minimize the categorical cross-entropy loss function 

within 100 training epochs. 

2.3. Ensemble Deep Learning 

In ensemble learning, several base models are trained, and the individual outputs are 

aggregated using a decision fusion strategy to increase the generalization capabilities and 

the robustness of the final model [57]. 

In this study, we first train the CNN-GRU architecture with two dense layers as clas-

sification head. In a further step, the spatio-temporal image features extracted from the 

CNN-GRU layers are used as input to build a SVM and a k-nearest neighbors classifica-

tion model. Finally, the unweighted average of the individual predicted class probabilities 

is used to determine the final class. 

The ensemble deep learning architecture is also compared to state-of-the-art CNNs 

for image processing. For this purpose, common architectures such as ResNet50V2 and 

MobilNetV2 and InceptionV3 are used for comparison with respect to prediction perfor-

mance and inference times. By replacing the original classification heads, the pre-trained 

models are trained with new fully connected classification heads consisting of a hidden 

layer (i.e., 768 nodes) and the output layer (i.e., 6 nodes). In this study, all other layers 

except the new dense layers were set to be untrainable. 

All deep learning architectures in this work were implemented using TensorFlow 2.3 

and Python 3.6. 

3. Experiment Setup and Data Preprocessing 

3.1. Multi-Camera Welding Setup 

In order to detect changes in process conditions and quantify process imperfections, 

online process monitoring based on two cameras, as shown in Table 1, was applied. A 

CMOS-based camera (NIR) was used to visualize the keyhole and its surrounding area 

during the welding process. To monitor the weld pool in real time, a PbSe-sensor (MWIR) 

was engaged, since the maximum of temperature radiation occurs according to Equation 

(9) within the wavelength range of the sensor’s sensitivity. The relation between a specific 

temperature and its wavelength of maximum thermal radiance can be expressed by the 

following equation according to Wien's displacement law [58]: 
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���� =
2897.8 �� ×  �

�����

 (9) 

Substituting ����� by a value of 1737 K, which represents the melting point of low 

carbon steel (FE P05) used for these experiments, leads to the wavelength of maximum 

thermal radiance at λ��� = 1634 nm. In front of the camera sensor, narrow bandpass fil-

ters reduce the effect of chromatic aberration on the measurement signal. To meet the 

���� calculated above, the infrared camera uses a filter that provides a bandwidth of 82 

nm at a central wavelength of 1690 nm, as shown in Table 1. Both cameras start capturing 

image data when triggered by a signal from the robot control system. However, the data 

acquisition rates of the cameras used for this experiment differ. Considering the MWIR-

camera sample rate of 500 Hz, each frame of the NIR-camera (100 Hz) is multiplied by 5 

to avoid down-sampling of the 500 Hz signal and to synchronize the data streams. 

Table 1. Description of the sensors and optical components used for the welding experiments. 

Type of  

Camera 

Sensor Material/ 

Sensitivity Range 

Resolu-

tion 

Acquisition 

Rate 
Field of View 

Bandpass Filter 

(CWL/FWHM) 
Interface 

Photonfocus 

D1312IE-160-CL 

(NIR) 

Si/0.4–0.9 µm 1312 × 1080 100 Hz 11.6 × 5 mm2 840 nm/40 nm CameraLink 

NIT Tachyon 

µCore 1024 

(MWIR) 

PbSe/1–5 µm 32 × 32 500 Hz 9 × 9 mm2 1690 nm/82 nm USB2.0 

Experiments have been conducted by applying different welding parameters using 

a high-power disk laser at a focus diameter of 0.6 mm and argon as shielding gas. The 

experiment was performed with galvanized low-carbon steel in overlapping configura-

tion. The geometric dimensions can be obtained from Figure 3. 

 

Figure 3. (a) Photograph of the welding optics with coaxially integrated cameras; (b) Drawing of welding sheets with 

different slot sizes (middle sheet); (c) Side view of the sheet configuration used during the welding experiments; (d) Pho-

tograph (top view) of two welding trails (P = 3.3 KW, v = 50 mm/s, ds = 0.6 mm, Argon shield gas flow = 60 L/min). 

A welding configuration, which consisted of three galvanized steel sheets (FE P05) 

of different thickness, was considered for the experiment. For some welding trials, a mod-

ified middle sheet was used to provoke lack of fusion in certain areas due to a larger gap 
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size, as shown in Figure 3b. To allow outgassing of vaporized zinc during welding, a gap 

of 0.15 mm was established between all welding sheets. 

3.2. Feature Extraction for In Situ Weld Image Data 

This chapter describes the features being extracted from the MWIR and NIR image 

data that were recorded during welding processes. As stated above, the recorded video 

data of the welding processes contain spatio-temporal information regarding the optical 

emission of the weld pool and the keyhole. While the proposed deep learning approach 

extracts relevant features directly from the raw input data, conventional classification al-

gorithms investigated in this work require the extraction of handcrafted features from the 

original data as input to work properly. Overall, 172 unique features are extracted from 

the two process image types shown in Figure 4 to reduce the amount of data to be pro-

cessed and to counteract the effect of overfitting when using the raw images as input. The 

process of feature extraction is based on the following image processing steps: 

 Binarize image based on the target object threshold (keyhole threshold > weld pool 

threshold); 

 Detect contour (connected boundary line of an object) using the algorithm of Suzuki 

et al. [59] and select largest contour from all contours found in image; 

 Calculate contour properties such as centroids and other image moments Table A1); 

 Fit an ellipse to the found contour; 

 Obtain geometrical parameters of the ellipse (Table A1); 

 Calculate additional features such as statistical and sequence-based features (Table 

A2). 

