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Abstract: Taiwan is located at the edge of the northwestern Pacific Ocean and within a typhoon
zone. After typhoons are generated, strong winds and heavy rains come to Taiwan and cause major
natural disasters. This study employed fully convolutional networks (FCNs) to establish a forecast
model for predicting the hourly rainfall data during the arrival of a typhoon. An FCN is an advanced
technology that can be used to perform the deep learning of image recognition through semantic
segmentation. FCNs deepen the neural net layers and perform upsampling on the feature map
of the final convolution layer. This process enables FCN models to restore the size of the output
results to that of the raw input image. In this manner, the classification of each raw pixel becomes
feasible. The study data were radar echo images and ground station rainfall information for typhoon
periods during 2013–2019 in southern Taiwan. Two model cases were designed. The ground rainfall
image-based FCN (GRI_FCN) involved the use of the ground rain images to directly forecast the
ground rainfall. The GRI combined with rain retrieval image-based modular convolutional neural
network (GRI-RRI_MCNN) involved the use of radar echo images to determine the ground rainfall
before the prediction of future ground rainfall. Moreover, the RMMLP, a conventional multilayer
perceptron neural network, was used to a benchmark model. Forecast horizons varying from 1
to 6 h were evaluated. The results revealed that the GRI-RRI_MCNN model enabled a complete
understanding of the future rainfall variation in southern Taiwan during typhoons and effectively
improved the accuracy of rainfall forecasting during typhoons.

Keywords: typhoon; rainfall; convolutional networks; image segmentation; prediction

1. Introduction

Taiwan is located in the northwestern Pacific Ocean within an area frequently hit by
typhoons. After their formation, typhoons often move along the west Pacific Ocean and
strike Taiwan with strong winds and torrential rain. On average, three to four typhoons
land in Taiwan each year [1]. Southern Taiwan lies in a subtropical zone. The main rainy
season in southern Taiwan is the typhoon season between May and October. Nearly no
rainfall occurs in the other months. Therefore, the main water source in southern Taiwan is
the rainfall caused by typhoons. However, the short-duration heavy rainfall of typhoons
not only provides abundant water but also causes disasters, such as debris flows, river
water surges, and downstream flooding [2,3]. Typhoons commonly strike southern Taiwan,
for example Typhoon Fung-Wong in 2014 and Typhoons Nepartak, Meranti, and Typhoon
Megi in 2016, which caused severe disasters and property losses [4,5]. Therefore, an
accurate rainfall forecasting model is urgently required for southern Taiwan to accurately
predict the real-time rainfall during typhoon periods and prevent the disasters resulting
from heavy rainfall in local areas.

In recent years, considerable developments have occurred in machine learning (ML).
Scholars have used various ML-based algorithms along with ground observation data,
namely one-dimensional (1-D) data, for precipitation estimation and prediction; for ex-
ample, artificial neural networks [6–10] and support vector machines [11,12] have been
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employed to predict rainfall using 1-D ground rainfall data. Although rain gauges provide
relatively accurate point rainfall estimates near the ground surface, they cannot effectively
capture the spatial variability of rainfall [13,14].

Remote sensing has attracted increasing attention in weather analysis and forecasting.
Various types of image data have been collected for remote sensing applications. The devel-
opment of weather surveillance radars has enabled quantitative precipitation estimation
with extremely high spatial resolutions. Weather radars, which have the advantages of
wide coverage and round-the-clock observation, are critical devices for meteorological
observation [15]. Accordingly, the application of two-dimensional (2-D) radar images com-
pensates for the insufficient 1-D spatial rainfall data collected from land-based observation
stations. Many studies have used the statistical relationships between the radar reflectivity
and the rain rate or nonlinear regression to establish rainfall estimation models. These
studies have achieved favorable outcomes [16–25]. However, the interpretation of these
image data is a crucial emerging topic.

Deep learning (DL) is a prominent branch of ML. DL mainly involves using neural-
network-based ML algorithms to develop advanced computational technology that can be
applied in image recognition. A DL neural network structure is a multilayer neural network
architecture that uses two-dimensional matrices to calculate images. Therefore, advanced
computer processing units (i.e., graphics cards) are required to execute DL tasks success-
fully [26]. The convolutional neural networks (CNNs) developed by LeCun et al. [27]
is a basic DL image recognition technology. The structure of the CNN model comprises
a convolutional layer and pooling layer. A complete CNN model is established using
a fully connected layer, which converts two-dimensional images into one-dimensional
arrays, and multilayer perceptron network model structures [28]. Such a network structure
enables the CNN model to achieve favorable image recognition accuracy [29–32]. CNN
algorithms have also been successfully applied to rainfall estimation and hydrological
problems. For example, Pan et al. [33] used CNN model stacks with several convolution
and pooling operators to extract intricate and valuable circulation features for precipitation
estimation. Sadeghi et al. [34] estimated the precipitation rate by processing images in
the infrared (IR) and water vapor bands (obtained from geostationary satellites) by using
CNNs. Wang et al. [35] proposed the dilated causal CNN model to predict the water level
changes during typhoons. Wei [36] proposed a regional extreme precipitation and construc-
tion suspension estimation system and used a deep CNN model to enhance the extreme
rainfall forecasting capability of this system. The aforementioned studies developed CNNs
for precipitation susceptibility mapping by using various 2-D remote images.

