
sensors

Article

Safe Path Planning Algorithms for Mobile Robots Based on
Probabilistic Foam

Luís B. P. Nascimento 1,2,* , Dennis Barrios-Aranibar 3 , Vitor G. Santos 2 , Diego S. Pereira 1,2 ,
William C. Ribeiro 1 and Pablo J. Alsina 1,*

����������
�������

Citation: Nascimento, L.B.P.;

Barrios-Aranibar, D.; Santos, V.G.;

Pereira, D.S.; Ribeiro, W.C.; Alsina, P.J.

Safe Path Planning Algorithms for

Mobile Robots Based on Probabilistic

Foam. Sensors 2021, 21, 4156.

https://doi.org/10.3390/s21124156

Academic Editor: Felipe N. Martins

Received: 31 March 2021

Accepted: 10 May 2021

Published: 17 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Engineering and Automation, Federal University of Rio Grande do Norte,
Natal 59078-970, Brazil; diego.pereira@ifrn.edu.br (D.S.P.); willcr@ieee.org (W.C.R.)

2 Federal Institute of Rio Grande do Norte, Parnamirim 59143-455, Brazil; vitor.gaboardi@ifrn.edu.br
3 Electrical and Electronics Engineering Department, Universidad Católica San Pablo, Arequipa 04001, Peru;

dbarrios@ucsp.edu.pe
* Correspondence: lbruno@ufrn.edu.br (L.B.P.N.); pablo@dca.ufrn.br (P.J.A.);

Tel.: +55-84-99426-6896 (L.B.P.N.); +55-84-99982-4075 (P.J.A.)

Abstract: The planning of safe paths is an important issue for autonomous robot systems. The Prob-
abilistic Foam method (PFM) is a planner that guarantees safe paths bounded by a sequence of
structures called bubbles that provides safe regions. This method performs the planning by cov-
ering the free configuration space with bubbles, an approach analogous to a breadth-first search.
To improve the propagation process and keep the safety, we present three algorithms based on
Probabilistic Foam: Goal-biased Probabilistic Foam (GBPF), Radius-biased Probabilistic Foam (RBPF),
and Heuristic-guided Probabilistic Foam (HPF); the last two are proposed in this work. The variant
GBPF is fast, HPF finds short paths, and RBPF finds high-clearance paths. Some simulations were
performed using four different maps to analyze the behavior and performance of the methods.
Besides, the safety was analyzed considering the new propagation strategies.

Keywords: mobile robot; path planning; bubbles; probabilistic foam; safety; A* algorithm

1. Introduction

Path planning is one of the most important problems in autonomous robot navigation,
and it has been discussed in the scientific community since the 1980s [1–3]. The issue of
planning is particularly relevant because it is almost a requirement for an autonomous
mobile robot to perform a motion from an initial to a goal position while avoiding possible
collisions in an environment with obstacles and narrow passages [4].

Initially, researches were focused on the development of path planners based on
Roadmaps [5], Cell Decomposition [6], and Potential Field [7]. Due to the so-called curse
of dimensionality due to high-dimensional configuration spaces, the researchers were
motivated to develop sampling-based approaches for path planning, which usually use few
computer resources and have been widely used for this sort of problem [8–12]. The most
important sampling-based (probabilistic) path planning methods are Rapidly-Exploring
Random Tree (RRT) [13,14] and Probabilistic Roadmaps (PRM) [15]. Further, Karaman
and Frazzoli [12] have proposed the methods RRT* and PRM*, two of the most successful
variants of RRT and PRM, respectively.

Most of the path planning methods are mainly dedicated to generate optimal paths or
find feasible paths with reduced execution time [16]. Nevertheless, it is also essential to
ensure safety for a robot when moving in unstructured environments [17]. Thus, planning
paths sufficiently far from the obstacles is vital for most applications [18].

There are path planners that primarily intend to generate paths with high clearance
from obstacles. The path planning methods based on the Voronoi diagram [3,19,20] are
approaches that guarantee clearance along the paths. However, they are not practical for

Sensors 2021, 21, 4156. https://doi.org/10.3390/s21124156 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1699-4535
https://orcid.org/0000-0001-7482-3390
https://orcid.org/0000-0002-4530-9568
https://orcid.org/0000-0001-6658-1854
https://orcid.org/0000-0002-9753-4038
https://orcid.org/0000-0002-2882-5237
https://doi.org/10.3390/s21124156
https://doi.org/10.3390/s21124156
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21124156
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21124156?type=check_update&version=1

Sensors 2021, 21, 4156 2 of 20

problems involving many degrees of freedom (DOFs) and many obstacles [21], due to the
explicit computation of the configuration space obstacles.

Paliwal and Kala [22] presented a goal-oriented path planning algorithm that pro-
vides high clearance from obstacles by propagating circles in the free configuration space.
Nevertheless, this method is limited to maps where the clearance is at least twice the robot,
i.e., environments with large passageways. In [23], an improved A* algorithm is proposed
to plan paths as far away as possible from the obstacles. In this approach, the environment
needs to be subjected to improved modeling using a danger coefficient based on the dis-
tance between the robot and the obstacles. However, this approach may be challenging for
high-dimensional spaces.

On the other hand, several strategies that intend to increase the clearance from ob-
stacles along a given path are already planned, such as [21,24–26]. In [27], the free con-
figuration space exploration is guided by a heuristic function based on a safety measure
called Danger Field. In [28], Quinlan and Khatib proposed a framework to deal with
collision-free motion using structures called Elastic Strips that can deform a path known a
priori. However, safety was not addressed explicitly.

A sampling-based path planner called the Probabilistic Foam Method (PFM) was
proposed in [29] with the main feature of ensuring an obstacle-free region for safe maneu-
verability. The safe region is provided by a structure called bubble, which has an n-ball
shape, and represents a subset of the free space. A set of bubbles propagate through the free
space from the initial configuration towards the goal configuration in a tree structure called
probabilistic foam. The resulting path for this approach is extracted from a sequence of
overlapped bubbles, called the rosary, which bounds the path and guarantees safe motions,
also providing safety constraints for adjustments, such as path smoothing [30]. The rosary
is illustrated in Figure 1.

