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Abstract: In the area of musculoskeletal MR images analysis, the image denoising plays an important
role in enhancing the spatial image area for further processing. Recent studies have shown that
non-local means (NLM) methods appear to be more effective and robust when compared with con-
ventional local statistical filters, including median or average filters, when Rician noise is presented.
A significant limitation of NLM is the fact that thy have the tendency to suppress tiny objects, which
may represent clinically important information. For this reason, we provide an extensive quantitative
and objective analysis of a novel NLM algorithm, taking advantage of pixel and patch similarity
information with the optimization procedure for optimal filter parameters selection to demonstrate a
higher robustness and effectivity, when comparing with NLM and conventional local means methods,
including average and median filters. We provide extensive testing on variable noise generators
with dynamical noise intensity to objectively demonstrate the robustness of the method in a noisy
environment, which simulates relevant, variable and real conditions. This work also objectively
evaluates the potential and benefits of the application of NLM filters in contrast to conventional
local-mean filters. The final part of the analysis is focused on the segmentation performance when an
NLM filter is applied. This analysis demonstrates a better performance of tissue identification with
the application of smoothing procedure under worsening image conditions.

Keywords: musculoskeletal system; image denoising; non-local means; filter robustness; local-means;
parameters optimization; segmentation performance

1. Introduction

The musculoskeletal system comprises a set of organs that allows a person to move
(Latin locomotion—hence the name locomotor system). In principle, we can divide this
system into a system of muscles, which are their own executors of motion, and a bone
(support) system, where, in addition to bones, we can also include joints, ligaments and
tendons [1–4]. In addition to the basic motor functions, this complex system performs many
other indispensable tasks, such as upright posture, protection of vital organs, especially
the central nervous system and organs in the abdominal cavity, heat generation needed
to maintain a constant body temperature, metabolic function protein supply and, finally,
communication functions (e.g., the contraction of mimic muscles expresses our feelings,
gesticulation is an important part of interpersonal communication) [5,6]. Based on these
facts, the musculoskeletal system is substantially important for a range of human activities.
Therefore, a proper investigation of these tissues is crucially important for diagnostic
information [7–10].
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The main important aspect of the prevention and treatment of potential musculoskele-
tal disorders is a proper investigation by using imaging systems. Clinically, ultrasound
and MR (magnetic resonance) examination are conventionally used [11–13]. Magnetic
resonance imaging is a non-invasive examination method that has become an irreplaceable
part of the complex of imaging methods used by modern medical science. MR is principally
based on the changing magnetic moments of atomic nuclei. The patient is placed into a
very strong magnetic field, where a short radio frequency pulse is sent and after at its end
a magnetic signal is sensed [14,15]. It forms the nuclei of hydrogen atoms in the patient’s
body. The signal is then measured and used to reconstruct the image. However, an abso-
lute contraindication is a pacemaker, electronically controlled implants, vascular clamps
made of ferromagnetic or unknown material and metal foreign bodies in the eye. Relative
contraindications include metal alien bodies, claustrophobia, first trimester of pregnancy,
total endoprosthesis (TEP), stents, and clamps up to 6 weeks after implantation [16,17].

MR examination is indicated for the evaluation of muscle and tendon trauma, to
distinguish cysts, ganglia, and hematomas, to diagnose hidden fractures, acute chronic
osteomyelitis and to assess traumatic and non-traumatic joint changes [18]. Moreover, MR
is an excellent method for evaluating bone marrow disease changes; for example, in bone
circulatory disorders, in the early stages of fatigue fractures, in inflammation and some
malignancies. The most used investigative technique is to determine the T1 (longitudinal)
and T2 (transverse) relaxation times, where T1 time is the time constant which determines
the rate at which excited protons return to equilibrium, and T2 time represents the time
constant which determines the rate at which excited protons reach equilibrium or go out
of phase with each other [19]. The basic investigative procedures include a spin–echo
sequence, which is a basic examination. Individual tissues have different T1 and T2 times
and thus differences in signal strength, which is reflected in the difference in grayscale.
Darker structures are hyposignal and the lighter structures are hypersignal, and the images
thus obtained are called T1- and T2-weighted images [20,21].

As we reported earlier, magnetic resonance plays an essential role in the musculoskele-
tal system investigation. In order to perform a proper investigation of the individual issues
in this system, the quality of medical images represents a crucial factor. When the image
data are corrupted with image noise or artefacts, the extraction of clinically important
parameters is limited, and interpretation of the diagnostic information may be misleading.
Therefore, image smoothing represents a very important aspect of the algorithms, which
are aimed at the extraction of tissues, and its features of interest. In this context, the concept
of non-local means (NLM) methods appears to be an effective alternative for image smooth-
ing, when compared with conventional smoothing methods such as average or median
image filters, taking advantage of only a local neighborhood of a representative pixel. The
main aim of this study is the investigation of a novel NLM approach, taking advantage of
pixel and patch similarity information to improve the filtration effect. We mainly study
the effectivity of the proposed method for various settings in the contrast with a standard
NLM algorithm, as well as conventional local means techniques. We provide the analysis of
the filter effectivity and robustness under the influence of selected image noise generators
(Gaussian, Rician and Salt and Pepper) with dynamic noise intensity to objectively report
the dynamical noise intensity influence on the filtration quality. To justify the noise effect
on the quality of musculoskeletal features extraction, we also provide an analysis of the
robustness of selected issues of interest identification, when using the proposed filter under
various noise effect.

The rest of the paper is organized into the following sections. Section 2 deals with the
recent research in the area of local and non-local filtration techniques for image smoothing.
Section 3 is focused on the design of the NLM filter with the pixel and patch similarity
information. Section 4 is focused on the analysis and results of the NLM filter for dynamical
noise influence, statistical analysis of intensity differences and the analysis of the filter
application for regional segmentation performance.
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2. Recent Work

In this section, we are focused on the recent approaches and advances for medical
image smoothing. This area belongs to the procedures of image preprocessing, with
the focus on enhancing the quality of the image features, which are crucial for a proper
diagnosis of the areas of interest of musculoskeletal images. In this context, as a standard,
we require the performance of the spatial image area smoothing to reduce a level of image
noise and artefacts and, at the same time, we strive to preserve the image edges, which
represent substantial information for the identification of tissues.