 

Figure 4. (a,b) Original image and geometrical features extracted from keyhole and weld pool re-

gions. (c,d) Detected keyhole and weld pool contours (filled) based on two-step binarization of the 

original images. 

Taking into account two different image types (i.e., NIR and MWIR image data), 86 

features are calculated for every �th image and for each image type �. Equation (11) 
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shows the aggregated feature list ��
�  which consists of several feature subgroups as 

stated in Table 2. Geometrical features ��
� based on the extracted keyhole and weld pool 

contours are defined as one feature subgroup. 

��
� =  ��

� + ���
� + ���

� +  ���
� + ���

�  (10) 

Additionally, features related to overall images statistics such as mean, minimum, max-

imum, variance, median, skewness and kurtosis define the second subgroup ���
� . Further-

more, features based on the statistics of pixels within the keyhole region ���
� or the weld 

pool area ���
�  are also defined as feature subgroups. Additionally, features are extracted 

from the time domain of the welding video data to form the feature subset ���
�. To this 

end, statistics are calculated according to Table A2, based on the weld pool area of the 

nine most recent consecutive images, including the current image for each time step. If no 

image is available for a particular position in the sequence, the values are subsequently 

filled with the previous value. 

Table 2. Description of feature sub-groups used for classical machine learning methods and feature importance evalua-

tion. 

Feature sub-Group (Short 

Name) 
Expression Description 

Geometrical features 

(geometrical) 
��

�  
Only geometrical features according to Table A1 based on the weld pool 

and keyhole region 

Overall image statistics 

(image stats) 
���

� Overall image statistics according to Table A2 

Times series statistics 

(timeseries stats) 
���

� Time series statistics according to Table A2 based on weld pool area 

Weld pool features 

(weld pool) 
���

� 
Geometrical and statistical features according to Tables A1 and A2 de-

rived from the weld pool region 

Keyhole features 

(keyhole) 
���

�  
Geometrical and statistical features according to Tables A1 and A2 de-

rived from the keyhole region 

To improve the classification performance and robustness of the trained models, fea-

ture normalization was applied for both handcrafted features and raw image data. The 

following equation normalizes the features to a value between zero and one: 

����� =  
� −  ����

���� − ����

 (11) 

3.3. Welding Defects and Data Preparation 

In a further step, several welding trials based on zinc-coated steel sheets were man-

ually characterized by human experts in terms of quality according to international stand-

ards (i.e., EN ISO 13919-1/EN ISO 6520-1) [60,61]. 

Figure 5 shows examples of MWIR images of different weld quality states investi-

gated in this work. It is also shown that the amount of labeled data available for super-

vised learning differs greatly between defect classes. Naturally, labels for images showing 

a satisfactory weld situation are abundant, while image data related to small defects 

within the weld are rare. There are examples of different weld defects such as lack of fu-

sion, which often appears as a good weld, in the top view, while the cross-sectional view 

shows a missing connection between the two sheets as shown in Figure 6. It can be ob-

tained that sagging or an irregular weld width can easily be recognized from the top view 

photography. However, additional information is required to distinguish the classes of 

sound weld from lack of fusion and lack of penetration. To generate annotations for su-

pervised machine learning, the image data were compared with the weld seam photog-
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raphy (top/bottom view) and the associated metallographic characterization (cross-sec-

tional view) by matching both data sets via process start and end points. Only image data 

for which the quality of the weld seam could be reliably determined were annotated ac-

cordingly. 

Overall, 14,530 images were manually annotated based on 13 weld trials. To form a 

temporal data set for the CNN-GRU architecture, 25 consecutive images and the associ-

ated quality labels are taken in the original temporal order. The last quality label of the 

image stack is used as a label for a new temporal sample to build a new data set. After 

moving on from one image in the original data set, the next 25 images and the correspond-

ing label are taken and then added to the new data set. In case not all 25 images are avail-

able, the missing images are filled with the last available image. Finally, the new data set 

contains as many samples as the original one, but each sample consists of 25 images in-

stead of one. 

 

Figure 5. Example of MWIR image data and sample distribution of different quality states based on 

13 weld trials (14,530 samples) that form the welding data set. 
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Figure 6. Photographs from different perspectives of the welding defects investigated in this study. 

In this work, deep learning models utilize data augmentation to artificially increase 

the data set to 72,650 images and image sequences. Some weld trials were performed in 

different directions compared to the sensor alignment (e.g., Figure 5—Irregular width). 

To learn features that are independent of the welding direction (or the sensor alignment), 

image augmentation is performed for all images and image sequences. Mirroring and ro-

tation were chosen because they allow the convolutional structures to learn rotational and 

directionally invariant features, which leads to a more generalized model [62]. Deep learn-

ing methods typically require more data since they come with an increased number of 

parameters to be trained compared to conventional methods [63]. For this welding data 

set, experiments have shown that with an increased amount of training data, an increase 

in performance can be achieved. Data augmentation was also used for image sequences. 