Figure 1. Solved path planning. Extracted rosary and found path (red line).

In [31,32], we used the PFM to compute a set of safe configurations for a lower limb
active orthosis to transpose a simple obstacle. The main contribution of [31] was the
modeling of new bubbles inspired by the concept of Bubble of free space, proposed in [33],
which enabled PFM to solve robotic problems with many degrees of freedom. In [34], we
presented a variant of PFM called Goal-Biased Probabilistic Foam (GBPF). In this variant,
we proposed a new foam propagation approach inspired by goal-biased RRT tree growing,
which returns paths with the convenient trade-off between finding short paths through
narrow passages in the map and keeping the clearance from obstacles. Additionally, GBPF
is fast and usually computes a few bubbles.

Beyond the already known algorithms PFM and GBPF, in this paper, we present
two new variants of Probabilistic Foam: Radius-biased Probabilistic Foam (RBPF) and
Heuristic-Guided Probabilistic Foam (HPF). The variant RBPF is capable of finding paths
with high-clearance areas in the map, and HPF converges fast towards to the goal configu-
ration, generating short paths. For the probabilistic foam-based planners, where the rosary
bounds the path, it is necessary some metrics to measure the clearance from the obstacles
considering the influence of the bubbles. Thus, we also propose in this work some metrics
to evaluate the four algorithms.

Sensors 2021, 21, 4156 3 of 20

The remainder of the paper is organized as follows: Section 2 describes the original
PFM, and a new approach to determine one of its parameters is proposed. In Section 3, we
present the GBPF algorithm [34] and propose two new variants of PFM—RBPF and HPF.
Section 5 presents simulation results and discussions. Finally, we present some conclusions
and future works in Section 6.

2. The Probabilistic Foam Method

Probabilistic Foam Method (PFM) is a sampling-based path planning algorithm,
initially proposed in [29]. This method ensures a volumetric region for safe maneuverability,
ideal for robotic applications that need safety when performing movements.

Let C be a n-dimensional space with all possible robot configurations q and let Cf and
Co be subsets of C, where Cf is the obstacle-free region and Co is the obstacle region in
C (C = Cf ∪ Co). A bubble b is a volumetric region computed in Cf, which provides safe
regions. The region b is a n−ball and its surface is a (n− 1)-sphere in the free configuration
space Cf; it can be defined as

b = b(qc, r) = {q : d(q, qc) < r}, (1)

where r is the radius of the bubble, qc is its the center, and d(q, qc) is the metric adopted in
the configuration space. In other words, a bubble expands from its center qc to the nearest
C-obstacle Co or it can be computed using metrics in the workspace [31].

In this method, the free-space is covered by a set of overlapped bubbles from an
initial configuration to a goal configuration in a tree structure called probabilistic foam.
The probabilistic foam performs an approximated coverage, similar to some methods based
on approximated convex cell decomposition. The foam propagation strategy is analogous
to the mechanisms of a breadth-first search as well as wavefront propagation, commonly
used in methods based on potential fields.

2.1. Foam Propagation

Propagation occurs by expanding child bubbles bchild on the free surface of parent
bubbles bparent (bubbles from the previous generation). The propagation starts from the
initial bubble binit (i.e., the bubble centered at the initial configuration). Each parent bubble
can expand a maximum of N child bubbles, as shown in Equation (2):

N = K
(⌊

r
rmin

⌋)n−1
, (2)

where rmin is the radius of the smallest allowed bubble and can be estimated by analyzing
the width of the passages on the map. The parameter n is the dimension of the configuration
space and r is the radius of the parent bubble. Finally, K is a constant that indicates the
maximum number of child bubbles allowed for the bubble with radius rmin. The process of
foam propagation is illustrated in Figure 2.

Child bubbles are expanded over the parent bubble surface during the foam propaga-
tion process. However, this expansion only occurs in regions that were not already covered
by the foam (see Figure 2a,b). For each generation, all previous child bubbles are selected as
parent bubbles; then, new bubbles are expanded (Figure 2c). When some bubble encircles
the goal configuration, bgoal , the propagation finishes (Figure 2d). Finally, the rosary can
be found by following the parental relation between the bubbles from bgoal to binit, and a
collision-free path can be extracted by connecting the center of the bubbles, as shown in
Figure 1, solving the path planning problem.

In previous studies [29,31,34], the constant K was determined by empirical analysis.
In this paper, we propose a new approach to determine the value of K according to the
dimension of the configuration space.

Sensors 2021, 21, 4156 4 of 20

Figure 2. PFM propagation from initial (green dot) to goal configuration (blue dot). (a) Initial parent
bubble (red circle) and first child bubble. (b) Four possible children bubbles. (c) New PFM generation
with parent bubble selected and children bubbles expanded. (d) Probabilistic foam and path found.

Setting the Constant K

The constant K is an important parameter of Equation (2), which indicates the maxi-
mum number of child bubbles necessary to cover the entire surface area of bubble with
radius rmin.

Considering the best-case scenario, where the bubbles bparent and bchild have an equal
radius (rmin), the triangle formed between these bubbles (as shown in Figure 3) is equilat-
eral, with all three sides equal to rmin. Thus, the colatitude angle of the hyperspherical cap
is φ = 60◦ and the radius of the portal region is rp =

√
3

2 rmin.
It is possible to obtain K as a function of the dimension of the configuration space n.

This value can be obtained by dividing the surface area An of a (n− 1)-sphere (hypersphere
represented by bparent in Figure 3a) by the volume Vn−1 of the portal, the region is resulted
by removing the hyperspherical cap (red area), as can be seen in Figure 3b.

bparent

bchild

Figure 3. (a) Triangle formed between two overlapped bubbles bparent and bchild with radius rmin.
The red region represents the hyperspherical cap. (b) Parent bubble and portal region.