There are many smoothing methods that have been proposed for the task of edge-
preserving image smoothing. Such methods may be classified into two groups. The
first group refers to the methods, utilizing local information in the surrounding of a
representative pixel, formed by a local window [22–24]. In this category, we can mention
bilateral filters, average, median, weighted median filters (WMF), anisotropic diffusion
(AD) and edge-avoiding wavelet (EAW) [25,26]. One of the substantial limitations of such
local filters is producing artefacts in the form of halos along the image edges [27]. This
limitation is caused by computing only local statistics for the purpose of filtering. Therefore,
it is impossible to control the statistical features of the filtered images [28–31].

The second group of the filters is global optimization approaches. In this case, the
resulting smoothed image is determined as the result of solving a global objective function.
Such a function usually involves a data term. A data term procedure does constrain the
distance between the original and smoothed image. A smoothness is performed by using
a regularization term. In this section, we can mention weighted least square smoothing
(WLS) [32,33], fast global smoother (FGS) [34], SD filter [35], and improved dictionary
learning with global structure and local similarity preservations [36]. These methods
typically overcome some limitations, which are connected with the local filters, such as
halo effect and gradient reversals. On the other hand, we should mention that these filters
are usually more time consuming when compared with the local based filters [37–41].

Each filter is considered in several ways. Firstly, the effectivity of a filter is very
important in the context of removing unwanted image noise and artefacts [42,43]. However,
as we mentioned earlier, an important aspect is also computing time, which determines the
time efficiency. This factor gains particular importance when processing a batch of images,
when time demanding procedures cause significant limitations in such procedures [44,45].
Besides these facts, the filter robustness represents a very important factor, reporting
the filter behavior in dynamical image environments caused by dynamic image noise.
These characteristics objectively report the filter stability (robustness) in different image
conditions, which is one of the main issues of this paper.

In medical image preprocessing, the NLM filter and its variants are frequently used
for image denoising and smoothing. The basic idea of NLM is based on the estimation
of the mean values of all pixels in the image, which are weighted by similarity of these
pixels to the target pixels. This is the major difference when comparing with conventional
local mean approaches [46,47]. There are similar modifications of the NLM filter, taking
advantage of weighted functions to improve the denoising effect, such as an optimized
self-similar patch-based filter [48], an NLM filter with adaptive similarity functions [49],
an NLM filter based on recursive calculation of similarity weights [50], and an NLM filter
with patch similarity [51]. An interesting study [52] deals with the Rician noise removal by
the application of NLM filtering for low signal to noise ratio images.

3. Materials and Methods

In this section, we introduce the proposed concept of NLM filter, utilizing pixel and
patch similarity information in the application of musculoskeletal MR images. The basic
concept of a non-local means algorithm, unlike conventional local means filters, which
consider the mean value of the pixel’s neighborhood of a representative pixel, takes a mean
value of all the pixels in the image area, weighted by the term, representing the pixel’s
similarity to the representative pixel. This approach has been frequently proven to be more
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effective in terms of detail loss reduction, when compared with the conventional local
means approaches.

The model of an ideal noisy image (Y) can be represented by the image intensity y(i),
which is composed of Gaussian noise n(i).

(
σ2) stands for Gaussian noise with zero mean

value x(i) is the variance and intensity of the image, and (X) is not containing noise. Such
an ideal form of the image noise model can be formulated in the following way:

y(i) = n(i) + x(i), x(i) ∈ X, y(i) ∈ Y (1)

3.1. Original RNLM Algorithm

The principle of the NLM filter is focused on the estimation of x̂(i) by calculating the
weighted average intensity of the considered pixels located in a search window (w(i))
being centered at a pixel (i). The estimation of x̂(i) can be formulated in the following way:

x̂(i) = ∑
j∈Win(i)

w(i, j).y(j) (2)

In this formulation, w(i, j) = ϕ(i, j)/
(

∑∀j∈Win(i)ϕ(i, j)
)

stands for normalized weight
function, which is given by the distance calculated between the noisy patches located at
the pixel (N(Y(i))) and the second pixel (N(Y(j))), belonging to the noisy image (Y). In
the next step, the weight function before normalization between pixels i and j (ϕ((i, j)) is
formulated in the following way:

ϕ(i, j) = exp
(
−‖N(Y(i))− N(Y(j))‖2

2,a

)
/h2, ∀j 6= i (3)

In this formulation, the term ‖.‖2
2,a stands for the Gaussian weighted Euclidean dis-

tance, Y(i), Y(j) stands for the intensity vectors of a local neighborhood of the representa-
tive pixels i and j, a is the standard deviation of Gaussian function, and h stands for the
decay rate of weights. The parameter h is substantially important in terms of controlling the
degree of smoothing. The image (I) is divided into a finite set of nonoverlapping patches,
having the same dimension N× N pixels. The patch (Y) of the neighborhood 3× 3 between
pixels i and j is defined in the following way:

Y(i, j) =

 I(i− 2, j− 2) I(i− 2, j) I(i− 2, j + 2)
I(i, j− 2) I(i, j) I(i, j− 2)

I(i + 2, j− 2) I(i + 2, j) I(i + 2, j + 2)

 (4)

One of the possible limitations of this approach is the over-weighting of pixel i. To
avoid this unfavorable effect, the weight (ϕ((i, j)) is assigned the maximal weight of
non-central pixels from the search window. This operation is formulated by this way:

ϕ(i, j) = max{ϕ(i, j)}, ∀j 6= i (5)

The original concept of NLM supposes zero Gaussian noise. In order to generalize
this concept for MR images, this concept of an NLM algorithm should be adapted to
non-zero bias, which is typical case of Rician noise. Thus, the original definition of an
RNLM filter [52] is given in the following way:

RNLM(x̂(i)) =

√√√√√max

 ∑
j∈Win(i)

w(i, j).y(j)2

− 2σ2, 0

 (6)

In this formulation, σ2 stands for the variance of Gaussian noise, which can be
estimated from the background as: σ=

√
µ/2, where µ denotes the mean value of squared

magnitude of the MR image background. One of the significant limitations of an RNLM
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algorithm is reducing small regions, manifesting as particles, which may represent an
important information, such is for instance tiny bone lesions. Therefore, we deal with a
novel patch and pixel similarity approach.