Newly emerging DL skills were employed in the study case. First, a fully convolutional
network (FCN) developed by Long et al. [37] was employed to conduct image recognition.
The FCN was developed as an extension of the CNN for semantic segmentation to address
the shortcomings of CNN and increase the prediction accuracy for the rapid recognition of
various object representations. To facilitate the pixel classification of images, upsampling
was conducted in the FCN model for classifying every pixel on the feature map of the
final convolutional layer. The FCN model used deconvolution to match the class of every
pixel in a feature map with the corresponding class in the original image and thus solved
the problem of semantic segmentation. To the best of our knowledge, few studies have
used FCNs for rainfall estimation and prediction. Moreover, Eppel [38] proposed modular
convolutional neural networks (MCNNs) that apply FCNs to segment an image into vessel
and background area; in that study, the vessel region was used as an input for a second net
that recognized the contents of a glass vessel.

The current study developed a DL-based rainfall prediction model, for which the
source data are both 1-D ground observation data and 2-D remote sensing imageries, to
predict precipitation during typhoons. Southern Taiwan was selected as the research area.
This study used the hourly rainfall data of ground stations and radar echo images in
southern Taiwan to establish an hourly rainfall forecast model. Toward the aforementioned
goal, this study has the following features:
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(1) This study employed an FCN, which employs the convolutional and pooling layers
for extracting image features, to predict the precipitation during typhoons.

(2) To address the input–output patterns in the FCN modeling process using 2-D array
data, this study converted the rainfall data of ground stations into 2-D images.

(3) This study employed the net architecture of MCNN with FCNs, which enabled the
integration of the radar echo image and ground observation data as model inputs for
enhancing the accuracy of rainfall intensity prediction.

2. Experimental Area and Data
2.1. Region and Gauges

The longitude and latitude ranges of southern Taiwan are 120.11–121.59◦ E and
22.00–23.34◦ N, respectively (Figure 1). The area of southern Taiwan is 11,434 km2, which
accounts for 31.59% of the total area of Taiwan. As displayed in the right part of Figure 1,
southern Taiwan has 51 weather stations, comprising six Central Weather Bureau (CWB)
weather stations (red dots) and 45 automatic detection stations (blue dots). The CWB
weather stations are located at Tainan, Kaohsiung, Hengchun, Taitung, Dawu, and Lanyu
(coordinates are provided in Table 1). This study used the six CWB weather stations as the
experimental sites.

Figure 1. Map of the research area.

Table 1. Weather station information.

Station Elevation (m) Longitude (◦ E) Latitude (◦ N)

Tainan 40.8 120.2047 22.9932
Kaohsiung 2.3 120.3157 22.5660
Hengchun 22.1 120.7463 22.0038

Dawu 8.1 120.9038 22.3557
Taitung 9.0 121.1546 22.7522
Lanyu 324.0 121.5583 22.0370

The left part of Figure 1 indicates that the Central Mountain Range (CMR) runs south–
north and divides Taiwan into the eastern and western regions. The total length of the
CMR is approximately 340 km, and its width from east to west is approximately 80 km.
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The average altitude of the range is approximately 2500 m [39]. The Tainan and Kaohsiung
stations are located to the west of the CMR, the Hengchun station is located to the south of
the CMR, the Taitung and Dawu stations are located to the east of the CMR, and the Lanyu
station is located in an outlying island (bottom right of Figure 1).

2.2. Typhoons and Radar Mosaics

In Taiwan, the CWB creates radar echo images (REIs) by using different colors to
represent the spatial echo intensity of the reflected signals received by radars from rain
particles [40]. REIs are used to reflect the variations of water vapor during typhoon cir-
culation. Wu and Kuo [41] indicated that useful typhoon-related data can be obtained
when a typhoon affects Taiwan by setting up an around-the-island Doppler radar network,
enhanced surface rain gauge network, and integrated sounding system. This study col-
lected radar images starting from 2013 because the resolution and color appearance of these
images were different from those of the radar images captured before 2013. According to
the CWB’s Typhoon Database [42], 22 typhoon events occurred in Taiwan from 2013 to
2019 (Table 2).