The well-known surface area An of a (n − 1)-sphere, with radius rmin can be ex-
pressed by

An(rmin) =
2π

n
2

Γ
(n

2
) rmin

n−1, (3)

Sensors 2021, 21, 4156 5 of 20

where Γ denotes the gamma function [35]. Based on [36], the volume Vn−1 of a (n− 1)-ball
(portal region), with radius rp, is defined as

Vn−1(rp) =
π

n−1
2

Γ
(

n−1
2 + 1

) rp
n−1. (4)

Thus, the value of K, given dimension n of the C-space, can be defined by

K =
An(rmin)

Vn−1(rp)
=

 2
√

π
√

3
2

n−1 ·
Γ
(

n+1
2

)
Γ
(n

2
)
. (5)

Using Equation (5), it is possible to compute the number of bubbles necessary for a
parent bubble with radius rmin. Figure 4 shows the value of K for the dimension n of the
C-space varying from 2 to 12.

2 3 4 5 6 7 8 9 10 11 12

4

6

8

10

13

16

19

24

29

35

42

Figure 4. Value of the constant K for dimension varying from 2 to 12.

2.2. Pseudocode of PFM

The procedure presented in Algorithm 1 describes the Probabilistic Foam Method.
The algorithm receives as input the configurations qinit and qgoal , the minimum radius
rmin, and the set of obstacles Co, and returns the rosary R, from which it is possible to
extract the path. The list F and the queue Q store all bubbles in the foam and the child
bubbles for each generation, respectively. The list F represents the probabilistic foam itself,
and the data structure Q has all candidate parent bubbles. When some bubble expands, it
is removed from Q. The function expand_bubble(qinit, Co) at line 3 returns the radius of a
new bubble. The function add({qinit, r}) (line 4) stores a bubble (center and radius) in the
list F.

For each generation, a parent bubble is selected from the queue Q (line 7); the maxi-
mum number of child bubbles N is computed (line 8); and using the function
surface_random_config(qp, rp), a configuration is sampled on the parent bubble surface
(line 10). If the configuration is not sampled in the interior of another bubble in the foam
(verified using the function int(qi) on (line 11), a new bubble is expanded (line 12). If the
radius of the new bubble is greater than or equal to rmin, this bubble is stored in lists F
and Q. For each new bubble added to the foam, it is verified if the new bubble encircles the
configuration qgoal (line 16). If it does, the rosaryR is extracted from the foam F using the
function get_rosary() and the algorithm stops, returning success. Otherwise, the current
bubble is removed from Q, and the next parent bubble will be selected.

Sensors 2021, 21, 4156 6 of 20

The original Probabilistic Foam method described in this section does not present any
mechanism that improves the foam propagation strategy to obtain safer and shorter paths
or to decrease the processing time of the algorithm. In this way, in the next sections, we
present some variants of the original PFM with different propagation approaches.

Algorithm 1: Probabilistic Foam Method.
input : qinit, qgoal , rmin, Co
output :R

1 F ← ∅;
2 Q← ∅;
3 r ← expand_bubble(qinit, Co);
4 F.add({qinit, r});
5 Q.add({qinit, r});
6 while Q 6= ∅ do
7 {qp, rp} ← Q.get_first();
8 N ← K(

⌊
rp/rmin

⌋
)n−1;

9 for i← 1 to N do
10 qi ← surface_random_config(qp, rp);
11 if F.int(qi) = false then
12 ri ← expand_bubble(qi, Co);
13 if ri ≥ rmin then
14 F.add({qi, ri});
15 Q.add({qi, ri});
16 if ||qi − qgoal || ≤ ri then
17 R ← F.get_rosary();
18 return success;
19 break;
20 end
21 end
22 end
23 end
24 Q.remove_first();
25 end
26 return fail;

3. Variants of Probabilistic Foam
3.1. Goal-Biased Probabilistic Foam

Goal-Biased Probabilistic Foam (GBPF) is a variant of the original PFM proposed
in [34]. In this algorithm, foam propagation is based on the strategy of expanding the
search tree of the RRT-GoalBias algorithm [14], a variant of the classic path planner Rapidly-
Exploring Random Tree [13]. The algorithm GBPF usually converges to the goal config-
uration faster than the original PFM, so the search time is reduced. The main difference
between GBPF and the original PFM is that random configurations qaux are sampled in the
configuration space, and they guide the propagation of the probabilistic foam. This process
is illustrated in Figure 5.

A configuration qaux is sampled in the configuration space (Figure 5a). The parent
bubble for this generation will be the one with the center closest to configuration qaux.
Next, the configuration qnear is found on the parent bubble surface (Figure 5b). Then, a new
child bubble centered in qnear is expanded (Figure 5c). Finally, Figure 5d illustrates how the
propagation is biased. There is a small probability (such as 0.05, as suggested by [14]) of
sampling the configuration qaux on the qgoal . In this way, the next parent bubble will be the
bubble with the center closest to qgoal .

Sensors 2021, 21, 4156 7 of 20

The described process is repeated until a child bubble encloses the goal configuration
qgoal , then, the method finds the rosary and the associated path. Algorithm 2 describes the
steps of GBPF.

Figure 5. GBPF propagation from initial (green dot) to goal configuration (blue dot). (a) qaux (red
dot) is sampled and the nearest parent bubble is selected. (b) The configuration qnear is selected. (c) A
new bubble on qnear is expanded. (d) The configuration qaux is sampled on the qgoal .

The method described in Algorithm 2 receives as input qinit, qgoal , rmin, the value
of bias, and Co, and returns the rosary R. In the same way as described in Algorithm 1,
the first bubble, centered in qinit, is added to the foam F. The sampling of qaux occurs on
lines 5–9. The function rand() returns a uniform random value between [0,1].

The function nearest_bubble(qaux, F) returns the bubble (center and radius) to F with
the nearest center to qaux. Additionally, the function nearest_config(qp, rp, qaux) returns
the nearest point between the surface of this bubble and the configuration qaux (lines 10
and 11). From line 13 to the end, the method follows the same structure from Algorithm 1.
The GBPF method runs until the rosaryR is found.

3.2. Radius-Biased Probabilistic Foam

Radius-Biased Probabilistic Foam (RBPF) is a new variant of PFM proposed in this
work that finds a path considering large passages in the environment, i.e., paths with
high clearance from the obstacles. Further, it can be applied to problems where finding a
short path is not the main objective. The main difference between RBPF and the original
PFM is that the bubbles with a large radius have a higher probability of being selected as
parent bubbles. Thus, the probabilistic foam will be biased to propagate faster through the
passages with high clearance from obstacles on the map.

