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Abstract: Classification of terrain is a vital component in giving suitable control to a walking assistive
device for the various walking conditions. Although surface electromyography (sEMG) signals
have been combined with inputs from other sensors to detect walking intention, no study has yet
classified walking environments using sEMG only. Therefore, the purpose of this study is to classify
the current walking environment based on the entire sEMG profile gathered from selected muscles
in the lower extremities. The muscle activations of selected muscles in the lower extremities were
measured in 27 participants while they walked over flat-ground, upstairs, downstairs, uphill, and
downhill. An artificial neural network (ANN) was employed to classify these walking environments
using the entire sEMG profile recorded for all muscles during the stance phase. The result shows that
the ANN was able to classify the current walking environment with high accuracy of 96.3% when
using activation from all muscles. When muscle activation from flexor/extensor groups in the knee,
ankle, and metatarsophalangeal joints were used individually to classify the environment, the triceps
surae muscle activation showed the highest classification accuracy of 88.9%. In conclusion, a current
walking environment was classified with high accuracy using an ANN based on only sEMG signals.

Keywords: surface electromyography (sEMG); deep learning; non-handcrafted feature; walking
environments; artificial neural network

1. Introduction

Recent research in the field of robotic walking assistance exoskeletons or prostheses
has seen many studies that look to achieve natural movement of the assisting robot through
communication between the user and robot [1–3]. This human-robot interaction is intended
to enable robots to recognize the user’s intended motion through cognitive interactions that
occur between the human user and the robot that take place over various communication
channels [4,5]. Intention recognition is important to accomplish synchronization between
the motion of the robot and the human [6,7]. The other studies have reported various
methods for recognizing the user’s intended movement based on bioelectrical signals, such
as electromyography (EMG), electroencephalography (EEG), and electrooculogram (EOG)
signals [8–10].

Surface electromyography (sEMG) signals contain neural information associated
with human movement [3,11]. Human motion intention can be recognized by analyzing
EMG signals, and that motion can also be classified to appropriately control any assisting
devices [12–14]. However, analyzing sEMG signals is difficult due to their complicated
patterns and non-linear nature [15]. Neural networks have the ability to understand and
analyze complex systems, as such, in recent years they have been applied in many fields
such as pattern recognition and adaptive control [5,16]. In particular, Morbidoni et al. used
artificial neural networks (ANN) to classify the gait phase by applying the sEMG signals
as input data [17]. Therefore, neural networks method and EMG signals can be effectively
exploited to recognize the intended motion and to classify human motion.
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Previously, both machine learning and traditional pattern recognition methods have
utilized handcrafted features that were manually extracted from EMG signals in order
to classify human movement [18,19]. However, the performance of these algorithms was
greatly influenced by their handcrafted features, meaning their performance often depends
on the experience of the engineer and the design of the feature extraction method [20,21].
Recently, it has been shown that extracting features using deep learning is more robust
than relying on handcrafted features. For instance, Morbidoni et al. reported that a deep
learning feature-based method was able to classify the gait phase with higher accuracy than
a handcrafted features-based approach [17]. Roy et al. also proposed a deep learning-based
classification framework that classifies hand motion with high accuracy [22]. In that study,
the authors adopted an approach where features were extracted using deep learning as
this leads to better overall classification performance.

Users of walking assistive devices will inevitably encounter various kinds of environ-
ments outside of flat, level ground during their daily life. Proper changes to the control of
those walking assistive devices are required to adapt to the changes that occur in the sEMG
signals and in the kinematics/kinetics of the joints in the lower extremities as they attempt
to tackle various walking environments [23–26]. As such, classifying and/or recognizing
the current walking environment is the first requirement in order to appropriately control
the assistive device [27]. To the best of our knowledge, however, no study has attempted to
classify the competing five conditions, including a flat-ground, upstairs, downstairs, uphill,
and downhill walking, using only sEMG signals. sEMG signals have often been used in
the classification of patterns as inputs to machine learning algorithms or artificial neural
network (ANN); relying on these kinds of signals has been proven as a valid approach to
classifying nonlinear data or complicated patterns [28]. Motivated by the state of research
described above, the purpose of this study is to classify the current walking environment
based on the entire sEMG profile from selected muscles in the lower extremities using
an ANN.