3.2. RNLM Algorithm with Patch and Similarity Information

The aim of the proposed method is retaining small high-contrast particle details in
MR images. This task should be performed by using weighting method, combining patch
and pixel similarity information, which is described in this section. In contrast with the
original RNLM algorithm [52], it takes advantage of the maximum weight of non-central
pixels in the form of self-weight. In this way, it has the same problem as the NLM filter
with particle loss.

In the case of presence of such small intensity clusters (particles) in the MR image,
their intensity spectrum is significantly different from the image background in a search
window. We suppose that the mentioned intensity spectrum difference is significantly
higher than the spectrum caused by the image noise. This fact can be taken advantage of in
order to mitigate the so-called particle-blurring issue of the NLM filter. Particle-blurring
is a typical effect of NLM and RNLM filters, which have a tendency to suppress small
particles (spots) in MR images. Since such spots may represent significantly important
locations such as cartilage lesions or the early signs of cartilage deterioration, this blurring
effect should be compensated. For this reason, the proposed filter utilizes the patch and
pixel’s intensity similarity ( ϕ(i, j)∗). The proposed method calculates the weight function(
ϕ(i, j)∗

)
as a combination of the patch and pixel similarity level in the following way:

ϕ(i, j)∗ = ϕ(i, j).ρ(i, j), i 6= j (7)

ρ(i, j) =
1

1 + (|y(i)− y(j)|/Degc)ω (8)

In this formulation, ϕ(i, j) stands for the similarity between patches given by the pixels
i and j and ρ(i, j) stands for the pixel’s function of similarity, formulated as a decreasing
function for the intensity spectrum difference |y(i)− y(j)|. This decreasing function ensures
the assignment of higher weights for the pixels with intensity closely related to the central
pixel. The parameters Degc and ω ensure control of the position and the slope of transition,
respectively. The parameter ρ(i, j) is limited in the range [0; 1], which classifies the situation
(ρ(i, j) = 0) when the intensity pixel (j) is significantly different from the central pixel
(i). Based on these formulations in Equations (6) and (7), only the pixels simultaneously
having higher patches and higher levels of similarity are classified as higher weights in the
filtering procedure. The self-weight function is defined by the formulation:

ϕ(i, j)∗ = ϕ(i, k)∗ϑ(i, k) (9)

where k = arg
{

maxj
{

ϕ(i, k)∗, ∀j 6= k
}}

ϑ(i, k) =

(
1 +

(
2radp + 1

)2

1 + (Degc/|y(i)− y(k)|)ω

)
(10)

In this formulation, (k) stands for the non-central pixel index, having the highest
level of similarity to the central pixel (i) within a search window, and ϕ(i, j)∗ represents
the maximal weight. When compared with the Equation (7), the function, representing
pixel’s similarity ϑ(i, k) is given as an increasing function of the pixel’s intensity difference.
Each search window is represented by its radius parameter (radp). The scale factor ϑ(i, k)
increases with the absolute pixel’s intensity difference |y(i)− y(k)|. In the case of tiny
intensity particles, having a high contrast, where the central pixel (i) has a significantly
different intensity spectrum than the pixel (k), a higher weight function (ϑ(i, k)� 1) will
be assigned. That is the case when |y(i)− y(k)| is higher than Degc. By using this principle,
such small clusters of pixels are preserved by the filtering procedure. In the case of the small
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contrast spots, when the intensity of the central pixel I is significantly different from the
selected pixel (k), higher weights (ϑ(i, k)) should be classified. This situation predetermines
the fact that such particles will be classified and thus preserved. The final form of the filter
is formulated (by using Equation (6)) in the following way:

RNLM∗(x̂(i)) =

√√√√√max

 ∑
j∈Win(i)

w(i, j)∗.y(j)2

− 2σ2, 0

 (11)

In this formulation, the parameter w(i, j)* represents the weight function after the
normalization procedure ϕ(i, j)*.

4. Results

In this section, we provide a quantitative evaluation and performance analysis of the
NLM filter, incorporating the patch and similarity information in the contrast of standard
NLM filter and conventional local mean approaches, including average and median filter
to demonstrate its robustness in various environment, caused by the effect of additive
noise generators with dynamic noise intensity. Since the filtration procedure, providing
smoothing of image area is a common part of the object identification from MR images, we
also provide a quantitative analysis of a regional segmentation performance, when using
the proposed filter. Figure 1 represents an example of the MR database, which we use for
the testing.
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Figure 1. Example from MR datasets: (A) T1 weighted image, showing a weak contrast between the
cartilage surface and synovial fluid, (B) proton density-weighted image, (C) coronal fat-saturated
proton density-weighted image of elbow muscle, showing a low signal intensity of the common
flexor tendon, which is located at the medial epicondyle (arrow), and (D) coronal gradient echo
image of elbow muscle, showing a normal manifestation of a normal extensor tendon at the lateral
epicondyle (arrow).

4.1. Musculoskeletal MR Images

For the purpose of analysis, we used three retrospective MR datasets, including the MR
cartilage data of fat saturation techniques, proton density-weighted imaging, and shoulder
joints images. The datasets used for the filter’s testing are from the public database, The
Osteoarthritis Initiative (OAI).
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Commonly, the fat saturation technique is used for the MR cartilage imaging. This
technique involves the excitation and dephasing of the spinning protons in fat by applying
lipid-specific radiofrequency pulse, which is utilized before each repetition of 2D or 3D SE
or GRE imaging sequence. A great advantage is increase in the contrast between lipid and
non-lipid surfaces, in addition to suppression of the chemical shift artefact. In this study,
we have a total of 80 of the cartilage images from the fat saturation technique.