In this case, all images in the sequence were coherently augmented by using the same 

method (i.e., rotation, mirroring) for each image in the stack. Data augmentation was not 

applied to the classical methods, because most of the extracted features do not vary with 

image mirroring or rotation. 

4. Results and Discussion 

The next section presents the feature evaluation, the results of the comparison among 

the classification algorithms and the final performance evaluation based on complete and 

unseen weld trials. Various metrics can be used for assessing the performance of classifi-

cation models. Accuracy, for example, has the advantage of being simple to interpret as it 

represents the ratio of correctly classified samples to the number of total samples. How-

ever, accuracy is not considered a robust measure when dealing with unbalanced classes, 

which is the case for the weld data set. Therefore, the F1-Score is introduced as main met-

ric to measure multi-class classification performance on the unevenly distributed weld 

data set [46]. On the basis of the definition of true positive (TP), true negative (TN), false 

positive (FP) and false negative (FN) detections, accuracy and F1-Score are defined as fol-

lows [43]: 
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�������� =  
�� + ��

�� + �� + �� + ��
 (13) 

������ =  
��

�� + ��
 (13) 

��������� =
��

�� + ��
 (14) 

�� = 2 ×
��������� × ������

��������� + ������
 (15) 

Accuracy score usually is utilized when the true positives and true negatives matter 

more, whereas F1 score typically applies when the false negative and false positive pre-

dictions are more important. In this study, accuracy and F1-Score are reported to describe 

the classification performance of a machine learning model, however, the F1-Score is con-

sidered for final evaluation. 

4.1. Assessment of Feature Importance 

The importance of the features was determined using sequential forward floating 

selection (SFFS), which represents an extension of the simpler SFS algorithm. SFS starts 

with an empty feature subset and trains a classification model for each available feature 

based on a defined algorithm, which in this case was a linear SVM classifier, as it provides 

short training and inference times. 

The feature that provides the highest balanced accuracy score is included as the most 

important feature in the new subset. Afterwards, at every ��ℎ step, classifiers are trained 

for each combination of the (� − 1)�ℎ important feature and the remaining features to de-

termine the ��ℎ most important feature. The floating version of SFS (SFFS) has an extra 

step that allows the removal of features that were previously included (or excluded), re-

sulting in an increased search space to find the optimal feature subset. It has been shown 

that SFFS enables the selection of appropriate features with high efficiency, especially 

compared to methods such as “Min-Max search”, “branch and bound“ or SBS, which is why 

it is used in this work [64]. Based on the SFFS algorithm, Figure 7 shows the cumulated 

accuracies for 20 out of 172 features based on weld pool and keyhole characteristics, as 

well as overall image and time series statistics extracted from MWIR and NIR welding 

images. Starting with the far-left feature, SVM models were trained and evaluated con-

secutively by adding a feature in a further step, until 20 features were added to the final 

feature subset.  

Figure 7 shows that among the five most important features, only one feature is re-

lated to the NIR camera. Interestingly, even though both cameras are imaging the keyhole 

region as shown in Figure 4, features of the MWIR camera are ranked as more important, 

probably due to the higher dynamic range of the camera. The figure further shows that at 

least 15 features are required to train classification models with accuracies equal to or 

greater than 97.8%. It can also be observed that statistics of the weld pool pixel distribution 

and that of the keyhole axis (i.e., MWIR_keyhole_axis_x/y_kurtosis) and further geometrical 

properties such as keyhole contour moments (i.e., 3rd_order_mom[M03|µ00]) are most rel-

evant for weld defect prediction. Additionally, time series features from the keyhole and 

weld pool region (i.e., MWIR_keyhole/ts-area_variance) also appear among the top ten fea-

tures. Table 3 shows the defect detection performance of several feature subsets derived 

from the original amount of 172 features as cross-validated F1-Score.  
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Figure 7. The 20 most important features based on 172 geometrical and statistical characteristics of the weld pool, keyhole 

and overall image statistics extracted from MWIR images (starting with the left). 

The results show that feature subsets based on geometric features (MWIR+NIR (geo-

metrical)) extracted from the weld pool and keyhole regions can almost reach the top F1-

Score of 0.978 achieved by the original feature set. Interestingly, if the prediction model is 

trained only on geometrical features from either MWIR or NIR images, its performance 

(0.928 and 0.826) is significantly lower than the performance of the combination of these 

feature subsets (0.970). The general performance level of feature subsets only based on 

overall image statistics (image stats) and time series statistics (timeseries stats) is low com-

pared to all other subsets. One reason for that can be found in the low dimensionality of 

those subsets (i.e., six features). Meanwhile, the F1-Scores for weld pool features extracted 

from MWIR and MWIR plus NIR images are 0.966 and 0.969, respectively, whereas the 

score for weld pool features extracted from the NIR images is 0.918. This is probably 

caused by the low thermal signal obtained with this sensor. Although NIR image data at 

840 nm wavelength provide higher spatial resolution of the keyhole area, the thermal sig-

nal of the weld pool area was hardly detected by this sensor. As explained in Section 3.1., 

the optimal wavelength for weld pool observation is located at around 1634 nm, which is 

preferably observed by the MWIR camera. Additionally, if the performances of features 

extracted only from MWIR images are compared, weld pool features outperform the key-

hole feature by 3.3%.  