The new expanded bubbles are stored in a list Open_List during the RBPF propagation,
and for each bubble, a probability pi proportional to its radius is calculated. If ri is the
radius of the bubble bi in the foam F, its associated probability of being selected is

pi =
ri

∑z
j=1 rj

, (6)

where z is the number of bubbles in the list Open_List. This selection strategy is well-
known as Roulette Wheel Selection, commonly used in metaheuristic applications, such as
the Genetic Algorithm [37,38].

Sensors 2021, 21, 4156 8 of 20

Algorithm 2: Goal-biased Probabilistic Foam.
input : qinit, qgoal , rmin, bias, Co
output :R

1 F = ∅;
2 r ← expand_bubble(qinit, Co);
3 F.add({qinit, r});
4 whileR = ∅ do
5 if rand() > bias then
6 qaux ← random_config();
7 else
8 qaux ← qgoal ;
9 end

10 {qp, rp} ← nearest_bubble(qaux, F);
11 qnear ← nearest_config(qp, rp, qaux);
12 if interior(qnear, F) = false then
13 rnear ← expand_bubble(qnear, Co);
14 if rnear ≥ rmin then
15 F.add({qnear, ri});
16 if ||qnear − qgoal || ≤ rnear then
17 R ← F.get_rosary();
18 return success;
19 break;
20 end
21 end
22 end
23 end
24 return fail;

Foam propagation of RBPF is illustrated in Figure 6 for a better understanding of
the process. The first generation of the RBPF is very similar to the original PFM (see
Figure 2). As shown in Figure 6a, the parent bubble centered in qinit (red border) is covered
by four child bubbles. These child bubbles are candidates to be parent bubbles for the next
generation, i.e., they are stored in the Open_List.

As previously discussed, in RBPF, the parent bubbles with larger radius are selected
with high probability using the Roulette algorithm. In Figure 6b, the Roulette algorithm
chose the greatest bubble as parent bubble. However, due to the minimum radius rule,
no child bubbles were expanded. In the next generation, shown in Figure 6c, another
parent bubble was selected, and a new child bubble was expanded. Figure 6d shows that
the algorithm found a path with high clearance from the obstacles by propagating the
bubbles through the wider passages. The pseudocode of the RBPF method is described in
Algorithm 3.

Sensors 2021, 21, 4156 9 of 20

Figure 6. RBPF propagation from qinit (green dot) to qgoal (blue dot). (a) Bubbles from the first
generation. (b) Roulette selects a large parent bubble (red circle) but no child bubble has expanded
due to the limited space. (c) Roulette selects a parent bubble and a child bubble was expanded. (d)
The probabilistic foam founds a safe path.

Algorithm 3: Radius-Biased Probabilistic Foam.
input : qinit, qgoal , rmin, Co
output :R

1 F = ∅;
2 Open_List = ∅;
3 r ← expand_bubble(qinit, Co);
4 F.add({qinit, r});
5 while Open_List 6= ∅ do
6 {qp, rp} ← roulette(Open_List);
7 N ← K(

⌊
rp/rmin

⌋
)n−1;

8 for i← 1 to N do
9 qi ← random_state(qp, rp);

10 if interior(qi, F) = false then
11 ri ← expand_bubble(qi, Co);
12 if ri ≥ rmin then
13 F.add({qi, ri});
14 Open_List.add({qi, ri});
15 if ||qi − qgoal || ≤ ri then
16 R ← F.get_rosary();
17 return success;
18 break;
19 end
20 end
21 end
22 end
23 Open_List.remove(qp);
24 end
25 return fail;

Sensors 2021, 21, 4156 10 of 20

The structure of the Algorithm 3 is very similar to Algorithm 1, which describes the
original PFM. The queue Q that stores the parent bubbles in Algorithm 1 was replaced to
the list Open_List (line 2). The main difference between the algorithms is presented on line 6,
where the function roulette() selects the parent bubbles with probabilities proportional to
its radius, as shown in Equation (6). When the child bubbles stop expanding, on lines 7–22
(procedure explained in Section 2.1 and in most detail in [31]), the parent bubble is removed
from Open_List (line 23).

3.3. Heuristic-Guided Probabilistic Foam

The Heuristic-Guided Probabilistic Foam (HPF) is another variant of the original
Probabilistic Foam Method that we propose in this work. This method improves the foam
propagation process by adding heuristic information about the goal configuration. This
strategy of propagation was inspired by the widely known A* search algorithm [39].

The A* algorithm is an informed heuristic search algorithm that solves search problems
in graphs by finding a path with the smallest cost from an initial node to a goal node of a
graph [40]. This algorithm combines features from two important algorithms: the Uniform
Cost Search and the Greedy Algorithm, ensuring completeness, optimality, and finding
solutions in a reasonable amount of time [41].

In the HPF method, the foam propagates through free space by choosing the parent
bubble with the smallest cost f (q). The cost of each bubble in the foam is computed by

f (q) = g(q) + h(q). (7)

The function g(q) computes the uniform cost of a bubble in analysis, centered in
q. The cost g is calculated by performing a depth search starting from the bubble under
analysis until the initial bubble following the child–parent relationship, and computing
the sum of the radius of these bubbles. The function h(q) is a heuristic that estimates the
cost between the bubble in analysis and the goal configuration. In this work, this cost is
computed using the Euclidean distance. The steps of the variant HPF are described in
Algorithm 4.

In this new variant, there is a list Open_List to store the parent bubble candidates
(center point and radius) and their assigned cost f . The method only stops when the
list Open_List is empty or when the search finds the rosary R. At each iteration of the
algorithm, the bubble with the smallest cost f is selected from Open_List by the function
get_smaller_cost() (line 6). The procedure of expanding child bubbles on the parent bubble
surface is similar to the original PFM algorithm. On line 7, the maximum number N of
child bubbles is computed.

The bubbles that met the conditions at lines 10 and 12 are stored in the foam F (line 13).
Using Equation (7), the costs of the bubbles are computed, and these bubbles and their
respective costs are stored in the list Open_List (lines 14 and 15). Afterwards, child bubbles
are computed and the parent bubble is removed from Open_List (line 23).