2. Materials and Methods
2.1. Participants

Twenty-seven male students (age: 24.5 ± 2.7 years, height: 1.73 ± 0.04 m, mass:
69.0 ± 7.99 kg, BMI: 22.9 ± 2.2 kg/m2) participated in this study. Prior to participation, all
participants were asked to sign an informed consent form approved by the Institutional
Review Board (IRB); all participants were capable of ascending and descending stairs and
slopes without any external assistance.

2.2. Experimental Protocol

All participants walked barefoot in the following five environments: on flat-ground,
upstairs, downstairs, uphill, and downhill (Figure 1). For the flat-ground environment, the
participants walked along a straight and level 6 m walkway. For the stairs, the participants
walked up and down a total of 5 steps (with each step 0.60 m in length, 0.25 m in width,
0.24 m in height) and there was a force platform embedded in the third step. For the
uphill and downhill environments, a walkway with a 15◦ slope was used. The slope angle
of 15◦ was selected, as it has been suggested in previous research that, at this angle, the
effects of slope that come with walking uphill and downhill are apparent [29,30]. The
sloped walkway consisted of three pieces, with each piece being 0.61 m in length and
0.76 m in width. The three pieces were joined together so that the participants could take
a few natural steps along the walkway; a force plate was embedded below the second
piece. Prior to the actual trials, each participant was instructed to perform several practice
runs in the five experimental environments to become familiar with the procedures and
instrumentation. During the tests, the participants were instructed to walk at a self-selected
speed and to step on the force plate with their dominant leg each time. The dominant leg
was defined as the more comfortable leg when kicking a ball [31,32]. All participants rested
between each of the five walking tasks in order to prevent muscle fatigue. sEMG data from
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five successful trials was recorded for each environment, any trials where the participants
did not correctly place their foot on the force plate were discarded.

Figure 1. The five walking environments tested in this work (a) flat-ground, (b) upstairs, (c) downstairs, (d) uphill, and
(e) downhill. A force plate was embedded in different positions according to each walking environment as shown by the
blue line in each diagram. The force plate was embedded in the floor of the flat- ground environment as shown in (a). The
experimental staircase was designed with five steps, here the force plate was embedded in the third step as shown in (b,c).
The sloped walkway was made of three pieces joined together, the force plate was embedded in the second piece as shown
in (d,e).

2.3. Data Collection

A wireless EMG system (Wave plus wireless, Cometa, Milan, Italy) was used to record
muscle activation data from the participants’ rectus femoris (RF), vastus medialis and
lateralis (VM and VL), semitendinosus (ST), biceps femoris (BF), tibialis anterior (TA),
soleus (Sol), medial and lateral gastrocnemius (MG and LG), flexor hallucis longus (FHL),
and extensor digitorum longus (EDL) at a sampling rate of 1200 Hz while walking. The
sEMG sensors were attached to the muscle bellies, while an inter-electrode distance of
20 mm at the recommended locations was maintained (Figure 2).

Figure 2. Attachment of electrodes. RF, VL, VM, ST, BF, MG, LG, Sol, TA, FHL, and EDL labels
indicate the rectus femoris, vastus lateralis, vastus medialis, semitendinosus, biceps femoris, medial
gastrocnemius, lateral gastrocnemius, soleus, tibialis anterior, flexor hallucis longus, and extensor
digitorum longus, respectively.

The force plate (9260AA6; Kistler, Winterthur, Switzerland) recorded data at a sam-
pling rate of 1200 Hz, and their data collection was synchronized with that of the wireless
EMG system to identify the stance phase in each participant’s walk. The force plate and
EMG data for each walking environment were recorded simultaneously; in particular,
the vertical ground reaction force (vGRF) was used to find the stance phase in each trial.
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The force plate was embedded in different positions as appropriate for each walking
environment (Figure 1).