With the proton density-weighted imaging, we can depict the surface of cartilage
effects as well as the internal cartilage abnormalities composition. The proton density-
weighted imaging techniques provide a reliable investigation of the cartilage morphological
assessment as well as menisci and ligaments (ligamentous structures). In our study, we use
retrospective data, including 70 MR images of proton density-weighted imaging.

The last dataset comprises a normal anatomy of the elbow muscle individual compart-
ments. We analyze coronal fat-saturated proton density-weighted images. These images
are a good demonstration of a common low signal intensity of the common flexor tendon,
located at the medial epicondyle. Additionally, we have coronal gradient echo images,
which are focused on common extensor tendons at the lateral epicondyle. We have a total
of 40 MR images of the elbow, which we use for this analysis.

Table 1 summarizes the acquisition parameters for individual datasets, including FOV
(field-of-view), matrix spatial resolution, acquisition time, slice thickness, interslice gap,
and scan mode.

Table 1. Acquisition parameters for analyzed datasets of articular cartilage and elbow muscle.

Fat Saturation
(Cartilage)

Proton
Density-Weighted

Imaging (Cartilage)

Fat-Saturated Proton
Density-Weighted

Images (Elbow Muscle)

FOV (mm) 160 × 160 × 80 160 × 160 × 80 140 × 140 × 70
Matrix size 288 × 245 288 × 245 288 × 245

Acquisition time 2:55 4:22 5:54
Slice thickness (mm) 1.5 1.5 1.5
Interslice gap (mm) 0.15 0.15 0.21

Scan mode 2D 2D 2D

Findings Early cartilage
osteoarthritis Cartilage lesions Healthy elbow muscle

4.2. Additive Noise Generators

The characteristic performance demonstration of the NLM filter is based on the
additive noise generators, including Rician noise, which is typical for the MR images,
the impulse noise of type Salt and Pepper, and Speckle noise. All the types of the noise
generators are controlled by using their steering parameters, enabling control the noise
intensity. The noise generators are implemented in the form of gradual dynamical noise.
That allows us to investigate the dynamical features of the smoothing effectivity in the
form of robustness characteristics, which provides the information about the filter response
in various image conditions. To demonstrate the influence of various forms of noise, we
provide examples of MR images of articular cartilage corrupted via Salt and Pepper noise
with different noise intensity (Figure 2) and Rician noise (Figure 3).



Sensors 2021, 21, 4161 8 of 21

Sensors 2021, 21, x FOR PEER REVIEW 8 of 21 
 

 

robustness characteristics, which provides the information about the filter response in var-
ious image conditions. To demonstrate the influence of various forms of noise, we provide 
examples of MR images of articular cartilage corrupted via Salt and Pepper noise with 
different noise intensity (Figure 2) and Rician noise (Figure 3). 

Rician noise is the most typical model of the image noise, which appears in the real 
MR images. This noise is derived from Gaussian noise. The signal magnitude can be ex-
pressed in the following way: 𝑀 = ට(𝐴 + 𝑛ଵ)ଶ + 𝑛ଶଶ (12) 

In this formulation, M stands for the signal magnitude, A is the original noise-free 
image, and 𝑛ଵ and 𝑛ଶ represent not correlated variables of the Gaussian noise with zero 
mean value and the same dispersion 𝜎௡ଶ. The probability density function (PDF) for such 
image is indicated as Rician distribution in the following way: 𝑝(𝑀|𝐴, 𝜎௡ଶ) = 𝑀𝜎௡ଶ exp ቆ− 𝑀ଶ + 𝐴ଶ2𝜎௡ଶ ቇ 𝐼଴ ൬𝐴𝑀𝜎௡ଶ ൰ 𝑢(𝑀) (13) 

In this formulation, 𝐼଴(. ) stands for 0th-order modified Bessel function of the first 
kind and the parameter 𝑢(. ) represents Heviside step function [53]. 

Speckle noise is manifested as a granulated texture and causes the gray level average 
increment in the target area. It is perceived as an unwanted feature. This noise intensity is 
given by its dispersion (v). This noise can be interpreted by the formulation: 𝐽 = 𝐼 + 𝑛 ∗ 𝐼 (14)

In this formulation, I stands for the input image, J represents the noise distribution in 
the image, and n represents unified zero mean value of the noise in image. 

The last considered noise in this study is an impulse noise—Salt and Pepper. This 
noise is represented by white and black pixels of defined density (d). The noise manifes-
tation predetermines its binary intensity spectrum. 

 

Figure 2. Selected area of interest (RoI) for MR image of articular cartilage with dynamic Salt and 

Pepper noise intensity (d): (a) d = 0.08, (b) d = 0.12, (c) d = 0.5, and (d) d = 0.85. 

Figure 2. Selected area of interest (RoI) for MR image of articular cartilage with dynamic Salt and
Pepper noise intensity (d): (a) d = 0.08, (b) d = 0.12, (c) d = 0.5, and (d) d = 0.85.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 21 
 

 

 
Figure 3. Selected area of interest (RoI) for MR image of articular cartilage with dynamic Rician 
noise intensity: (a) 𝜎 = 0.02, (b) 𝜎 = 0.09, (c) 𝜎 = 0.15, and (d) 𝜎 = 0.75. 

4.3. Set up of the NLM Filter and Parameters Optimization 
Herein, we analyze the settings of the proposed filter for MR image smoothing. An 

important issue of this implementation is a set of the filter parameters, not having deter-
ministically given values. These values can be theoretically set empirically, but more pre-
cise way, which we use is focus on an optimization procedure, which will predict and 
recommend a proper value setting. We use an optimization procedure to find the best 
combination of the filter parameter bases on the difference evaluation (MSE) cost function 
(Figure 4). 

This filter uses the three following parameters. Their values should be optimized to 
find the best combination, which correspond with the most effective results of filtration. 
Firstly, we search for optimal values of parameter (h = 𝜎ଶ ∈ 〈0; 1〉), which represents the 
smooth controlling parameter; the next parameter, (𝑟𝑎𝑑௣ ∈ ℤ) represents a radius of patch 
window, 𝑑𝑒𝑔௞ controls the position, (k) determines a level of the steepness (𝑑𝑒𝑔 ∈ 〈0; 1〉 
and 𝑘 ∈ ℤ); parameter 𝜔 represents the slope of transition (𝜔 ∈ ℤ). 