Overall, most relevant information can be found in MWIR features which reach, ac-

cording to Table 3, generally higher F1-Scores compared to NIR features. However, the 

highest F1-Scores are achieved by combining features from both cameras. This leads to 

the assumption that the NIR images with spatially higher resolution can provide addi-

tional information of the keyhole area, compred to that obtained from the MWIR images. 

However, as the number of features used to create a classification model increases, the 

risk of overfitting also increases. 
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Table 3. Comparison of several feature subsets with respect to their ability to predict different weld defects (without “no 

weld” class). 

Feature Subset Cross-validated F1-Score 

Name 
No. of 

Feat. 

Lack of 

Fusion 

Sound 

Weld 
Sagging 

Irregular 

Width 

Lack of 

Penetration 
avg 

MWIR+NIR (weld pool, keyhole, im-

age stats, timeseries stats) 
172 0.983 0.998 0.913 1.0 0.999 0.978 

MWIR+NIR (geometrical) 64 0.89 0.989 0.976 1.0 0.998 0.970 

MWIR+NIR (image stats) 12 0.743 0.908 0.091 0.999 0.951 0.738 

MWIR+NIR (timeseries stats) 12 0.701 0.867 0.000 1.0 0.914 0.694 

MWIR+NIR (weld pool) 74 0.953 0.995 0.901 1.0 0.999 0.969 

MWIR+NIR (keyhole) 74 0.948 0.995 0.829 1.0 0.999 0.954 

MWIR (weld pool, keyhole, image 

stats, timeseries stats) 
86 0.945 0.993 0.93 1.0 0.998 0.973 

MWIR (geometrical) 32 0.834 0.96 0.864 1.0 0.98 0.928 

MWIR (image stats) 6 0.688 0.74 0.000 1.0 0.862 0.658 

MWIR (timeseries stats) 6 0.569 0.669 0.000 1.0 0.801 0.607 

MWIR (weld pool) 37 0.896 0.987 0.951 1.0 0.997 0.966 

MWIR (keyhole) 37 0.851 0.983 0.833 1.0 0.997 0.933 

NIR (weld pool, keyhole, image stats, 

timeseries stats) 
86 0.904 0.986 0.956 1.0 0.996 0.968 

NIR (geometrical) 32 0.56 0.907 0.780 0.923 0.961 0.826 

NIR (image stats) 6 0.403 0.862 0.000 0.922 0.937 0.625 

NIR (timeseries stats) 6 0.544 0.808 0.000 0.989 0.855 0.639 

NIR (weld pool) 37 0.787 0.941 0.902 0.993 0.971 0.918 

NIR (keyhole) 37 0.791 0.955 0.863 0.995 0.978 0.916 

Although deep learning and, subsequently, CNN-architectures are often considered 

a black box model, visualization of layer-wise activation maps can provide useful infor-

mation for understanding how successive intermediate convolutional layers transform 

their input. It also offers a first idea of the meaning of the learned filter properties and 

which image regions might be especially important for distinguishing the weld defects. 

In Figure 8, activation maps for the first convolutional layer are shown. For different 

input images the activation map for each filter learned during the training is shown. The 

left column shows the activation maps evoked by a process of a sound weld image and 

the second column shows the activation maps based on several images showing different 

process deviations. The differences of the filter maps are depicted in the right column. The 

feature maps show different results depending on the camera image that was given as 

input. For example, irregular width images lead to different keyhole and weld pool 

shapes, as shown in the first row of Figure 8, whereas lack of fusion images provoke great 

differences in activations in the keyhole area. 
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Figure 8. Layer activations based on 12 different filter kernels in the first layer of a CNN that was 

trained to recognize welding defects based on images from the MWIR camera. Each square shows 

a single activation map. 

Overall, each defect shows its own fingerprint in the form of activation maps ex-

tracted from the CNN-model. The similarities between the activation maps for the defects 

of lack of fusion and sagging result in the model’s tendency to confuse these classes. This 

result is also supported by the generally lower F1-Scores for this type of defect, as shown 

in Table 3. In case of lack of fusion, sagging or lack of penetration, most activation maps 

show high activity in the keyhole area and its immediate surroundings. Additionally, 

when the defects irregular width and sagging occur, areas related to the weld pool are 

activated. 
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4.2. Model Comparison Based on Grid Search Results 

For a comprehensive comparison of different classification methods and algorithms, 

a grid search coupled with 4-fold nested cross validation was performed to find optimal 

hyperparameters. For each conventional classification algorithm, every combination of 

grid values shown in Table A3 was evaluated by using the complete data set of 14,530 

samples and the entire MWIR feature subset. The subset was chosen because the MWIR 

data already scored high F1-Scores (0.973), compared to the combination of MWIR and 

NIR (0.978). Therefore, a feature space with fewer dimensions was chosen to prevent over-

fitting. The deep learning models were trained using the augmented welding data set, 

consisting of 72,650 samples of raw image data and image sequences respectively (see 

Section 3.3. 

). In Figure 9, the performance and the optimal hyperparameter of all classification 

methods evaluated during grid search are shown. 

 

Figure 9. Performance comparison of different conventional machine learning and deep learning classification methods. 

Optimal hyperparameter for each classifier were found via grid search (Table A3). The median scores are displayed in the 

top diagram. 