An illustration of the propagation process of the HPF is shown in Figure 7.
First, the initial bubble (red bubble) centered in qinit (green point) is expanded

(Figure 7a). Four child bubbles are expanded on the parent bubble surface and their
costs g are calculated. In this case, g cost is the radius of the parent bubble, g = 3.6.
In Figure 7b, the heuristic cost h is calculated by measuring the Euclidean distance between
the bubbles and the qgoal configuration (blue point). In Figure 7c, the cost f is calculated
based on Equation (7). The new parent bubble was chosen by selecting the smallest cost
f = 11.2; then, a new generation starts.

Sensors 2021, 21, 4156 11 of 20

Algorithm 4: Heuristic-Guided Probabilistic Foam.
input : qinit, qgoal , rmin, Co
output :R

1 F = ∅;
2 Open_List = ∅;
3 r ← expand_bubble(qinit, Co);
4 F.add({qinit, r});
5 while Open_List 6= ∅ do
6 {qp, rp} ← Open_List.get_smaller_cost();
7 N ← K(

⌊
rp/rmin

⌋
)n−1;

8 for i← 1 to N do
9 qi ← random_state(qp, rp);

10 if interior(qi, F) = false then
11 ri ← expand_bubble(qi, Co);
12 if ri ≥ rmin then
13 F.add({qi, ri});
14 costi ← f(qi);
15 Open_List.add({qi, ri, costi});
16 if ||qi − qgoal || ≤ ri then
17 R ← F.get_rosary();
18 return success;
19 break;
20 end
21 end
22 end
23 end
24 Open_List.remove(qp);
25 end
26 return fail;

Figure 7. HPF propagation starting from qinit (green dot). (a) Computation of g cost for all children bubbles on the parent
bubble (red circle). (b) Computation of h cost based on goal configuration (blue dot). (c) Computation of f cost, and selection
of the new parent bubble. (d) Cost g for the new generation. (e) Cost h for the new generation. (f) Cost f for new generation,
and selection of the new parent bubble.

Sensors 2021, 21, 4156 12 of 20

Two new child bubbles are expanded on the surface of the new parent bubble. The cost
g of the new bubbles is computed by summing the radius and the g cost of the parent
bubble, which are equal to 1.9 and 3.6, respectively. Therefore, the value of g for the new
child bubbles must be equal to 5.5 (1.9 + 3.6), as shown in Figure 7d. Finally, the new costs
h and f are calculated in Figure 7e,f, respectively, and a new parent bubble is selected.

4. Safety Measurement

The studied methods obtain paths with minimum clearance from the obstacles pro-
vided by the bubbles. These bubbles are also relevant since they simplify the process of
path smoothing, for instance, by imposing safety constraints. However, a rosary usually
presents many bubbles with different sizes, which hampers the establishment of a safety
measure (i.e., the clearance considering the radius of the bubbles). In this way, we present
a metric to measure the path safety based on the Mean Squared Error (MSE) estimator.

Considering that a path is extracted by a sequence of k bubbles called rosary and the
path safety is measured by considering the radius r of these bubbles, the Safety Metric SM
for a given path can be calculated by

SE =
1
k

k

∑
i=1

(ri − rmin)
2, (8)

where rmin is the smallest accepted radius for any bubble in the foam.
The Safety Metric SM estimates how far the radii of bubbles of the rosary are to rmin.

In this case, the bigger the metric SM, the safer the path.

5. Results

This section presents some simulated experiments with the Probabilistic Foam Method
and Goal-Biased Probabilistic Foam algorithms, and the two variants of the original PFM
proposed in this work, Radius-Biased Probabilistic Foam and Heuristic-Guided Probabilis-
tic Foam. The algorithms were applied to four maps with particular features to analyze
the behavior of each method, such as convergence time, path length, number of generated
bubbles, and path safety. The developed maps for this work were categorized as narrow,
simple, complex, and 3D, as shown in Table 1.

Table 1. Features of the maps used in the simulations.

Category Routes Obstacles Features

Narrow 1 2 Narrow passage
Simple 2 2 Clearance X Path length

Complex Many Many Outdoor
Complex 3D Many Many 3D C-space

The four maps developed for the simulations are illustrated in Figure 8.
Map 1 (Narrow), shown in Figure 8a, was used to analyze the search time and the

number of bubbles for each algorithm to pass through the narrow passage. Map 2 (Simple),
shown in Figure 8b, presents two possible routes: the first one is short with a narrow
passage, and the second one is long with a wide passage. Map 3 (Complex), shown in
Figure 8c, represents a general outdoor environment, which usually has many possible
routes for the robot to navigate toward its goal. This map is designed with rectangles and
circle-shaped randomly distributed and sized objects. Finally, Map 4 (Complex 3D), shown
in Figure 8d, represents a complex outdoor environment with many obstacles and routes in
a three-dimensional space. This 3D map was used to analyze the behavior of the methods
when the dimension of the configuration space is increased.

Sensors 2021, 21, 4156 13 of 20

(a) (b)

(c) (d)

x (m)

y
 (

m
)

x (m)

y
 (

m
)

x (m)

y
 (

m
)

x (m)

z
 (

m
)

y (m)

Figure 8. Maps used in simulations, where qinit is the green circle and qgoal is the blue circle. (a) Map
1 (Narrow), (b) Map 2 (Simple), (c) Map 3 (Complex 2D), and (d) Map 4 (Complex 3D).

These maps present the obstacle regions explicitly represented in C-space. This
representation enables the computation of bubbles considering Equation (1). In addition,
these regions better illustrate the resulted probabilistic foam, rosaries, and paths. However,
for practical experiments, this representation is computationally unfeasible. In this way,
new bubbles can be easily computed using information from the workspace without
needing the C-obstacle computation, as shown in [30]. Besides, it also allows us to compute
bubbles for different robots.