Table 2. Typhoon events in Taiwan from 2013 to 2019.

Typhoon Periods Intensity Pressure at Typhoon Center (hPa) Maximum Wind Speed of Typhoon
Center (m/s)

Soulik 2013/07/11–13 Severe 925 51
Cimaron 2013/07/17–18 Mild 998 18

Trami 2013/08/20–22 Mild 970 30
Kong-Rey 2013/08/27–29 Mild 980 25

Usagi 2013/09/19–22 Severe 910 55
Habigis 2014/06/14–15 Mild 992 20
Matmo 2014/07/21–23 Moderate 960 38

Fung-Wong 2014/09/19–22 Mild 985 25
Noul 2015/05/10–11 Severe 925 51
Linfa 2015/07/06–09 Mild 975 30

Chanhom 2015/07/09–11 Moderate 935 48
Soudelor 2015/08/06–09 Moderate 930 48

Goni 2015/08/20–23 Severe 925 51
Dujuan 2015/09/27–29 Severe 925 51

Nepartak 2016/07/06–09 Severe 905 58
Meranti 2016/09/12–15 Severe 900 60

Megi 2016/09/25–28 Moderate 940 45
Nesat 2017/07/28–30 Moderate 955 40

Hatitang 2017/07/29–31 Mild 990 20
Hato 2017/08/20–22 Moderate 965 33

Guchol 2017/09/06–07 Mild 998 18
Bailu 2019/08/24–25 Mild 975 30

According to the CWB, the maximum wind speeds of mild, moderate, and severe
typhoons are 17.2–32.6, 32.7–50.9, and >51 m/s, respectively. Seven severe, six moderate,
and nine mild typhoons occurred in southern Taiwan during the study period.

Figure 2 displays the accumulated precipitation of each typhoon in descending order.
The top nine typhoons in terms of precipitation, namely Typhoons Trami, Kong-Rey, Usagi,
Habigis, Fung-Wong, Nepartak, Meranti, Megi, and Hato, had relatively high precipitation
(accumulated precipitation > 100 mm), whereas the others had relatively low precipitation.

This study collected 1412 radar mosaic images with a resolution of 1024 × 1024 pixels.
Here, one pixel corresponded to an actual distance of 0.7 × 0.7 km. Figure 3 displays
the REIs of nine typhoons approaching the study region. These typhoons all resulted in
accumulated precipitation >100 mm.
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Figure 2. Total precipitation of typhoons between 2013 and 2019.

Figure 3. Collected original radar echo images: (a) Typhoons Trami, (b) Kong-Rey, (c) Usagi, (d) Habigis, (e) Fung-Wong,
(f) Nepartak, (g) Meranti, (h) Megi, and (i) Hato (the size of each map is 1024 × 1024 pixels) (The radar mosaic images were
produced by the Central Weather Bureau [42]).
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3. Model Development

This study used the Python programming language to establish models. The Ten-
sorflow (version 2.1) and Keras libraries of Python were used for ML computation. The
model computation environment was an ASUS-TS300E9 computer (ASUSTek Computer
Inc., Taipei City, Taiwan). The computer clock rate was 3.5 GHz. The computer included
16 GB RAM (DDR4-2400) and a GeForce GTX 1080 Ti X 11G graphics card (Micro-Star
International Co., Ltd., New Taipei City, Taiwan).

3.1. Data Division

This study divided the data of typhoon events into training, validation, and testing
sets. The training sets were used to tune the model parameters, and the validation sets
were used to verify the trained model. To avoid the data leakage and bias problem in the
rainfall prediction model, this study randomly split the typhoons ranked 1 to 9 in terms
of precipitation into training, validation, and testing sets; that is, rank = 2, 6 and 9 for
training set (Nepartak, Habigis, and Hato), rank = 3, 5 and 8 for validation set (Fung-Wong,
Usagi, and Trami), and rank = 1, 4 and 7 for testing set (Meranti, Megi, and Kong-Rey).
In addition, the remaining typhoons (relative low precipitation) were added for training
set. In total, the training, validation, and testing sets comprised 926, 240 and 246 hourly
records, respectively.