Overall, the proposed ensemble CNN-GRU architecture achieves the highest classi-

fication scores (0.995) and the lowest score variance. However, conventional classification 

methods such as kNN and non-linear SVM, which are based on geometric and statistical 
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features extracted from the MWIR images, are only slightly lower in terms of their median 

performance scores. The results show that the average performance level of all methods 

investigated is high (>90%), which leads to rather small differences between the individual 

methods. Interestingly, the established and pretrained deep learning model did not reach 

the level of the proposed ensemble CNN-GRU. This could be due to the large difference 

between the original training dataset (ImageNet) and the current weld dataset, as well as 

suboptimal learned features with respect to the new recognition task. 

The algorithms can be evaluated not only according to their prediction performances, 

but also in terms of individual training and inference times, which are particularly im-

portant in practice for real-time measurement and quality prediction. If training and in-

ference times are important, the conventional classifier underperforms in contrast to its 

deep learning competitors. The main reason is the high computational cost for the image 

processing pipeline, which requires image-wise calculation of geometric and statistical 

features. Feature calculation runs on the CPU and takes an average of 13.68 ms per image, 

which limits the maximum FPS to 73 images/sec if the classification time is neglected. In 

contrast, the trained ensemble CNN-GRU architecture reaches 276 images/sec when in-

ference is performed on GPU/CPU without further optimization. All described models 

and algorithms were trained on a computer with Intel® Core™ i7-9700 CPU and Nvidia® 

GeForce® GTX 1080 Ti GPU. 

It should be noted that the generally high level of performance of all algorithms may 

be due to the conservative annotation process of the weld data. Only image data for which 

the quality of the weld seam could be reliably identified by the human experts were 

marked accordingly. Therefore, in a next step, we will evaluate the performance of these 

models on complete and unseen welding trials. 

4.3. Experimental Evaluation 

Four different welding trials were employed to assess the performance of the differ-

ent classification models. The probability curves of each defect class predicted by the in-

dividual classification heads of the ensemble CNN-GRU (i.e., kNN, SVM, fully connected 

layers), are shown in Figures 10–13 for different welding trials, together with their cross-

sectional and top view. A description of the welding trails and the applied process param-

eter can be found in Table 4. 

 

Table 4. Parameters and sheet configuration of four welding experiments for evaluation. 

Welding parameters Weld 42  Weld 46 Weld 48 Weld 216 

Laser power (kW) 3.3 3.3 3.3 2.7 

Beam focus offset (mm) 0 0 0 -2 

Welding speed (mm/s) 50; 37.5 50 50 50 

Shielding gas (L/min) 60 60 60 60 

Sheet configuration 
Three sheets; 

No slots 

Three sheets; 

Slots point upwards 

Three sheets; 

Slots point downwards 

Two sheets; 

No middle sheet 
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Figure 10. The metallographic characterization, the resulting ground truth data and the classifica-

tion results for weld 42 based on the proposed ensemble CNN-GRU architecture. 

 

Figure 11. The metallographic characterization, the resulting ground truth data and the classifica-

tion results for weld 46 based on the proposed ensemble CNN-GRU architecture. 
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Figure 12. The metallographic characterization, the resulting ground truth data and the classifica-

tion results for weld 48 based on the proposed ensemble CNN-GRU architecture. 

 

Figure 13. The metallographic characterization, the resulting ground truth data and the classifica-

tion results for weld 216 based on the proposed ensemble CNN-GRU architecture. 
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In weld 42 (Figure 10), the welding speed was temporally reduced to 75% of the orig-

inal welding speed of 3 m/min, which leads to an increased width weld seam that was 

sufficiently detected by all classifiers and accordingly to the resulting ensemble classifica-

tion. Additionally, open pores occurred during the weld at the marked positions (red cir-

cles) in the top view of weld 42. While the classifiers were not trained to detect this kind 

of defect, the ensemble model shows high sensitivity to these events, as it presents de-

creased probabilities for a good weld for these specific seam positions (red circle). In Fig-

ure 11, the prediction results for weld 46 are shown. Based on the experimental setup in 

Figure 2, weld defects were provoked by modifications in the form of several slots at the 

top side of the middle sheet. In the top view, seam collapses and sagging can be observed 

(blue circles). 

Lack of fusion (red circles) occurred at three positions correctly identified by the clas-

sifiers. A short section after frame 1550 was predicted as sagging followed by lack of fu-

sion by the ensemble. However, this cannot be confirmed in the cross-sectional view of 

the weld. 

In Figure 12, the prediction results for weld 48 are shown. In this weld, slots were 

made on the underside of the middle sheet to induce welding defects. While the top view 

of the weld shows a small section where sagging occurred, the cross-sectional view shows 

three sections of lack of fusion defects. 

The latter defect type was correctly predicted in terms of their general location, but 

the exact position was not perfectly recognized. The sagging defect in the first part of the 

weld seam is detected by the original classification head (NN) and the kNN model as part 

of the CNN-GRU, which leads to a sagging classification by the ensemble at this location. 

In Figure 13, the bottom view shows lack of penetration for the entire weld. The welding 

seam was performed with a laser beam that was positioned -2 mm out of focus. At the end 

of the weld, the bottom view shows an increased penetration depth. However, full pene-

tration was never achieved during this weld. All models predict the absence of a sufficient 

weld depth in the first part of the weld with a high probability. In the last third of the 

weld, according to all classifiers, the probability for lack of penetration decreases. The 

performance of all classification models used in this work can be obtained from Table 5. 