The simulations with the algorithms PFM, GBPF, RBPF, and HPF were performed on
a 1.8 GHz Intel Core i7 processor with 8 GB RAM on the Ubuntu 16.04 operating system.
The parameters of the algorithms were determined according to the map and were used for
all algorithms. The parameter Rmin was determined empirically where for Narrow map,
Rmin = 0.08; for simple map, Rmin = 0.2; for Complex map, Rmin = 0.15; and for Complex
3D map, Rmin = 0.3. The parameter bias was necessary only for the GBPF algorithm,
and was determined as bias = 0.05 (as suggested by [14]) for all experiments. Finally, the K
parameter is determined by Equation (5), according to the dimension of the configuration
space. Thus, for the 2D case and 3D case, we use K = 4 and K = 5, respectively.

Simulations were performed to demonstrate the probabilistic foam behavior and some
features of the methods. Figure 9 shows the generated probabilistic foam considering the
four methods for one simulation using Map 2.

The probabilistic foam generated by PFM (Figure 9a) is dense, i.e., it has a large
number of expanded bubbles. Besides, the probabilistic foam generates large bubbles in
large passages on the map, resulting in fast propagation in these areas. Thus, the probability
of convergence by this route is greater and, consequently, the paths usually have more
clearance. On the other hand, this method does not obtain the shortest path. The obtained
paths by PFM are shown in Figure 10.

Sensors 2021, 21, 4156 14 of 20

(a) (b)

(c) (d)

Figure 9. Probabilistic foam generated by the simulations for Map 2 with the algorithms (a) PFM,
(b) GBPF, (c) RBPF, and (d) HPF.

The simulation with GBPF generated a probabilistic foam less dense than PFM, as can
be seen in Figure 9b. Our approach inspired in the Goal-biased RRT algorithm enabled
the foam of GBPF to propagate fast towards the configuration qgoal , and generate fewer
bubbles. A disadvantage in this randomized approach is that the foam propagates in a
disorganized way, generating many irregular bubbles. Additionally, the strategy to choose
the parent bubble used in the GBPF makes some small bubbles expand very close to the
obstacles. Therefore, some segments of the resulted path can be close to the obstacles
even when there is free space available. This configuration can be observed in all paths
generated by GBPF, as seen in Figure 10.

Figure 9c shows the probabilistic foam generated by the RBPF algorithm. According
to the main feature of this approach, bubbles with a larger radius have a higher probability
to be chosen as parent bubbles. This characteristic facilitates fast propagation through
passages with high clearance from the obstacles, which generates safer paths, as can be
seen in Figure 10. However, this approach must only be applied when the path must
pass through the route with higher clearance on the map, since the bubbles will reach
narrow areas only when the foam covers all large areas on the map. This implies that
the convergence time can be harmed when the configuration qgoal is placed on difficult
access areas.

Sensors 2021, 21, 4156 15 of 20

PFM GBPF

NARROW

RBPF HPF

SIMPLE

COMPLEX

3D

y (m)
x (m)

y (m)

x (m)
y (m)

x (m) y (m)

x (m)

x (m) x (m) x (m) x (m)

y
 (

m
)

y
 (

m
)

y
 (

m
)

z
 (

m
)

Figure 10. Rosary and paths (from qinit, the green circle; qgoal , the blue circle) found by a simulation with PFM, GBPF, RBPF,
and HPF for all maps.

Finally, Figure 9d shows the probabilistic foam generated by the HPF algorithm.
The strategy of selecting a parent bubble based on costs allows the foam to propagate faster
towards the configuration qgoal , generating few bubbles. An important feature illustrated
in Map 2 (Simple) is that the foam propagation was faster through the narrow passages,
resulting in a short path. The paths obtained by all methods for all maps are shown in
Figure 10.

Considering the stochastic characteristics of the algorithms, some simulations were
performed for each algorithm to analyze the processing time (Time), the number of gen-
erated bubbles (Bubbles), and the path length (Path). Each algorithm was performed
500 times for 2D maps and 300 times for 3D maps. Table 2 presents the results.

Sensors 2021, 21, 4156 16 of 20

Table 2. Numerical results of processing time, number of bubbles, and path length for multiple simulations with the
algorithms for all maps.

Map Algorithm
Time (s) Bubbles Path (m)

Max Min Avg Std Max Min Avg Std Max Min Avg Std

Narrow

PFM 2.23 1.02 1.23 0.12 509 386 447.99 21.89 97.14 77.14 85.78 2.80
GBPF 8.78 0.65 1.85 1.05 454 220 302.34 38.93 109.99 79.37 89.94 5.39
RBPF 2.68 0.94 1.21 0.25 495 368 428.36 23.72 97.67 78.92 87.09 3.16
HPF 1.47 1.09 1.21 0.04 458 365 409.49 14.54 89.45 77.67 82.68 2.16

Simple

PFM 0.40 0.16 0.22 0.03 140 88 114.07 9.63 97.58 73.73 83.75 3.92
GBPF 0.29 0.02 0.06 0.03 110 31 62.88 13.49 111.99 34.69 68.64 26.42
RBPF 0.30 0.09 0.16 0.03 125 73 100.35 7.06 103.91 78.59 89.10 4.16
HPF 0.94 0.08 0.15 0.07 136 45 61.04 12.00 87.70 34.49 40.15 8.69

Complex

PFM 13.05 11.29 12.27 0.29 1311 1151 1232.98 27.29 78.93 58.51 66.27 3.88
GBPF 8.74 0.87 3.19 1.43 944 207 519.66 151.74 89.10 57.47 68.22 5.63
RBPF 9.92 6.04 8.69 0.63 1221 887 1115.06 59.00 106.79 64.75 79.96 7.19
HPF 9.38 3.91 6.72 0.84 987 484 751.14 79.97 70.28 57.86 62.40 1.77

3D

PFM 34.32 23.60 29.37 1.71 5638 4195 4979.20 216.85 36.49 19.20 26.86 3.92
GBPF 10.67 0.18 2.02 1.81 1684 104 582.61 318.40 44.50 18.39 27.69 5.09
RBPF 43.16 10.91 24.95 4.46 4396 1708 3254.70 510.19 49.98 22.98 36.28 4.39
HPF 9.17 1.12 3.29 1.21 1395 326 695.91 174.85 24.87 19.74 22.24 0.90

The simulations performed by the Probabilistic Foam method presented the highest
number of generated bubbles in all maps. This happened mainly due to the propagation
process of PFM, which conducts an approximated coverage of the entire free space. More-
over, PFM does not have any strategies to optimize the search. The results with the GBPF
algorithm were the most inconstant. By analyzing the maximum and minimum processing
time for the Narrow map, GBPF presented slower and faster simulations compared with
the other methods. On average, GBPF presented the shortest processing time for all maps
but the Narrow one. For the last three maps, the Radius-biased Probabilistic Foam method
presented the longest paths, since its foam propagates first through the wider passages
on the map. In the environment with one passage (Narrow map), RBPF was the fastest
algorithm on average.