To find optimal values for individual parameters, we implemented a set of genera-
tors of random values from the defined interval parameters described above. The optimi-
zation procedure randomly generates n combinations of the parameters, with the values 
from defined ranges. For each combination, we evaluated the filter settings effectivity 
based on the Mean Squared Error (MSE) between the result of the proposed filter and the 
original noisy-free image. We performed this procedure for 80 records of MR data (20 
images from each dataset) corrupted with Rician noise with the settings: 𝜎 =ሾ0.05, 0.1, 0.15, 0.2, 0.3ሿ. Finally, for each filter settings, all the values were averaged. Based 
on the MSE evaluation, we selected the combination of the filter parameters, minimizing 
MSE function and, thus, difference between original image and the filter output. 

Figure 3. Selected area of interest (RoI) for MR image of articular cartilage with dynamic Rician noise
intensity: (a) σ = 0.02, (b) σ = 0.09, (c) σ = 0.15, and (d) σ = 0.75.

Rician noise is the most typical model of the image noise, which appears in the real
MR images. This noise is derived from Gaussian noise. The signal magnitude can be
expressed in the following way:

M =
√
(A + n1)

2 + n2
2 (12)
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In this formulation, M stands for the signal magnitude, A is the original noise-free
image, and n1 and n2 represent not correlated variables of the Gaussian noise with zero
mean value and the same dispersion σ2

n . The probability density function (PDF) for such
image is indicated as Rician distribution in the following way:

p(M|A, σ2
n) =

M
σ2

n
exp

(
−M2 + A2

2σ2
n

)
I0

(
AM
σ2

n

)
u(M) (13)

In this formulation, I0(.) stands for 0th-order modified Bessel function of the first kind
and the parameter u(.) represents Heviside step function [53].

Speckle noise is manifested as a granulated texture and causes the gray level average
increment in the target area. It is perceived as an unwanted feature. This noise intensity is
given by its dispersion (v). This noise can be interpreted by the formulation:

J = I + n ∗ I (14)

In this formulation, I stands for the input image, J represents the noise distribution in
the image, and n represents unified zero mean value of the noise in image.

The last considered noise in this study is an impulse noise—Salt and Pepper. This noise
is represented by white and black pixels of defined density (d). The noise manifestation
predetermines its binary intensity spectrum.

4.3. Set up of the NLM Filter and Parameters Optimization

Herein, we analyze the settings of the proposed filter for MR image smoothing.
An important issue of this implementation is a set of the filter parameters, not having
deterministically given values. These values can be theoretically set empirically, but more
precise way, which we use is focus on an optimization procedure, which will predict and
recommend a proper value setting. We use an optimization procedure to find the best
combination of the filter parameter bases on the difference evaluation (MSE) cost function
(Figure 4).

This filter uses the three following parameters. Their values should be optimized to
find the best combination, which correspond with the most effective results of filtration.
Firstly, we search for optimal values of parameter (h = σ2 ∈ 〈0; 1〉), which represents the
smooth controlling parameter; the next parameter, (radp ∈ Z) represents a radius of patch
window, degk controls the position, (k) determines a level of the steepness (deg ∈ 〈0; 1〉 and
k ∈ Z); parameter ω represents the slope of transition (ω ∈ Z).

To find optimal values for individual parameters, we implemented a set of generators
of random values from the defined interval parameters described above. The optimization
procedure randomly generates n combinations of the parameters, with the values from
defined ranges. For each combination, we evaluated the filter settings effectivity based on
the Mean Squared Error (MSE) between the result of the proposed filter and the original
noisy-free image. We performed this procedure for 80 records of MR data (20 images from
each dataset) corrupted with Rician noise with the settings: σ = [0.05, 0.1, 0.15, 0.2, 0.3].
Finally, for each filter settings, all the values were averaged. Based on the MSE evaluation,
we selected the combination of the filter parameters, minimizing MSE function and, thus,
difference between original image and the filter output.
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We evaluated the MSE for each combination (n) of filter parameters. Based on this
evaluation, we report the spectrum of MSE values, showing a distribution of the error
function for individual parameter’s settings (Figure 5).
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We evaluated these characteristics by the minimal value of MSE (Table 2). These
results indicate the filter design combination as having the smallest difference between
the filter output and native (noise-free). Based on the MSE comparison for individual
combination of the filter’s parameters, we select the combination, minimizing MSE. This
result always indicates the best parameter’s combination to be used for image smoothing
as the minimization error between the noise-free image and filtered image.

Table 2. Optimal values of the filter parameters based on the testing for 80 MR images from various
datasets.

Filter Parameter n = 100 n = 1000 Average Values

H = σ2 0.8 0.8 0.8
degk 6 7.31 6.65
radp 3 4 3

ω 3 5 4

Consequently, we analyze the variance of individual parameters from Table 2 for
individual datasets including 80 images of the fat saturation (FS) technique, 70 MR images
of proton density-weighted imaging (PDw), and 40 coronal fat-saturated proton density-
weighted images (FS-PDw). This analysis is provided for 9 different noise levels of Rician,
Salt and Pepper, and Speckle noise. Table 3 reports the averaged values for individual
tests. Based on the results, the lowest variance is mostly achieved for Rician noise, which
is the most typical for MR images. This fact leads to the conclusion that the optimal
filter’s settings appear to be mostly stable when Rician noise is present. On the other hand,
typically higher modification of selected parameters is reported in the case of presence of
Speckle noise.

Table 3. Analysis of variance of optimized filter’s parameter for individual datasets and additive
noise.