Based on four welding trials, the proposed ensemble deep learning architecture achieves 

an average F1 score of 95.2%, outperforming all other models and showing high robust-

ness and error detection performance for the four welding trials. 

Table 5. Classification performance for different welding trials (not within the training data set). 

Method 
Weld 42 

(2856 samples) 
Weld 46 

(2255 samples) 
Weld 48 

(2254 samples) 
Weld 216 

(3140 samples) 

Avg.  

Accuracy 

Avg.  

F1-Score 

Decision Tree 0.893 0.861 0.914 0.729 0.849 0.893 

kNN 0.977 0.885 0.921 0.94 0.931 0.939 

MLP 0.962 0.882 0.916 0.831 0.898 0.924 

LogReg 0.944 0.873 0.911 0.782 0.878 0.892 

Linear SVM- 0.93 0.815 0.906 0.75 0.85 0.867 

Non-Linear SVM * 0.958 0.892 0.917 0.888 0.914 0.926 

RF 0.97 0.921 0.927 0.796 0.904 0.923 

CNN-baseline 0.822 0.895 0.916 0.933 0.892 0.897 

ResNet50 0.91 0.823 0.894 0.9174 0.887 0.902 

MobileNetV2 0.9488 0.869 0.9041 0.965 0.922 0.922 

InceptionV3 0.967 0.898 0.919 0.821 0.908 0.905 

Ensemble 

CNN-GRU * 
0.973 0.923 0.944 0.963 0.951 0.952 

* Proposed method. 
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It should be noted that in this evaluation all major defects were properly identified 

by the ensemble classifier. The inaccuracy is due to imprecise localization and dimensions 

of the defect predictions as well as false positive detections (false alarms) at some points 

of the weld. 

Comparing the individual classical learning algorithms with the proposed architec-

ture, the kNN and SVM classifiers achieve the highest and second highest accuracy among 

the classical algorithms. This is one argument why these algorithms were considered as 

part of the ensemble architecture. Overall, the results indicate that the proposed ensemble 

deep learning architecture achieves the highest classification performance. It is assumed 

that the performance of classical ML methods and deep learning can be further improved 

by increasing the amount of training data. However, deep learning methods can also learn 

to extract more refined features from larger data sets, while traditional methods may reach 

saturation more quickly in terms of classification performance because their ability to im-

prove feature extraction is not inherently given. 

It must be mentioned that the present work was realized with data obtained in a well-

controlled laboratory setup. Although the welding head and monitoring equipment stud-

ied in this work can also be used for industrial production, the artificially induced faults 

may not fully reflect situations in industrial applications. Another factor to be considered 

critically is the highly imbalanced data set used for training and testing. As documented 

in literature, highly imbalanced data sets cause heavily biased classification results [65]. 

This results from the fact that classes with more labeled instances are given more 

importance than those with far fewer labeled instances, since the classifier's default learn-

ing objective tends to be robust to these minority classes. Therefore, classifiers trained un-

der such a condition tend to categorize the minority classes randomly. In this work, class 

imbalance was addressed by applying class weights during training for weighting the loss 

function and considering minority classes more important. However, it is believed that 

the classification performance of these minority classes can be further improved by ad-

dressing the imbalances in the dataset seen in Figure 4 through resampling techniques 

such as synthetic minority over-sampling [66]. 

It should also be noted that established quality prediction models only work if the 

underlying assumptions regarding input/output relationships are not violated. However, 

changing conditions in the manufacturing environment, e.g., new materials, different sup-

pliers and employees, changing machine conditions, etc., in practice lead to concept drift 

of the model, which needs to be recognized and mitigated. Concept drift can be counter-

acted by constantly retraining the model with new data. In addition, active detection of 

concept drift can be achieved by performing tests to detect changes, e.g., by tracking sev-

eral statistical properties of the incoming data stream within an adaptive window [67,68]. 

4.4. Real-Time Optimization and Inference Times on Embedded Systems 

For deployment in manufacturing environments, the target hardware often repre-

sents an embedded system with low energy consumption, small size and industry-com-

patible thermal design. However, these requirements are typically in conflict with the 

greater computational resources needed to operate deep learning models. 

Therefore, embedded computing boards with integrated GPUs have been developed 

recently to meet the increasing demands for parallel computing resources on low-power 

devices. In the following, we use the Nvidia Jetson AGX Xavier SoC device as a target 

platform to perform real-time inference using the ensemble CNN-GRU model. The plat-

form consists of eight custom Carmel ARMv8.2-A 64-bit CPU Cores and an integrated 

GPU based on the NVIDIA Volta architecture with 512 CUDA cores and 64 Tensor Cores, 

which represent programmable fused matrix-multiply-and-accumulate units that execute 

concurrently alongside CUDA cores for accelerating deep learning inference.  

Table 6 shows the technical specification of the embedded system and a desktop al-

ternative that is also used to train the deep learning models used in this work. In order to 

improve inference times, the TensorRT (NVIDIA) framework has been utilized. 
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Table 6. Overview of the processing hardware used in this study. 