3.2. Image Preprocessing

In the study, all the inputs and outputs in the modeling process in this study were two-
dimensional images. First, when labeling the REI images, the latitudinal and longitudinal
range of the original radar images was 117.32–124.79◦ E and 21.70–27.17◦ N (Figure 3).
Because the original images had a wide geographical range, cropping was required to
obtain the image size of study area (120.11–121.59◦ E and 22.00–23.34◦ N). Therefore,
the raw REIs were cut to a size of 192 × 192 pixels to completely cover the study area.
According to the legend of dBZ (Figure 3), there are 17 colors (where dBZ ranging from
−10 to 75 dBZ, divided by 5 dBZ). Therefore, the number of categories was 17. These REI
images were then encoded into RGB channels (i.e., red, green, and blue) and pixel values at
each channel are integer values between 0 and 255. Here, a one-hot encoding was applied
to the RGB representation of an REI image when pixel-based images were used as the
model inputs.

Second, the rainfall data of ground stations had to be converted into two-dimensional
ground rainfall images (namely GRIs). The inverse distance weighting method proposed
by Shepard [43] was employed. In this method, an interpolating function is used to identify
an interpolated value at a given point based on samples by using the inverse distance
weighting method as follows:

u(x) =

 ∑N
i=1 wi(x)ui

∑N
i=1 wi(x)

, if d(x, xi) 6= 0 for all i

ui, if d(x, xi) = 0 for some i
(1)

where wi(x) = 1
d(x,xi)

p is a weighting function; x denotes an interpolated (unknown) point;
xi is an interpolating (known) point; d is a given distance from xi to x; N is the total
number of known points used in interpolation; and p is a positive real number, called the
power parameter.

This study employed the commonly used p = 2 and subsequently identified the
suitable N value. This study found that when N ≤ 4, the GRIs were varied; however, when
N ≥ 5, the GRIs were more stable and invariant. Figure 4 depicts the GRIs of Typhoons
Trami, Kong-Rey, Usagi, Habigis, Fung-Wong, Nepartak, Meranti, Megi, and Hato using
the inverse distance weighting method when p = 2 and N = 5. Here, the size of GRI maps
is the same as the cropped REI maps (i.e., 192 × 192 pixels). Subsequently, when labeling
the GRI images, this study partitioned the precipitation scale into several intervals to label
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the categorical values. According to the collected typhoons, the range of rain rate from 0
to 76 mm/h. This study divides the rain rate by 5 mm/h. Here, we let the no rain as a
special case, as class “0”. Thus, the total number of rain intensity categories was 17. For
example, if the rain rate was 13 mm/h, it was labeled as class “3”. Then, each pixel of the
GRI images can be labeled by classes 0 to 16. Finally, these GRI images were encoded into
RGB channels when the GRI images were used as the model targets.

Figure 4. Generated GRIs of Typhoons (a) Trami, (b) Kong-Rey, (c) Usagi, (d) Habigis, (e) Fung-Wong,
(f) Nepartak, (g) Meranti, (h) Megi, and (i) Hato. (the size of each map is 192 × 192 pixels).

3.3. Designed Model Cases

In this study, two rainfall prediction models were developed on the basis of two
types of neural networks: The GRI-based FCNs (GRI_FCNs) and GRI combined with
rain retrieval image (RRI)-based MCNNs (GRI-RRI_MCNNs). The developed GRI_FCN
(Figure 5) adopted segmentation steps using a standard FCN, which segmented the image
into objects by classifying every pixel in the image into one of a given set of categories.
The framework of the GRI_FCN included input, downsampling, upsampling, and output
layers. Before FCN modeling was conducted, the 1-D rainfall data of ground stations were
converted into 2-D GRIs. In the GRI_FCN model, the GRIs were adopted to predict the
ground rainfall directly, and the output results were the predicted GRIs.

Figure 5. Architecture of the GRI-based fully convolutional networks. (an image of GRI contains a three-dimensional array
of size h × w × d, where h = 192 and w = 192 are spatial dimensions, and d = 3 is the color channel dimension).
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The GRI-RRI_MCNN model employed a modular semantic segmentation approach
using serially connected FCN networks. The first FCN net identified current ground
precipitation, and the output of this net (i.e., rain retrievals) was used by a second FCN net
to identify and segment the future ground precipitation (i.e., rain predictions; Figure 6).
The GRI-RRI_MCNN involved two steps: in step 1, REIs were used to retrieve the ground
rainfall (the GRIs are the model learning targets). The outputs were RRIs. Step 2 involved
the fusion (using a summation method) of the RRIs and GRIs obtained in step 1 to create
new images. These new images were subsequently used as the input to predict the ground
rainfall, and the output results were the predicted GRI images.

Figure 6. Architecture of blending GRI-RRI-based modular convolutional neural networks. (the images of GRI, REI and
RRI contain a three-dimensional array of size 192 × 192 × 3).