2.4. Data Processing

Muscle activation data was collected during the stance phase of each participant’s
walk, this is defined as the period between the initial heel contact and toe-off. Initial heel
contact was identified by finding the first frame in which the vGRF exceeded 20 N [33,34].
Toe-off was determined by the first frame after initial heel contact in which the vGRF
returned 0 N.

The muscle activation data from the selected muscles in the lower extremities were
processed using MATLAB (MATLAB R2017b, Mathworks, Inc., Natik, MA, USA) [35]. The
sEMG signals were processed to extract linear envelopes from the raw sEMG signals. Raw
sEMG signals from walking on flat-ground, uphill, downhill, upstairs, and downstairs
were passed through a fourth-order Butterworth filter for 20–500 Hz before being full-wave
rectified. The rectified sEMG signals were subsequently passed through a fourth-order
Butterworth low-pass filter at 10 Hz. The processed sEMG signals for all environments
were normalized against each individual’s peak muscle activation amplitude during the
flat-ground trial [36,37]. The individual peak muscle activation amplitude was defined as
the maximum amplitude in the stance phase while walking on flat-ground. All sEMG signal
data for each muscle during the stance phase were linearly interpolated to 1000 points
to match the length of the input dataset before training and testing the model. An entire
sEMG profile consists of the data collected during the stance phase from all muscles that
were monitored. These data, from each trial of each individual, after being processed as
described above, were used as the sole input to the ANN which then attempts to classify
the walking environment (Figure 3). The number of input data points used for training
and testing each model is shown in Table A1.

Figure 3. Example of an entire normalized sEMG profile from one trial of a subject collected during
the stance phase while walking on flat-ground, upstairs, downstairs, uphill, and downhill. RF, VL,
VM, ST, BF, TA, Sol, MG, LG, FHL, and EDL indicate the rectus femoris, vastus lateralis, vastus
medialis, semitendinosus, biceps femoris, tibialis anterior, soleus, medial gastrocnemius, lateral
gastrocnemius, flexor hallucis longus, and extensor digitorum longus, respectively. The blue, orange,
grey, yellow, and sky-blue lines indicate walking on flat-ground, upstairs, downstairs, uphill, and
downhill, respectively.
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2.5. Walking Environment Classification

The processed sEMG signals from all walking environments were sorted by muscle,
then the sorted sEMG signals were labeled to match the actual walking environment they
were collected from (Table 1). Entire sEMG profiles of 135 successful trials for each walking
environment obtained from 27 subjects during the stance phase were used as the sole input
to the classification model. The input data was divided into 2 parts: 80% was used for
training the classification model and 20% was used for testing it.

Table 1. Labeling table. The walking environments are labelled in a sequence.

Walking Environment Label

FGW 1
US 2
DS 3
UW 4
DW 5

FGW, US, DS, UW, and DW indicates walking on flat ground, upstairs, downstairs, uphill, and downhill, respectively.

The ANN was used as a classifier. The processed sEMG muscle activation data were
fed into the ANN as the input for the ANN to classify the walking environment. The
ANN’s training model consisted of an input layer, a single hidden layer with the rectified
linear unit (ReLU) activation function, and the output layers. Entire sEMG profiles from
the muscles of each joint being monitored during the stance phase were fed to the input
layer. The output layer then classified the input data as being from one of the five walking
environments. A Softmax cross-entropy with logits was employed as a loss function, and
Adaptive Moment Estimation (Adam) was used as an optimization algorithm to minimize
the loss function [38–41].

Classification models were created for each muscle and combinations of muscles, each
model’s accuracy was calculated after applying the test data. Specifically, each classification
model was created by dividing the data from each joint’s flexor and extensor muscles (knee,
ankle, and metatarsophalangeal (MTP) joint), and then the classification accuracy of each
model was calculated after using the test dataset input (Figure 4).