Hardware NVIDIA GeForce GTX 1080 Ti  NVIDIA JETSON AGX XAVIER 

Type Desktop GPU Embedded GPU SoC 

Power Consumption (TDP) 250 Watt 10W/15W/30W/Max-N* profiles 

Cuda Cores 3584 512 

Memory 11GB (dedicated) 16GB (Shared) 

Clock Speed (Base/Boost)) 1.48 GHz/1.58 GHz 0.85 GHz/1.37GHz 

Memory Bandwidth 484.4 GB/s 137 GB/s 

Size 267 mm × 112 mm (card only) 87 mm × 100 mm 

*Max-N mode (~50W): no cap for power budget, maximum CPU, GPU and memory frequencies;  

Software: cuDNN 8.0/TensorRT 7.1.3 

The framework allows to build a high-performance inference graph for a specific tar-

get platform. After implementing the CNN-GRU model in TensorRT, the framework per-

forms layer-specific and platform-specific optimizations and generates the inference en-

gine. These optimizations can include reduction of precision via post-training quantiza-

tion (e.g., FP32 to FP16), layer and tensor fusion, kernel tuning for target platform, tensor 

memory optimization and multi-stream execution [69]. 

The optimized inference times for both hardware architectures can be obtained from 

Figure 14.  

 

Figure 14. Inference results of the CNN-GRU architecture after optimization via TensorRT for different hardware setups. 

 

Compared to the TensorFlow implementation in Figure 9, the inference time on desk-

top GPU (GTX 1080 Ti) with FP32 precision has decreased from 3.6ms to 0.73ms, which 

corresponds to a frame rate of 1369 fps. The mean inference time on the embedded system 

is determined as 1.10 ms (925 fps) for batch size 1 and in maximal performance mode 

(MAX-N), which is almost twice the sensor acquisition rate of 500 fps. Only when the 

embedded system is limited to a power budget of 10 W, the possible frame rate drops to 
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299 fps. Overall, the results indicate that real-time inference is possible with the proposed 

ensemble CNN-GRU architecture on the presented embedded GPU system at 30 W. Fur-

thermore, if throughput is more important than latency, the batch size can be increased to 

8 (i.e., eight image sequences are processed simultaneously), resulting in 1886 fps instead 

of 925 fps. 

5. Conclusions 

Based on two different imaging sensors, conventional and deep learning techniques 

were employed to predict critical weld defects such as lack of fusion (false friends), sag-

ging, irregular seam width and lack of penetration. Methods from the field of computer 

vision and descriptive statistics were used to extract informative features from the image 

data recorded during weld processes. An extensive study on the importance of the differ-

ent features and feature subsets was carried out. It is shown that the most relevant features 

can be derived from MWIR camera images, especially from the weld pool region, when a 

small number (<36) of features are used. However, the highest detection rates were 

achieved by combining geometrical and statistical features extracted from both image 

data sources. Moreover, an ensemble deep learning architecture based on CNNs, GRUs 

and high-performance classification algorithms was employed to detect weld defects ex-

ploiting their ability to extract spatio-temporal features from raw video data. In a further 

step, hyperparameters for deep learning methods as well as for classical machine learning 

algorithms were optimized during an extensive grid search. Compared to all methods 

investigated in this study, the proposed architecture achieves the best classification results 

and is able to provide indications of undefined errors such as open pores. Based on the 

evaluation on four previously unseen welding trials, our proposed architecture achieves 

the highest mean F1-Score of 95.2% of all investigated classification models and represents 

a competitive alternative that does not require extensive feature engineering. Finally, in-

ference optimization of the proposed model with respect to an embedded GPU system as 

target hardware enables the trained model to operate with a processing time of 1.1 ms per 

input image sequence (i.e., 925 image sequences per second).  

In the future, more emphasis will be placed on unsupervised and semi-supervised 

methods for detecting anomalies and defects using a small number of training samples. 

Furthermore, it is envisaged to address the imbalances in the datasets, e.g., through cost-

sensitive learning or random resampling techniques. In combination with advanced data 

augmentation methods, this could further increase the performance of the machine learn-

ing methods presented in this paper. 
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Appendix A 

Table A1. Features based on shape descriptors and image moments (geometrical features) for a given keyhole or weld 

pool contour. 

Feature Name Feature Expression Feature Description 

cnt_area ��� =  � � �(�, �)

��

Δ� 0th-order moment which represents the area 

cnt_centroid_x/y �̅ =  
���

���
;  �� =  

���

���
 1st-order moments: Center of gravity (COG) 

cnt_2nd_order_mom[Mxx|M00] �� =  
���

���
;  �� =  

���

���
 

2nd-order moments: distribution of contour pixel 

around COG normalized by ��� 

cnt_3nd_order_mom[Mxx|M00] �� =  
���

���
;  �� =  

���

���
 

3rd-order image moments of the given contour 

normalized by ��� 

cnt_ellipse_angle 

(Ellipse rotation angle �) 
 

Calculates the ellipse that fits (in a least-squares 

sense) the given contour best of all 

cnt_ellipse_center_x/y 

(�/� coordinate of the center) 

(� ��� ��� ��� �)�

�� +
(� ��� ��� ��� �)�

��  

= 1 
The algebraic distance algorithm is used [70] 

cnt_ellipse_axis_x/y 

(major semi-axis a/b) 
 Algorithm returns five ellipse parameters 

cnt_equi_diameter � = �
4 ∙ ���

�
  

Calculates the diameter of a circle based on the 

contour area 

cnt_aspect_ratio ������ ����� =
����ℎ

����ℎ�
 

Defines bounding rectangle of the contour in 

terms of height and width 

cnt_extent ������ =
 ���

�� − ����
 

Extent is defined as contour area divided by the 

area of the enclosing rectangle  

cnt_solidity ��� =
 ���

������ ���� ����
 

Ratio of contour area to the area of the convex 

hull. 