The convolution and pooling processes of the FCN in GRI_FCNs and GRI-RRI_MCNNs
were identical to those of the CNN. The net architecture of the CNN has been described
by [27,44]. In general, CNNs are constructed by stacking two types of interweaved layers:
convolutional and pooling (subsampling) layers [45]. The convolutional layer is the core
component of a CNN. This layer outputs feature maps by computing the dot product
between the local region in the input feature maps and a filter. The pooling layer performs
downsampling on feature maps by computing the maximum or average value of a sub-
region [46]. An FCN has more neural net layers than a CNN does. An FCN conducts
upsampling on the feature map of the final convolution layer. This design enables FCN
models to restore the size of the output results to that of the raw input images. Therefore,
the classification is performed for every raw image pixel [37]. An FCN can theoretically ac-
cept an input image of any size and produce output images of the same size because an FCN
is trained end-to-end for pixel-to-pixel semantic segmentation (or pixel-wise prediction).

When running the GRI_FCN and GRI-RRI_MCNN models, the parameter settings
of the convolutional and pooling layers were as follows: kernel size = (2, 2), padding
method = same, maxpooling with filter size = (2, 2), strides = (2, 2), and the activation
function = rectified linear unit function. Moreover, the settings of output layers were as
follows: kernel size = (8, 8), strides = (8, 8), and the activation function = softmax function.
The loss function was categorical cross entropy. The number of intermediate layers in the
FCNs can be seen in the following section.
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3.4. Modeling

Two types of neural network models (i.e., GRI_FCN and GRI-RRI_MCNN models)
were established to examine the suitable network structures and image size. First, this
study evaluated the accuracies of the FCN-32s, FCN-16s, and FCN-8s architectures by using
the GRI_FCN model. Figure 7 reveals the intermediate layers (involving convolution layers
and pooling layers) in these FCNs. These FCN-type architectures contained the processes
of conv1–conv7 and pool1–pool5. In the figure, FCN-32s upsampled stride 32 predictions
back to pixels in a single step. Subsequently, FCN-16s combined stride 16 predictions from
both the final layer and the pool4 layer, at stride 16, while retaining high-level semantic
information. Finally, FCN-8s used additional predictions from pool3, at stride 8, to enhance
precision. The FCN employed the upsampling method to increase the pixel accuracy of
the output results. Table 3 lists the total numbers of trainable variables in the FCN-32s,
FCN-16s, and FCN-8s for GRI_FCN and GRI-RRI_MCNN models.

Figure 7. Architecture of GRI_FCN-based FCN-32s, FCN-16s, and FCN-8s and the size information of input images and
feature maps in each conv-pool stage. (these FCN-type architectures contain the processes of conv1–conv7 and pool1–pool5;
the architecture was referred to [37] and modified for modeling the model cases in the work).

Table 3. Total numbers of trainable variables in the GRI_FCN and GRI-RRI_MCNN models.

Model FCN-32s FCN-16s FCN-8s

GRI_FCN 1.175 × 108 1.343 × 108 1.351 × 108

GRI-RRI_MCNN 2.350 × 108 2.685 × 108 2.701 × 108

Figure 8 depicts the learning curves of GRI_FCNs and GRI-RRI_MCNNs for a FCN-8s
network architecture using training set and validation set for a forecast horizon of 1 h. For
the training set, the accuracy increased as the epoch number increased for both models
(Figure 8a,c). In contrast, the accuracy for the validation set stops increasing after about
80 and 60 epochs for GRI_FCNs and GRI-RRI_MCNNs, respectively. Nonetheless, the
categorical cross entropy loss decreased when the epoch number increased for both models
(Figure 8b,d). In contrast, the loss values for the validation set began increasing after about
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80 and 60 epochs for both models. In order to prevent overfitting, this study stopped
training the models at around 80 and 60 epochs respectively for both models.

Figure 8. Learning curves for FCN-8s network architecture using training set (black line) and
validation set (red line): (a) accuracy of GRI_FCNs; (b) loss of GRI_FCNs; (c) accuracy of GRI-
RRI_MCNNs; (d) loss of GRI-RRI_MCNNs.

According to [47], the probability of detection (POD) is equal to the number of hits
divided by the total number of rain observations; thus it gives a measure of the proportion
of rain events successfully forecast. Here, the POD measure was employed to the evaluate
the accuracy of per-rain-intensity-category. Figure 9 plots the diagram for POD scores
for GRI_FCNs and GRI-RRI_MCNNs as FCN-based architectures were applied. In the
figure, the POD scores decreased when the rain-intensity category number increased using
GRI_FCNs and GRI-RRI_MCNNs. This trend implies that these cases might correctly
predict light rain but misclassify for heavier rain.