Variance of Filter
Parameter

Rician Noise
(FS|PDW|FSPDW)

SaP Noise
(FS|PDW|FSPDW)

Speckle Noise
(FS|PDW|FSPDW)

h = σ2 0.05 0.21 0.08 0.09 0.32 0.09 0.11 0.39 0.44

degk 0.21 0.73 0.45 0.38 0.42 0.88 0.42 0.42 0.65
radp 0.004 0.005 0.003 0.005 0.009 0.002 0.12 0.22 0.19

ω 0.48 0.51 0.49 0.53 0.68 0.77 0.87 0.92 0.91

4.4. Quantification Parameters for NLM Filter Evaluation

For each test, we evaluated a respective evaluation parameter based on the comparison
between the native (noise-free) image and the result of the filter. We do not aim for
providing such a comparison for single noise intensity, but the main task of this quantitative
evaluation is to provide the analysis of dynamical behavior (features) of the proposed filter
under various image conditions, meaning dynamic influence of the noise intensity. We
consider the objectivization parameters: SNR, PSNR, Q-index and SSIM.

Signal to noise ratio (SNR) is a frequently used evaluation parameter. It indicates the
relation between the power of useful image information and noise. The higher values of
SNR we obtain, the less noise is present in the image. In this way, it is possible to evaluate
the filtration effectivity and accurateness of noise estimation. SNR is calculated in the
following way:

SNRdB = 10 log10
∑n s2(n)

∑n(s(n)− ŝ(n))2 (15)

In this definition, s(n) stands for the image after filtration and ŝ(n) is the native image.
Quality index (Q-index) evaluates several parameters. Firstly, it evaluates a degree

of linear correlation between a noisy and filtered image. In the next part, a similarity



Sensors 2021, 21, 4161 12 of 21

of average intensity between noisy and filtered image is evaluated. The last considered
attribute is a contrast similarity. Q-index is calculated in the range 〈−1; 1〉. This parameter
is expressed in the following way:

Q =
σxy

σxσy

2xy

(x)2 + (y)

2σxσy

2σ2
x − σ2

y
(16)

In this formulation σxy is a standard deviation between a noisy and filtered image,
σxσy are individual standard deviations, the parameters x, y represent averaged values of
the pixels in the mask, where Q-index is computed.

Structural Similarity Index (SSIM) is a parameter, which is aimed on the measurement
of distorted image quality. This parameter compares noisy and reference image (after
filtration). This parameter utilizes three attributes: contrast similarity, intensity similarity,
and structural similarity. Furthermore, it is designed in such a way as to consider a human’s
visual system. This parameter is normalized in the range [0; 1], where higher values indicate
better results. The formulation of this parameter is given:

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ (17)

The parameter l(x, y) compares a similarity of intensity functions, c(x, y) signals
contrast, and s(x, y) measures a structural similarity of both signals. The individual
components are given by the formulations:

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
(18)

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(19)

s(x, y) =
σxy + C3

σxσy + C3
(20)

The parameters µx, µy represent mean values of signals x, y, σx, σy are dispersions of
signals, and σxy stands for a mutual covariation of considered signals.

4.5. Filter Performance and Statistical Analysis

In this section, we present the analysis of filter performance and a statistical analysis
of the result of the proposed NLM filter against standard NLM filter, and local filtering,
comprising average and median filter with various filter’s kernels. Firstly, we present the
results of the filter behavior under various noise intensity levels, evaluated by the men-
tioned evaluation parameters, including: SSIM, SNR, PSNR, and Q-index for individual
datasets. These characteristics (Figure 6) should objectively report the dynamical features
of the smoothing procedure in the environment with gradually changing spatial image
distribution conditions caused by the dynamic noise influence. This approach enables
evaluation of the filter robustness when various noise intensity is present.

Figure 4 shows individual dynamical characteristics for considered evaluation param-
eters. All the characteristics are constructed for the dynamical effect of Rician noise, where
we set nine various settings of σ, and Salt and Pepper noise with nine various setting of the
filter’s density (d). Both noise parameters are constructed in the range: σ, d ∈ [0.1; 0.9].
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We present the characteristic for optimal filter settings, based on the optimization
procedure, presented in Table 1. For contrast, we present the results of h = σ2 = 0.8
as the best compromise from the optimization procedure against two other alternatives:
σ2 = 0.1, 0.5 (Figure 6). These characteristics are constructed as average values of all the
images from three reported datasets for 9 noise percentual levels. The dynamical trend
characteristics (Figure 6) report monotonic trends for all the parameters, which should
be understandable since a gradual noise influence has consecutive increasing impact on
the intensity distribution in the image spatial domain. All the reported characteristics
should be perceived as a similarity evaluation, meaning that the higher values we obtain,
the better results we achieve (a higher level of agreement). Judging by the results, the
parameter σ2 has a substantial influence on the quality and robustness of the smoothing
procedure. The settings σ2 = 0.8 achieves mostly higher and thus better results when
comparing with other settings. Additionally, there are noticeable differences between the
considered noise generators. These are caused by the fact that both noise models have
different manifestations in the image intensity distribution. When comparing the noise
influence, Salt and Pepper achieves higher results when compared with Rician noise. This
fact predicts a better elimination of impulse noise influence with using this smoothing
procedure. Additionally, the important aspect of the evaluation is only slighter differences
in Salt and Pepper noise for σ2 = 0.5, 0.8.

We provide a statistical analysis dealing with the intensity distribution difference
between native (noise-free) and filtered images (Figure 7). This part of the statistical
analysis should report the error function as intensity difference between the noise-free
MR images and smoothed images via different smoothing techniques. This comparative
analysis investigates the average intensity difference for all the noise levels for individual
Rician, Salt and Pepper, and Speckle noise. Here, we compare local approaches, including
average filter (Av), median filter (Med) and the proposed filter with four settings of the
parameter (h). For the average and median filters, we compared three sizes of the filter
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kernel: 5 × 5, 7 × 7, and 15 × 15 kernel’s size. When comparing the results, there
are noticeable intensity differences for the local mean approaches, typically in the range
10–30%, depending on the kernel’s size. In the contrast with these results, NLM filter
settings for individual settings (h) do not show significant average intensity differences
among each other.
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The second part of the statistical analysis reports a comparison among the mentioned
various settings of average and median filter in the contrast of the proposed technique with
different settings (h). To objectively evaluate a statistical significance of intensity difference
(ID), we calculated for each distribution two parameters of the position, including median
(x̃) as 50% quantile and modus, reporting the most frequent value in each distribution
(Mod(x)). The analysis of variance is represented by variance (σ2) for each distribution of
intensity difference. Table 4 provides the descriptive statistical analysis for the MR images
corrupted with Rician noise.