Figure 4. Schematics of the classification procedures using sEMG signals as the input to an artificial neural network
(a) training the artificial neural network, (b) classification of walking environment.
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Accuracy, sensitivity, and specificity are model evaluation indicators commonly used
with classification problems [42]. For our ANN model, accuracy and confusion matrices
were used to evaluate its classification performance. Accuracy of the ANN model is defined
as an Equation (1).

Accuracy =
Nc

Ntotal
×100% (1)

where Nc is the number of correctly classified environments, and Ntotal is the total number
of tests.

A confusion matrix is used to better quantify the specifics of the classification perfor-
mance [43], this matrix is defined as follows:

A =

 a11 · · · a1j
...

. . .
...

ai1 · · · aij


where the elements of the matrix are defined by an Equation (2)

aij =
bij

btotal,i
×100% (2)

where bij is the number of samples for the ith walking terrain that are identified as the jth
walking terrain, and btotal,i is the total number of samples for the ith walking terrain. The
diagonal elements in the matrix represent the percentage of correct classification events
and are used to find the model’s accuracy, while the other elements in the matrix show the
percentage of misclassified events.

In addition, sensitivity and specificity were calculated to further evaluate the model’s
performance. They are defined as Equations (3) and (4).

Sensitivity =
TP

TP + FN
(3)

Specificity =
TN

TN + FP
(4)

where true positive (TP), true negative (TN), false positive (FP), and false negative (FN) are
defined in Table 2.

Table 2. The definitions of TP, FP, FN, and TN.

Actual

Prediction Positive Negative

Positive TP FN
Negative FP TN

Abbreviations TP, FP, FN, and TN represent true positive, false positive, false negative, and true negative, respectively.

In this study, the current walking environment was considered as positive; the other
four walking environments were then considered negative for that particular trial. As such,
five sensitivities and specificities were calculated, for when each walking environment was
taken as the positive result.

3. Results

The ANN was able to classify each walking environment with a high degree of
accuracy, achieving a success rate of 96.3% when using activation data from all the muscles
being monitored (RF, VL, VM, ST, BF, MG, LG, Sol, TA, EDL, and FHL) (Tables 3 and 4). The
sensitivity and specificity for our model’s walking environment classification are shown in
Table 4.
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Table 3. Confusion matrix for walking environment classification using sEMG signals as input.

All Muscle Activation

FGW US DS UW DW

FGW 100 0 0 0 0
US 0 100 0 0 0
DS 0 0 96.3 0 3.7
UW 3.7 0 0 96.3 0
DW 0 3.7 3.7 3.7 88.9

FGW, US, DS, UW, and DW indicate walking on flat-ground, upstairs, downstairs, uphill, and downhill, respectively.

Table 4. The accuracy, sensitivity, and specificity of the model when using all muscle profiles.

Walking Environment All Muscle Activations

Accuracy (%) All conditions 96.3

Sensitivity (%)

Flat-ground 100
Upstairs 100

Downstairs 96.3
Uphill 96.3

Downhill 88.9

Specificity (%)

Flat-ground 99.1
Upstairs 99.1

Downstairs 99.1
Uphill 100

Downhill 99.1

When separate flexor and extensor muscle group activations for each joint were used
as the classifying parameters, data from MG, LG, and Sol, which are the ankle extensor
muscles, achieved the highest classification accuracy (MG, LG, and Sol: 88.9%; ST and BF:
75.6%; VL, VM, and RF: 68.1%; FHL: 67.4%, TA: 63.0%; EDL: 45.2%; Table 5).

Table 5. The confusion matrix for classifying the walking environment using only sEMG signals from the flexor and extensor
muscle groups of the ankle, knee, and metatarsophalangeal (MTP) joint.