Figure 9. POD scores for FCN-based network architectures using validation set: (a) GRI_FCNs; (b) GRI-RRI_MCNNs.

Moreover, to evaluate overall accuracy, this study adopted two commonly used cate-
gorical metrics in semantic segmentation: pixel accuracy (PA) and mean intersection over
union (MIoU). The PA represents the percentage of image pixels classified correctly. The
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MIoU first computes the intersection over union for each semantic class and then computes
the average over classes. Using the same processing, this study performed the weights
training for a forecast horizon of 2–6 h. Table 4 lists the PA and MIoU performance metrics
of FCN-32s, FCN-16s, and FCN-8s for forecasted horizons of 1–6 h. The results revealed
that FCN-8s exhibited optimal performance in terms of the PA and MIoU. Therefore, this
study used FCN-8s as the model structure.

Table 4. Accuracy performance of various network structures using the validation set.

Model Network Structures
Forecasted Horizons (h)

t + 1 t + 2 t + 3 t + 6

GRI_FCN

FCN-32s
PA 77.8% 73.2% 68.9% 51.2%

MIoU 55.2% 50.3% 42.9% 30.2%

FCN-16s
PA 78.5% 74.6% 70.8% 52.7%

MIoU 55.1% 52.4% 47.5% 32.2%

FCN-8s
PA 79.4% 76.9% 72.7% 56.9%

MIoU 56.7% 53.8% 48.8% 33.5%

GRI-RRI_MCNN

FCN-32s
PA 81.9% 76.7% 71.6% 55.6%

MIoU 57.0% 53.7% 45.6% 31.9%

FCN-16s
PA 82.8% 77.8% 74.3% 58.5%

MIoU 57.5% 55.2% 48.6% 34.2%

FCN-8s
PA 83.6% 79.2% 75.3% 60.9%

MIoU 58.7% 56.8% 50.3% 36.5%

4. Simulation of Typhoons
4.1. Accuracy Results of the Testing Set

Rainfall prediction was performed for three typhoons (i.e., Kong-Rey, Meranti, and
Megi) to evaluate the effectiveness of the designed GRI_FCN and GRI-RRI_MCNN models.
Figure 10 displays the predicted GRI images when using the testing set. To examine
the accuracy of model performance, this study also calculated the PA and MIoU metrics.
Figure 11 reveals that the GRI-RRI_MCNN model outperformed the GRI_FCN model for
all lead times.

Figure 10. Predicted GRIs using the testing set: (a) Typhoons Kong-Rey, (b) Meranti, and (c) Megi.
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Figure 11. Accuracy performance of the GRI_FCN and GRI-RRI_MCNN in the testing set.

4.2. Evaluation of Rainfall Amounts at Weather Stations

The classified outputs of every pixel in the predicted GRIs in GRI_FCN and GRI-
RRI_MCNN were subsequently transformed into original rain amounts (i.e., mm/h). The
research region contained 51 weather stations, comprising six CWB weather stations and
45 automatic detection stations. This study selected six CWB weather stations (i.e., Tainan,
Kaohsiung, Hengchun, Dawu, Taitung, and Lanyu), which are located in various parts of
southern Taiwan, to evaluate the predicted rainfall amounts.

Wei and Hsieh [44] presented a radar mosaic-based multilayer perceptron (RMMLP)
model, which is a conventional type of artificial neural networks that includes input,
hidden, and output layers. The additional fully connected layer directly receives the
cropped radar mosaic images to be flattened to a 1-D array. Here, the RMMLP model
was used to a benchmark model and compared with those results made by GRI_FCN and
GRI-RRI_MCNN in the six weather stations. Figures 12–14 depict the rainfall prediction
results of the six weather stations during Typhoons Kong-Rey, Meranti, and Megi.

Figure 12. Station prediction results for Typhoon Kong-Rey at lead times of (a) 1 h, (b) 3 h, and (c) 6 h.
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Figure 13. Station prediction results for Typhoon Meranti at lead times of (a) 1 h, (b) 3 h, and (c) 6 h.

Figure 14. Station prediction results for Typhoon Megi at lead times of (a) 1 h, (b) 3 h, and (c) 6 h.
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The tracks of Typhoons Kong-Rey, Meranti, and Megi are illustrated in Figure 13. First,
the center of Typhoon Kong-Rey (Figure 15a) moved northward along the eastern coast of
Taiwan. Although Typhoon Kong-Rey did not land in Taiwan, its circulation caused heavy
rainfall in Taiwan. The highest maximum hourly rainfall data for Typhoon Kong-Rey were
observed at the Kaohsiung station (55 mm/h), followed by the Hengchun (42.5 mm/h)
station. The results of the prediction models indicated that when the lead time was 1 h
(Figure 12a), the trends in the predicted and observed rainfall values for the stations were
consistent; however, the peak rainfall was underestimated in the prediction models. When
the lead times were 3 and 6 h (Figure 12b,c), more accurate prediction results were obtained
in GRI-RRI_MCNN than in GRI_FCN and RMMLP.