Table 4. Descriptive statistical analysis of various average and median filter’s settings in contrast to
selected variants of optimized RNLM filter for MR images corrupted with Rician noise.

Filter Settings ĨD [%] Mod(ID) [%] σ2(ID)[−]

Av (5 × 5) 23.78 26.51 0.42
Av (7 × 7) 21.27 20.32 0.52

Av (15 × 15) 16.35 15.41 0.46
Med (5 × 5) 11.34 10.11 0.48
Med (7 × 7) 9.45 9.0041 0.083

Med (15 × 15) 8.31 8.011 0.021
h = 0.05 3.61 2.55 0.38
h = 0.07 1.21 1.0084 0.018
h = 0.1 0.092 0.091 1.94 × 106

h = 0.3 0.65 0.55 0.0036
h = 0.8 0.45 0.45 9.46 × 104

Based on this descriptive statistical analysis, we found that the settings (h = 0.1)
appear as the most effective in the context of the lowest median and modus of intensity
difference and variance that show the lowest variability of intensity difference distribution.
On the other hand, this statistical analysis shows significant differences of the proposed
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method against conventional local statistical filters such is median and average filter. In this
comparison, the average filter with the kernel 5 × 5 appears to be the least effective from
the view of median and modus of intensity difference. Contrarily, we found the highest
variance of intensity difference in average filter 7 × 7.

We also compared the proposed optimized RNLM filter (RNLM-optim) with the
RNLM filter [52]. To extend our analysis of the optimized RNLM filter, we also compared
the differences between these filters on T2 mapping images of knee cartilage acquired by
quantitative MRI. The data represent cases of symptomatic osteoarthritis (OA) progression.
For this comparison, we used a total of 50 images of T2 maps of cartilage images, with the
spatial resolution: 384 × 384 pixels, slice thickness 0.7 mm, and acquisition time of 11 min.
The data acquisition was performed on 3.0 T Siemens whole body MAGNETOM Trio 3T
scanner (Siemens, Erlangen, Germany), with the use of standard extremity coil.

Based on this quantitative comparison, different effectivity could be seen in the
application of both filters. For the objective comparison, we selected two evaluation
parameters: SSIM and correlation index (Corr). We report the objective evaluation of this
parameters (Table 5) as averaged values for nine noise intensity levels as we report in
Figure 4. We obtained a percentage difference between RNLM-optim and RNLM for each
type of noise. Based on the averaged results for all the analyses, we found the highest
differences in effectivity for Salt and Pepper noise. Moreover, the proposed optimized
filter achieved the most significant results. Contrarily, in the case of Speckle noise, the
differences were significantly lower.

Table 5. A comparison for RNLM filter and proposed optimized variant based on SSIM and correla-
tion difference for routine anatomical imaging and quantitative Magnetic Resonance Imaging (T2
maps) of cartilage.

Evaluation
Parameter

Rician Noise
(RNLM-Optim-RNLM)

Salt and Pepper
(RNLM-Optim-RNLM)

Speckle Noise
(RNLM-Optim-RNLM)

Routine Anatomical Imaging|Quantitative Magnetic Resonance Imaging (T2 Maps)

Diff(SSIM) 12% 8% 24% 20% 6% 5%

Diff(Corr) 15% 10% 23% 21% 8% 12%

The results between the RNLM filter and the optimized variant show notable differ-
ences in the comparison of their effectivity. In all the results, the optimized filter achieved
better results, measured in difference of SSIM and correlation index. Judging by the results,
for individual noise generators, the highest differences are achieved in the case of Salt and
Pepper noise with impulse character. On the other hand, in the case of Speckle noise the
differences were the lowest. Comparing routine anatomical imaging and T2 maps we noted
slight differences in the filter effectivity. It is notable that in the case of T2 maps, differences
of selected objective parameters were lower in the contrast of other MR sequences, which
are considered in this study.

4.6. Impact on Segmentation Performance

The last part of the proposed filter evaluation deals with the segmentation perfor-
mance. We analyzed the effect of the smoothing procedure on the regional segmentation
performance (Figure 8). Regional segmentation enables the spatial image area decomposi-
tion into a certain number of regions, which should correspond with identified objects in
the image. The effectivity of this procedure is dependent on the spatial intensity distribu-
tion of individual objects of interest. When the spatial image distribution is affected with
the image noise, the segmentation performance is supposed to worsen. This leads to the
improper identification of the objects of interest, thus a worse quality of extracted features
reporting the object’s manifestation. For the segmentation experiments, we use the concept
of Fuzzy soft thresholding [46].
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tween the situations when the proposed filter is/is not applied. Predominantly, after ap-
plying the smoothing procedure, the segmentation performance is better, which is indi-
cated by higher values of SSIM and SNR. We also studied the influence of the number of 

Figure 8. Extract of MR images: native MR image (up left), Salt and Pepper: d = 0.1 (up middle), and
d = 0.5 (up right). Regional segmentation based on Fuzzy thresholding with 8 classes: segmentation
of native image (down left), Salt and Pepper: d = 0.1 (down middle), and d = 0.5 (down right).

Here, we suppose that the increasing noise intensity will have a gradually stronger
impact on the segmentation performance. We provide the analysis of the impact of various
noise generators on the segmentation performance between using/not using the proposed
filter for different settings of regional segmentation. Since we suppose that the number of
regions should have the influence on the segmentation performance when the image noise
is presented, we compare two numbers of regions, three and eight, for the filter evaluation
to report how the number of regions influences the total segmentation performance between
using/not using the proposed filter. We also use the evaluation parameters of SSIM and
SNR for quantitative evaluation of the dynamical features of the segmentation performance
under increasing noise intensity (Figure 9).
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Based on the comparative analysis of the segmentation performance, it is noticeable
that differences in effectivity appear. Predominantly, there are noticeable differences
between the situations when the proposed filter is/is not applied. Predominantly, after
applying the smoothing procedure, the segmentation performance is better, which is
indicated by higher values of SSIM and SNR. We also studied the influence of the number of
segmentation classes (regions) on the segmentation performance. Here, is noticeable that a
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lower number of classes (we use three) achieve better segmentation performance than eight
classes. Regarding the dynamical trend of the segmentation performance, we can see the
increasing tendency. This fact is understandable; when the noise with increasing intensity
is applied, then the similarity between the native segmentation and actual noisy image
segmentation is lower due to a higher modification of the spatial intensity distribution.