The main feature of HPF is to find paths with the lowest cost, and the results show
that HPF found the shortest paths in all maps. For instance, we ran 500 simulations in
Map 2 and the resulted path did not pass through the narrow passage in only 18 of them.
Besides, GBPF and HPF presented the lowest number of computed bubbles in relation to
the other two methods in all maps.

In Map 4, the dimension of the configuration space is 3D and was considered many
obstacles in a complex layout. The methods PFM and RBPF presented a very high number
of computed bubbles, which results in a high processing time. On the other hand, both
GBPF and HPF were not affected by the increase of the configuration space dimension,
presenting a high number of expanded bubbles (as well as the Complex map in 2D),
but with low processing time.

Notice that the paths are not smooth, which can be a problem when considering a
practical application. However, it is possible to apply optimization techniques to smooth
the paths obtained from the probabilistic foam methods, as shown in [30], ensuring both
safe and smooth paths.

Measuring the Safety

Considering the same four maps, the values of rmax for maps Narrow, Simple, Com-
plex, and Complex 3D are 4, 5, 4, and 2, respectively. The Safety Metric SM averages for
the simulations are presented in Table 3.

Sensors 2021, 21, 4156 17 of 20

Table 3. Average of the safety measurement for the paths obtained by the algorithms PFM, GBPF,
RBPF, and HPF.

Map Algorithm Safety Metric SM
Max Min Avg Std

Narrow

PFM 1.7052 0.6646 1.1878 0.2170
GBPF 2.1576 0.4778 1.2668 0.3237
RBPF 4.2691 2.6742 3.4347 0.2467
HPF 3.3945 1.1140 2.3864 0.4088

Simple

PFM 26.6215 16.8881 21.9193 1.9061
GBPF 25.0479 2.1096 9.1549 5.4033
RBPF 27.4668 14.5357 22.0905 2.1243
HPF 26.1911 2.0343 5.8091 4.7272

Complex

PFM 2.2677 1.2036 1.6273 0.1844
GBPF 1.6130 0.3336 0.7760 0.2239
RBPF 2.6584 1.4419 1.8995 0.2239
HPF 1.7052 0.6646 1.1878 0.2170

3D

PFM 2.0272 0.5803 1.2852 0.4990
GBPF 1.4889 0.0966 0.4066 0.2469
RBPF 1.9143 1.1021 1.4642 0.2753
HPF 0.7318 0.1672 0.4121 0.0997

The RBPF method presented the best results regarding safety for all maps, as can be
seen in Table 3. This result was expected, since this method presents a higher probability to
propagate the probabilistic foam through more large passages; obtain rosaries with large
bubbles; and consequently, obtain safer paths.

Observing the safety results for the Simple map, there is a clear difference; PFM
and RBPF presented high safety values and the methods GBPF and HPF presented the
lowest one. The Simple map presents two possible routes, the longer one is safer than
the shorter one. Additionally, the rosaries of these methods presented the most regular
bubbles, as shown in Figure 10, and due to the low standard deviation and the high max
and min values, it is possible to infer that all obtained paths passed through the longer
route. On, the other hand, GBPF and HPF presented a high max value and very low min
value. Additionally, they have high std values. In this way, it is possible to infer that the
obtained paths for these methods passed through both possible routes but, on average,
most paths passed through the short passage.

For the Complex map, the GBPF method presented the most unfavorable results. Due
to the propagation strategy of GBPF, its rosary usually presents irregular and small bubbles,
which means that some segments of the path are close to an obstacle. For both the Narrow
and Complex maps, on average, HPF obtained paths safer than PFM and GBPF.

Finally, for the Complex map, the results were similar to the Simple map for the same
reason: RBPF and PFM planned paths passed through the larger spaces in the map and
GBPF and HPF converged guided by the goal configuration, generating paths that passed
through the narrow passages. However, all methods based on probabilistic foam will
generate paths with acceptable safety, since they all have rosary with bubbles with at least
a minimal acceptable radius. In other words, all methods based on probabilistic foam will
generate paths with acceptable safety.

6. Conclusions and Future Works

In this paper, we presented some contributions to the robot path planner called the
Probabilistic Foam method (PFM). First, an approach to set the value of the constant K was
formalized, which facilitates understanding of how the method works. Next, we presented
three variants of the original PFM: Goal-biased Probabilistic Foam (GBPF), first proposed
in [34]; Radius-Biased Probabilistic Foam (RBPF); and Heuristic-Guided Probabilistic Foam

Sensors 2021, 21, 4156 18 of 20

(HPF). The last two methods were proposed in this paper. Some simulations were made to
analyze the performance of all these methods.

The original PFM and RBPF present similar results, where both find high clearance
paths. However, PFM is recommended when free space coverage is necessary, and RBPF
can be used when it is most important to find the safest route. The algorithms GBPF and
HPF are variants that solve path planning problems by generating a few bubbles and
finding paths with low processing times. An advantage of HPF over all variants is the
heuristic function that helps it to find shorter paths, maintaining an acceptable safety.

The method RBPF considers only the information of the bubble’s radius as a metric
for parent bubble selection. Thus, in future works, we consider investigating metrics that
can be used alongside the bubble’s radius to bias the search and find safer paths, decrease
the number of computed bubbles, and reduce the searching time.

The new approach to finding the value of K is an interesting achievement because
the methods PFM, RBPF, and HPF only need to deal with one adjustable parameter,
the minimum radius rmin admissible for a given environment.