Figure 15. Paths of (a) Typhoon Kong-Rey, (b) Typhoon Meranti, and (c) Typhoon Megi (the maps were obtained from the
website of the Joint Typhoon Warning Center [48].

The center of Typhoon Meranti (Figure 15b) passed through the Bashi Channel (near
the Hengchun station) and moved northwestward toward Mainland China through the
Taiwan Strait. Although Typhoon Meranti did not land in Taiwan, its circulation caused
heavy rainfall in Taiwan. The highest maximum hourly rainfall in the western part of the
study area was observed at the Kaohsiung station (76.0 mm/h) and that in the eastern
part of the study area was observed at the Dawu station (67.0 mm/h). The prediction
results in Figure 13 indicate that the rainfall tendencies of each station were accurately
predicted by the models. The peak rainfall and volume of underestimation increased with
the prediction time.

The center of Typhoon Megi (Figure 15c) moved eastward, landed in Taiwan, and
subsequently passed through central Taiwan. After landing, the typhoon circulation
covered almost all of Taiwan. When the typhoon center passed through the CMR, the
circulation formed a windward slope in the western side of Taiwan, which resulted in heavy
rainfall in this region. The highest maximum hourly rainfall was observed at the Tainan
station (67.0 mm/h), followed by the Kaohsiung station (55.0 mm/h). The prediction
results in Figure 14 indicate that the models accurately predicted the rainfall trends of
each station.
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4.3. Performance Levels for Predicted Rainfall Amounts

This study employed the mean absolute error (MAE), root mean square error (RMSE),
relative MAE (rMAE), relative RMSE (rRMSE), and coefficient efficiency (CE) to calculate
model performance for the predicted rainfall amounts. These criteria are defined as follows:

MAE =
1
N

N

∑
t=1

∣∣Rt,pre − Rt,obs
∣∣ (2)

RMSE =

√
∑N

t=1
(

Rt,pre − Rt,obs
)2

N
(3)

CE = 1− ∑N
t=1
(

Rt,obs − Rt,pre
)2

∑N
t=1
(

Robs − Robs
)2 (4)

where N is the total number of observations, Rt,pre is the predicted rain rate at time t, Rt,obs
is the observed rain rate at time t, R̄pre is the average of predicted rain rates, and R̄obs is the
average of observed rain rates.

Figure 16 depicts the MAE, rMAE, RMSE, rRMSE, and CE of the results obtained at the
six CWB stations. First, the absolute errors (i.e., the MAE and RMSE) were used to evaluate
the obtained results (Figure 16a,c). The evaluation indicated that the absolute errors of
GRI-RRI_MCNN were smaller than those of GRI_FCN and RMMLP. The values of the
aforementioned parameters for the six stations in GRI-RRI_MCNN were compared. The
results revealed that the Lanyu station had the lowest absolute errors among the six stations
because this station was located at the sea and experienced limited rainfall and terrain
effects. Among the remaining land stations, the largest absolute errors were observed at
the Dawu station, followed by the Hengchun, Taitung, Kaohsiung, and Tainan stations.

Because the precipitation data of the typhoons differed among the stations, we
used relative errors (i.e., the rMAE and rRMSE) to evaluate the quality of prediction.
Figure 16b indicates that rMAE values of the different stations were not considerably dif-
ferent. Figure 16d indicates that the rRMSE exhibited greater differences among stations
than the rMAE did. A comparison of the stations in mainland Taiwan revealed that the
rRMSE variations at the Kaohsiung and Tainan stations were higher than those at the
Dawu, Hengchun, and Taitung stations.

The overall CE was evaluated using the metric values for GRI-RRI_MCNN. As dis-
played in Figure 16e, the greatest CE was obtained for the Hengchun station, followed by
the Tainan, Kaohsiung stations, Dawu, Taitung, and Lanyu stations. A higher prediction
efficiency was obtained for the stations to the west of the CMR (i.e., the Hengchun, Tainan,
and Kaohsiung stations) than for the stations to the east of the CMR (i.e., the Dawu, Taitung,
and Lanyu stations).

To determine the model performance for each station for different lead times, the
RMSE and CE curves of each station were plotted (Figure 17). Figure 17a displays the
RMSE–CE–lead time curves for the Tainan station. The RMSE–CE–lead time curves for the
other stations are displayed in Figure 17b–f. The curves in Figure 17 indicate that the case
model errors increased, and the CE gradually decreased as the prediction time increased.