To contrast these quantitative results with those of the median filter, we present Table 6,
a comparison between the optimized RNLM filter and the median filter with various
kernels: 5 × 5, 7 × 7, and 15 × 15. All the comparisons present percentage differences
between respective settings of median filter and the optimized RNLM algorithm. This
comparison should report the differences between the different smoothing approaches
with the influence on the regional segmentation performance. We present this comparison
for Rician and Salt and Pepper noise for nine levels of the noise intensity.

Table 6. A comparison of the regional segmentation performance for two different settings of regions
(segmentation classes) in application of median and optimized RNLM filter under influence of Rician
and Salt and Pepper noise.

Rician Noise
(3 Classes|8 Classes)

Salt and Pepper Noise
(3 Classes|8 Classes)

Diff(SSIM(Med 5 × 5)) 19.24% 14.61% 26.12% 19.55%
Diff(SSIM(Med 7 × 7)) 17.87% 12.56% 21.44% 19.77%
Diff(SSIM(Med 7 × 7)) 9.56% 6.15% 14.47% 12.22%
Diff(Cor(Med 7 × 7)) 18.56% 17.44% 19.15% 18.86%
Diff(Cor(Med 7 × 7)) 14.32% 14.11% 16.45% 15.78%
Diff(Cor(Med 7 × 7)) 10.15% 9.51% 11.56% 11.12%

Based on the results (Table 6) of the differences of SSIM between various kernel settings
of the median filter and the optimized RNLM filter, notable differences are present. Firstly,
all the differences report that the optimized RNLM filter contributes to better segmentation
performance when compared with any median filter’s settings. When comparing the
number of the segmentation classes, predominantly, a higher number of the classes (eight
regions) report a higher difference in segmentation performance. This fact reports that the
median filter appears to be less robust than higher numbers of the segmentation regions.
The second important fact is the comparison between impulse and Rician noise from the
view of the segmentation performance. In the case of impulse noise, we report a higher
difference between median and optimized RNLM filter than in the case of Rician noise.
That means that the impulse noise is more effectively eliminated with the effect of better
segmentation performance.

5. Conclusions

Image smoothing is one of the essential procedures in the MR image preprocessing.
This operation enables an enhancement of spatial image area by suppressing noise and
artefacts, which cause image deterioration. These additive image signals lead to improper
tissues identification and consequent features extraction, which is essential for proper
medical diagnosis. In this context, image smoothing allows for homogenization of the
intensity distribution. Conventional approaches, which are based on the local means
principle, utilize a searching local window, where statistical features are computed such as
an average or median filter. These methods are capable of smoothing image areas; however,
on the other hand, they cause attenuation of image edges, which are crucial for tissue
interpretation. In this paper, we analyzed the performance of a powerful approach, which
is based on a non-local means algorithm, taking advantage of pixel intensities and patch
similarity information in the contrast of these standard methods. This filter is completed
with the optimization procedure, which is aimed to produce optimal filter settings. A
highly important feature of each smoothing method is its robustness under a dynami-
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cally changing environment, where we suppose that the image intensity distribution is
significantly modified by additive noise with dynamic intensity.

One of the main contributions of this study is studying the dynamical features of
the NLM method under dynamical noise influence. To provide a robust analysis, we
employed three different noise generators (Rician, Salt and Pepper and Speckle), which
are determined by its parameters, controlling noise intensity. In this way, we simulate
the dynamic effect of each type of noise to gradually deteriorate the MR image area. We
perform the testing on the real retrospective MR image data, including the images of
articular cartilage and elbow muscles images. For the objectivization of the smoothing
performance, we used four qualitative parameters of similarity: SSIM, SNR, PSNR, and Q-
index to evaluate the dynamical influence of each noise. Based on the testing, we evaluated
the trend of all the parameters, which have decreasing tendency under gradual noise
influence. This is predictable, since higher noise intensity causes a deeper modification of
intensity distribution and, thus, the smoothing procedure is less effective when noise is
increasing. As the next part of the testing, we were focused on the statistical evaluation
of average intensity differences between native and smoothed images for all the levels of
the noise. This statistical comparison mainly shows significant differences among various
settings of local means approaches and the NLM concept, which achieves comparatively
smaller differences than the average and median filters, which also predetermines its
higher effectivity.

The last part of the analysis deals with the segmentation performance of a multire-
gional segmentation in the form of Fuzzy soft thresholding. Here, we studied the dynamical
features of the segmentation performance when the NLM smoothing procedure is/ is not
employed for Rician and Salt and Pepper noise. In nearly all the comparisons, we found
that the filter presence has the impact on SSIM and SNR parameters to improve the smooth-
ing accuracy. In this segmentation analysis, we were also focused on the segmentation
settings, which may have the influence of the segmentation performance, when additive
noise is present. Here, we compared two settings of the multiregional segmentation to
evaluate the differences between these settings. We reported that a lower number of
segmentation regions (we used three regions) indicates objectively better segmentation
performance, when compared with eight regions.

The main aim of this paper was to point out on the performance of improved non-local
means filter in various noise influence. This analysis has a strong potential to evaluate the
dynamical features of the smoothing procedure. Since, in the MR imaging, the regional
segmentation plays a crucial role with the aim to extract and identify tissues of interest,
combination with an NLM filter appears to be a suitable alternative. Segmentation is
typically aimed at the extraction of clinically important features, enabling a quantification of
the objects of interest. In this way, the future trend in the application of NLM filters should
be their influence on performance of extracting features under various image conditions.
Such analysis should investigate the preciseness and reproducibility of clinically important
features and their inclination to individual image noise and its intensity.
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