Table A2. Image features based on statistical characteristics. 

Feature Name Feature Expression Feature Description 

Prefix1_mean � =
1

�
�� ��

�

���

� Mean of the data ��,..,� depending on prefix 

Prefix1_variance �� =
1

�
�(�� − �)�

�

���

 Variance of the data ��,..,� depending on prefix 

Prefix1_skewness ���� =
1

�
� �

(�� − �)

�
�

�
�

���

 Skewness of the data ��,..,� depending on prefix 

Prefix1_kurtosis ���� =
1

�
� �

(�� − �)

�
�

�
�

���

 Kurtosis of the data ��,..,� depending on prefix 

1 Prefix can be “cnt” for pixel intensities within the extracted contour of the keyhole or weld pool, or “axis_x/y” for pixel 

intensities along the keyhole or weld pool ellipse axis, “ts-area” for nine consecutive weld pool areas (time domain) or no 

prefix for overall statistics of the given image data. 
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Table A 3. Classification algorithms and hyperparameter values used for cross-validated (nested) grid search. 

Algorithm Name Hyperparameter Grid Values 

Decision Tree Classifier 

(DT) 

max_depth: Maximum depth of decision tree 

max_features: Number of unique features used to evalu-

ate the best split 

criterion: Estimation of the split quality 

[10,20,30,40,50] 

[sqrt(n_features)’, 

‘log2(n_features))’] 

[‘gini’, ‘entropy’] 

KNeighbors Classifier 

(kNN) 

metric: Metric used to measure distance between two 

data points in an n-dimensional feature space 

weights: Function used to weight points in each neigh-

borhood 

n_neighbours: number of neighbors to evaluate  

[‘minkowski’, 

‘euclidean’,‘manhattan’] 

[‘uniform’,‘distance’] 

 

[2–6] 

Support Vector Classifier 

with non-linear kernel  

(SVM (non-linear)) 

C: regularization strength (L2 penalty) while regulariza-

tion is inversely proportional to C. Used for all kernels 

(sigmoid, rbf, polynomial) 

kernel: type of kernel used  

degree: Degree of the polynomial kernel function (poly) 

[0.01,0.1,1,10, 

100,1000, 10000] 

 

[‘rbf‘,‘poly‘,‘sigmoid‘] 

[3–6] 

Support Vector Classifier 

with linear kernel (SVM 

linear) 

C: Regularization strength while regularization is in-

versely proportional to C 

loss: Specifies the loss function 

penalty: Application of Lasso (L1) or  

Ridge (L2) regularization 

[0.01,0.1,1,10,100,1000, 

10000] 

 

[‘hinge’, ‘squared_hinge’] 

[l2, l1] 

Random Forest (RF) 

n_estimators: Number of overall decision trees 

max_features: Number of unique features used  

to evaluate the best split 

criterion: Estimation of the split quality 

[5,10,100,500] 

[sqrt(n_features)’, 

‘log2(n_features))’] 

[‘gini’, ‘entropy’] 

Multi-Layer Perceptron 

(MLP) 

learning_rate_init: Learning rate at start that manages 

the weight update rate. 

Activation: The hidden layer’s activation function 

hidden_layer_sizes: Number of nodes the  

hidden layer consists of 

[0.01, 0.05, 0.1, 0.5, 1.0] 

 

[‘logistic, ‘relu’, ‘tanh’] 

[25,50,100] 

Logistic Regression 

(LogReg) 

C: Regularization strength while regularization is in-

versely proportional to C 

solver: Algorithm to solve the optimization problem 

penalty: Application of Lasso (L1) or  

Ridge (L2) regularization 

[0.01,0.1,1,10,100,1000, 

10000] 

['liblinear', 'saga] 

[l2, l1] 

Convolutional Neural 

Network (CNN-baseline) 

Activation: the activation function for convolution and 

fully connected layer 

conv_1_depth: the number of output filters in the first 

convolutional layer 

conv_2_depth: the number of output filters in the 2nd 

convolutional layer 

Dense_units: number of units in the hidden layer 

[ReLU, tanh] 

 

[24,32,48] 

 

[36,50,64] 

 

[24,36,48] 
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Convolutional Neural 

Network + Gated Recur-

rent Units (CNN-GRU) 

Activation: The activation function for convolution and 

fully connected layer 

conv_1_depth: The number of output filters in the first 

convolutional layer 

conv_2_depth: The number of output filters in the 2nd 

convolutional layer 

GRU_units: Number of units in the Gated Recurrent 

Unit layer 

Dense_units: Number of nodes in the hidden layer  

nsequence: Length of the input image  

sequence to be classified 

[ReLU, tanh] 

 

[12,20,32]  

 

[8,16,24,32]  

 

[48,64,96,112,128] 

 

[8,10,12,24,32] 

[3,9,15,25,35] 
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