To understand the improved percentage of the predictions using GRI-RRI_MCNN and
GRI_FCN models compared to the benchmark (i.e., RMMLP), we defined the improvement
metric IMPCE, as

IMPCE (%) = (CEi −CERMMLP)× 100 (5)

where CEi is the CE value at a specific model, and CERMMLP is the CE value at the benchmark.
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Figure 16. Performance levels of six stations in future (1–6 h) predictions: (a) MAE, (b) rMAE, (c) RMSE, (d) rRMSE, and
(e) CE.

Figure 17. Performance levels in terms of RMSE and CE at (a) Tainan station, (b) Kaohsiung station, (c) Hengchun station,
(d) Dawu station, (e) Taitung station, and (f) Lanyu station.

We calculated the average IMPCE measures of six stations for 1–6 h predictions using
GRI-RRI_MCNN and GRI_FCN. After calculation, the average IMPCE of GRI-RRI_MCNN
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and GRI_FCN were respective values of 18.9% and 6.5% for 1 h predictions, 14.9% and
5.5% for 2 h, 13.6% and 4.7% for 3 h, and 9.7% and 3.7% for 6 h. Therefore, we determined
that the improvement metric resulting from GRI-RRI_MCNN was higher than that from
GRI_FCN.

4.4. Discussion

The hyetograph error indicator performance in GRI-RRI_MCNN was superior to
that in GRI_FCN and RMMLP. Better prediction of the peak rainfall time was achieved in
GRI-RRI_MCNN than in GRI_FCN and RMMLP. These indicated the GRI-RRI_MCNN
effectively predicted the typhoon rainfalls. However, the peak values were underestimated
in these models probably because the typhoon circulation structures changed rapidly,
especially under the effect of the CMR, which increased the uncertainty and difficulty in
predicting transient changes in the typhoon rainfall in real time.

The movement of the typhoons affected the rainfall at each ground station. Under
the effect of the CMR, if a station was windward of typhoon circulations, the rainfall was
heavy; otherwise, the rainfall was relatively low. The prediction efficiency was higher for
the stations to the west of the CMR (i.e., the Hengchun, Tainan, and Kaohsiung stations)
than for the stations to the east of the CMR (i.e., the Dawu, Taitung, and Lanyu stations).

5. Conclusions

Typhoons cause severe disasters and damage in southern Taiwan. Accurate prediction
of the hourly rainfall caused by typhoons can reduce life and property losses and damages.
This study used the FCN model for DL image recognition to analyze the REIs and ground
rain data. The collected data were analyzed for predicting the future (1–6-h) rainfall caused
by typhoons in the study area. FCNs, which are extensions of CNNs, improve the defects
of CNN and solve semantic segmentation problems. An FCN comprises neural net layers
and performs upsampling on the feature map of the final convolution layer; thus, the FCN
model can restore the size of the output results to that of the raw input images. Therefore,
classification is performed for every pixel to address semantic segmentation problems.

This study collected data related to 22 typhoons that affected southern Taiwan from
2013 to 2019. Two model cases were designed. The GRI_FCN involved the use of GRIs to
directly predict ground rainfall. The GRI-RRI_MCNN involved the use of REIs to retrieve
the ground rainfall before the prediction of the future ground rainfall. Moreover, the
RMMLP, a conventional multilayer perceptron neural networks, was used to a benchmark
model. The performance of the GRI_FCN, GRI-RRI_MCNN, and RMMLP models was
compared for three typhoons, namely Typhoons Kong-Rey in 2013, Meranti in 2016, and
Megi in 2016. The rainfall prediction results were obtained for six ground stations in
southern Taiwan (i.e., the Tainan, Kaohsiung, Hengchun, Taitung, Dawu, and Lanyu
stations). This study used the GRI_FCN and GRI-RRI_MCNN models to establish a
rainfall prediction model for generating the predicted GRIs of southern Taiwan. These
predicted GRIs were used to assess the predicted rainfall of each station. Overall, the
GRI-RRI_MCNN model enabled the typhoon rainfall in southern Taiwan to be predicted
with high accuracy.

This study used the inverse distance weighting method to convert the rainfall data
of ground stations into two-dimensional rainfall maps. However, the inverse distance
interpolation may introduce significant artifacts such as color discrepancy and blurriness
in regions where ground measurements are sparse, such as mountain area. Therefore, in
the future this study suggests that remote regions could be masked in the interpolated
rainfall maps where no sites are nearby and performed partial convolution [49], instead of
standard convolution in the presented work.
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