Flexor Extensor

FGW US DS UW DW FGW US DS UW DW

Knee

FGW 74.1 3.7 0 14.8 7.4 FGW 77.8 3.7 0.0 3.7 14.8
US 3.7 88.9 3.7 0 3.7 US 0.0 77.8 0.0 18.5 3.7
DS 0 14.8 77.8 0 7.4 DS 7.4 0.0 74.1 3.7 14.8
UW 18.5 0 3.7 74.1 3.7 UW 7.4 14.8 3.7 63.0 11.1
DW 18.5 0 14.8 3.7 63 DW 11.1 18.5 14.8 7.4 48.1

Ankle

FGW 59.3 11.1 0.0 11.1 18.5 FGW 88.9 0.0 0.0 7.4 3.7
US 3.7 48.1 29.6 3.7 14.8 US 7.4 92.6 0.0 0.0 0.0
DS 0.0 3.7 81.5 3.7 11.1 DS 0.0 3.7 85.2 0.0 11.1
UW 14.8 14.8 7.4 59.3 3.7 UW 11.1 0.0 0.0 88.9 0.0
DW 7.4 11.1 7.4 7.4 66.7 DW 7.4 3.7 0.0 0.0 88.9

MTP

FGW 74.1 0.0 0.0 11.1 14.8 FGW 25.9 11.1 11.1 25.9 37.0
US 3.7 81.5 7.4 0.0 7.4 US 7.4 51.9 29.6 11.1 0.0
DS 11.1 7.4 55.6 7.4 18.5 DS 18.5 11.1 48.1 11.1 11.1
UW 14.8 0.0 3.7 81.5 0.0 UW 22.2 11.1 25.9 40.7 0.0
DW 22.2 7.4 18.5 7.4 44.4 DW 18.5 11.1 11.1 0.0 59.3

FGW, US, DS, UW, and DW indicate walking on flat-ground, upstairs, downstairs, uphill, and downhill, respectively. The knee flexor
muscles are the vastus lateralis, vastus medialis, and rectus femoris. The knee extensor muscles are the semitendinosus and biceps femoris.
The ankle flexor muscle is the tibialis anterior. The ankle extensor muscles are the medial/lateral gastrocnemius and soleus. The flexor and
extensor muscles of the MTP joint are the flexor hallucis longus and extensor digitorum longus.
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When individual muscle activation was used as the classifying parameter, the highest
classification accuracy was obtained when using MG muscle activation data (MG: 81.5%,
LG: 77.0%, ST: 72.6%, VM: 68.9%, Sol: 68.1%, RF: 67.4%, FHL: 67.4%, BF: 66.7%, TA: 63.0%,
VL: 57.0%, and EDL: 45.2%; Table 6).

Table 6. The confusion matrix for classifying the walking environment using only sEMG signals from the individual muscles
around the ankle, knee, and MTP joints.

Flexor Extensor

FGW US DS UW DW FGW US DS UW DW

RF

FGW 74.1 18.5 0.0 3.7 3.7

VL

FGW 66.7 7.4 7.4 14.8 3.7
US 0.0 92.6 0.0 3.7 3.7 US 0.0 77.8 0.0 22.2 0.0
DS 0.0 3.7 55.6 29.6 11.1 DS 3.7 0.0 55.6 7.4 33.3
UW 3.7 11.1 7.4 55.6 22.2 UW 11.1 3.7 3.7 33.3 25.9
DW 11.1 3.7 14.8 11.1 59.3 DW 14.8 3.7 11.1 18.5 51.9

VM

FGW 92.6 0.0 0.0 3.7 3.7

ST

FGW 74.1 0.0 0.0 7.4 18.5
US 0.0 77.8 0.0 22.2 3.7 US 7.4 77.8 7.4 3.7 3.7
DS 0.0 0.0 59.3 7.4 33.3 DS 0.0 22.2 66.7 0.0 11.1
UW 11.1 14.8 0.0 59.3 14.8 UW 3.7 7.4 0.0 88.9 0.0
DW 3.7 3.7 14.8 22.2 55.6 DW 29.6 7.4 3.7 3.7 55.6

BF

FGW 59.3 3.7 18.5 0.0 18.5

MG

FGW 85.2 0.0 0.0 11.1 3.7
US 7.4 63.0 7.4 3.7 18.5 US 3.7 96.3 0.0 0.0 0.0
DS 3.7 7.4 70.4 11.1 7.4 DS 0.0 0.0 63.0 0.0 37.0
UW 7.4 3.7 3.7 85.2 0.0 UW 11.1 3.7 0.0 85.2 0.0
DW 7.4 14.8 14.8 7.4 55.6 DW 14.8 0.0 7.4 0.0 77.8

LG

FGW 70.4 3.7 7.4 14.8 3.7

Sol

FGW 55.6 3.7 7.4 25.9 7.4
US 7.4 88.9 0.0 0.0 3.7 US 7.4 85.2 3.7 3.7 0.0
DS 7.4 0.0 66.7 3.7 22.2 DS 11.1 0.0 70.4 0.0 18.5
UW 7.4 0.0 3.7 88.9 0.0 UW 14.8 3.7 3.7 74.1 3.7
DW 0.0 0.0 25.9 3.7 70.4 DW 14.8 3.7 22.2 3.7 55.6

TA

FGW 59.3 11.1 0.0 11.1 18.5

FHL

FGW 74.1 0.0 0.0 11.1 14.8
US 3.7 48.1 29.6 3.7 14.8 US 3.7 81.5 7.4 0.0 7.4
DS 0.0 3.7 81.5 3.7 11.1 DS 11.1 7.4 55.6 7.4 18.5
UW 14.8 14.8 7.4 59.3 3.7 UW 14.8 0.0 3.7 81.5 0.0
DW 7.4 11.1 7.4 7.4 66.7 DW 22.2 7.4 18.5 7.4 44.4

EDL

FGW 25.9 11.1 11.1 14.8 37.0
US 7.4 51.9 29.6 11.1 0.0
DS 18.5 11.1 48.1 11.1 11.1
UW 22.2 11.1 25.9 40.7 0.0
DW 18.5 11.1 11.1 0.0 59.3

FGW, US, DS, UW, and DW indicate walking on flat-ground, upstairs, downstairs, uphill, and downhill, respectively. RF, VL, VM, ST,
BF, MG, LG, Sol, TA, FHL, and EDL indicate the rectus femoris, vastus lateralis, vastus medialis, semitendinosus, biceps femoris, medial
gastrocnemius, lateral gastrocnemius, soleus, tibialis anterior, flexor hallucis longus, and extensor digitorum longus, respectively.

4. Discussion

This study proposed using an artificial neural network-based approach to classify
whether a human user was walking on flat-ground, upstairs, downstairs, up a ramp, or
down a ramp using only sEMG profiles collected from muscles in the lower extremities.
When separating the flexor and extensor muscle groups of each joint (i.e., the knee, ankle,
and MTP joints) to use as the input to the model, ankle extensors provided the best
classification performance. This study proves it is possible to accurately classify the current
walking environments based on an ANN using only sEMG signals. The results of this
study show that classification accuracy was highest (96.3%) when using muscle activation
data from all monitored muscles: the VM, VL, RF, ST, BF, TA, MG, LG, Sol, FHL, and EDL.
It should be noted that this high accuracy is comparable and even higher than accuracies
from the other studies that used a combination of multiple types of sensor. Kyeong et al.
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reported a classification accuracy of 96.1% when training and testing the model using
the data obtained from multiple sensors (including sEMG, position sensors, GRF sensors,
and interaction force sensors). However, the classification accuracy was 76.7% when
training and testing the model using only the data obtained from the sEMG sensors [19].
Joshi et al. reported on their model, which classified the walking environment correctly
67.1% of the time when only relying on data from sEMG sensors [44]. In these studies,
the walking environment was classified using a machine learning method based on time
domain features calculated in the feature extraction process as a parameter. However, in
our study, we utilized the entire sEMG profile collected during each participant’s stance
phase as input data for our deep learning method. As muscle activation data from each
time point may reflect any peak amplitude characteristics of the sEMG signals during the
stance phase, we believe this is the reason for the higher accuracy of our model compared
to other studies. Therefore, our results suggest that it is possible to classify the walking
environment with a high degree of accuracy using only sEMG sensors when we use the
entire muscle activation profile as input to the classification model.

This study found that muscle activation data from the ankle extensor group of mus-
cles (i.e., the MG, LG, and Sol) gave the highest accuracy when classifying the walking
environment. This result indicates that ankle extensor muscle activation provides the
most important data when classifying the walking environment. This finding might be
linked to differences in the lower limb joint kinetics of the sagittal plane when walking in
different environments. Lay et al. reported that there were significant differences in the
peak ankle joint moment in both early and late stance phases when walking on flat-ground,
uphill, or downhill [45]. In addition, significant differences were found in the peak knee
joint moment during the late stance phase between walking on flat-ground and down-
hill [45]. In the case of walking up and down stairs, the peak ankle joint moment has shown
significant differences in the early stance phase between walking up stairs and walking
down [26]. Differences in the peak knee joint moment appear in the late stance phase,
regardless of whether we are walking upstairs or walking down, compared to walking
on flat-ground [26]. Taking these previous findings together, we may conclude that the
ankle joint has more significance than the knee joint in relation to classifying the current
walking environment; this, in combination with the results of this study, suggests that
muscle activation data from the ankle extensors should be monitored to properly control
walking assistive devices as the user moves between different environments.

Although a high degree of accuracy while classifying the current walking environment
was shown in this study, there is still room to increase the classification rate of our system
for terrain detection, and to apply proper control of walking assistive devices. This study
considered the current situation while walking in various environments, however, a system
which could provide early detection of transitions between terrains would be preferable
to enable timely control of walking assistive devices. Thus, future study into detecting
transitions between the walking terrain is warranted. In addition, only male subjects were
included in this study, so the current results cannot be generalized to females. To further
enhance classification performance and generalize the classification model, more investi-
gation into classifying various walking terrains through a larger sample size, including
female subjects, is warranted.

5. Conclusions

This study proposed an ANN-based approach to classifying the user’s competing
conditions as walking on flat-ground, upstairs, downstairs, uphill, or downhill. The
main contribution of this study is to classify the walking environment by applying an
entire sEMG profile from the stance phase as the only input to the ANN classification
model. This study suggests that using all the sEMG data from every muscle group in
the lower extremities is sufficient to determine a user’s gait characteristics as they change
according to the walking conditions and that current deep learning methods can extract
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these gait characteristics successfully from these inputs. In conclusion, the current walking
environment could be accurately classified using an ANN with only sEMG signals as input.
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Appendix A

Table A1. The number of input data points used for training and testing each model.

Muscle Used for Input Number of Training Data Points Number of Testing Data Points

All muscles 5,940,000 1,485,000
VL, VM, RF 1,620,000 405,000

ST, BF 1,080,000 270,000
LG, MG, Sol 1,620,000 405,000

FHL 540,000 135,000
EDL 540,000 135,000
RF 540,000 135,000
VL 540,000 135,000
VM 540,000 135,000
ST 540,000 135,000
BF 540,000 135,000

MG 540,000 135,000
LG 540,000 135,000
Sol 540,000 135,000
TA 540,000 135,000

RF, VL, VM, ST, BF, MG, LG, Sol, TA, FHL, and EDL indicate the rectus femoris, vastus lateralis, vastus medialis, semitendinosus,
biceps femoris, medial gastrocnemius, lateral gastrocnemius, soleus, tibialis anterior, flexor hallucis longus, and extensor digitorum
longus, respectively.
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