We noticed an increase in the processing time when the complexity of the environment
was increased for some maps. In future works, we intend to investigate some strategies
to improve the computational efficiency of the methods, making implementation of the
method possible for real-time applications.

Author Contributions: Conceptualization and methodology, L.B.P.N., D.B.-A., P.J.A.; writing—
review and editing, L.B.P.N., V.G.S., D.S.P., W.C.R., P.J.A. All authors have read and agreed to the
published version of the manuscript.

Funding: This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior-Brasil (CAPES)-Finance Code 001.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

PFM Probabilistic Foam Method
GBPF Goal-Biased Probabilistic Foam
RBPF Radius-Biased Probabilistic Foam
HPF Heuristic-Guided Probabilistic Foam
RRT Rapidly-Exploring Random Tree

References
1. Chien, R.T.; Zhang, L.; Zhang, B. Planning Collision-Free Paths for Robotic Arm Among Obstacles. IEEE Trans. Pattern Anal.

Mach. Intell. 1984, 6, 91–96. [CrossRef] [PubMed]
2. Canny, J. The Complexity of Robot Motion Planning; MIT Press: Cambridge, MA, USA, 1988.
3. Takahashi, O.; Schilling, R.J. Motion planning in a plane using generalized Voronoi diagrams. IEEE Trans. Robot. Autom. 1989,

5, 143–150. [CrossRef]
4. LaValle, S.M. Planning Algorithms; Cambridge University Press: New York, NY, USA, 2006.
5. Latombe, J.C. Robot Motion Planning; Springer US: Boston, MA, USA, 1991; doi:10.1007/978-1-4615-4022-9. [CrossRef]
6. Latombe, J.C. Approximate Cell Decomposition. In Robot Motion Planning; The Springer International Series in Engineering and

Computer Science; Springer: Boston, MA, USA, 1991; pp. 248–294._6. [CrossRef]
7. Khatib, O. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. Int. J. Robot. Res. 1986, 5, 90–98. [CrossRef]
8. Zhang, H.; Wang, Y.; Zheng, J.; Yu, J. Path planning of industrial robot based on improved RRT algorithm in complex environments.

IEEE Access 2018, 6, 53296–53306. [CrossRef]
9. Qureshi, A.H.; Ayaz, Y. Intelligent bidirectional rapidly-exploring random trees for optimal motion planning in complex cluttered

environments. Robot. Auton. Syst. 2015, 68, 1–11. [CrossRef]

http://doi.org/10.1109/TPAMI.1984.4767480
http://www.ncbi.nlm.nih.gov/pubmed/21869170
http://dx.doi.org/10.1109/70.88035
http://dx.doi.org/10.1007/978-1-4615-4022-9
http://dx.doi.org/10.1007/978-1-4615-4022-9_6
http://dx.doi.org/10.1177/027836498600500106
http://dx.doi.org/10.1109/ACCESS.2018.2871222
http://dx.doi.org/10.1016/j.robot.2015.02.007

Sensors 2021, 21, 4156 19 of 20

10. Janson, L.; Ichter, B.; Pavone, M. Deterministic sampling-based motion planning: Optimality, complexity, and performance. Int. J.
Robot. Res. 2018, 37, 46–61. [CrossRef]

11. Tahir, Z.; Qureshi, A.H.; Ayaz, Y.; Nawaz, R. Potentially guided bidirectionalized RRT* for fast optimal path planning in cluttered
environments. Robot. Auton. Syst. 2018, 108, 13–27. [CrossRef]

12. Karaman, S.; Frazzoli, E. Sampling-Based Algorithms for Optimal Motion Planning. Int. J. Robot. Res. 2011, 30, 846–894.
[CrossRef]

13. LaValle, S.M. Rapidly-Exploring Random Trees: A New Tool for Path Planning; Technical Report; Iowa State University: Ames, IA,
USA, 1998.

14. Lavalle, S.M.; Kuffner, J.J., Jr. Rapidly-Exploring Random Trees: Progress and Prospects. In Algorithmic and Computational Robotics:
New Directions; A K Peters: Wellesley, MA, USA, 2001; pp. 293–308.

15. Kavraki, L.; Svestka, P.; Latombe, J.C.; Overmars, M. Probabilistic Roadmaps for Path Planning in High-Dimensional Configura-
tion Spaces. IEEE Trans. Robot. Autom. 1996, 12, 566–580. [CrossRef]

16. Volna, E.; Kotyrba, M. Pathfinding in a Dynamically Changing Environment. In Intelligent Information and Database Systems;
Nguyen, N.T., Hoang, D.H., Hong, T.P., Pham, H., Trawiński, B., Eds.; Springer International Publishing: Cham, Switzerland,
2018; pp. 265–274.

17. Plaku, E.; Plaku, E.; Simari, P. Clearance-driven motion planning for mobile robots with differential constraints. Robotica 2018,
36, 971–993. [CrossRef]

18. Berglund, T.; Brodnik, A.; Jonsson, H.; Staffanson, M.; Soderkvist, I. Planning smooth and obstacle-avoiding B-spline paths for
autonomous mining vehicles. IEEE Trans. Autom. Sci. Eng. 2009, 7, 167–172. [CrossRef]

19. Bhattacharya, P.; Gavrilova, M.L. Roadmap-Based Path Planning-Using the Voronoi Diagram for a Clearance-Based Shortest
Path. IEEE Robot. Autom. Mag. 2008, 15, 58–66. [CrossRef]

20. Xiong, C.; Chen, D.; Lu, D.; Zeng, Z.; Lian, L. Path planning of multiple autonomous marine vehicles for adaptive sampling
using Voronoi-based ant colony optimization. Robot. Auton. Syst. 2019, 115, 90–103. [CrossRef]

21. Geraerts, R.; Overmars, M.H. Creating high-quality paths for motion planning. Int. J. Robot. Res. 2007, 26, 845–863. [CrossRef]
22. Paliwal, S.S.; Kala, R. Maximum clearance rapid motion planning algorithm. Robotica 2018, 36, 882–903. [CrossRef]
23. Zhang, H.M.; Li, M.L.; Yang, L. Safe Path Planning of Mobile Robot Based on Improved A* Algorithm in Complex Terrains.

Algorithms 2018, 11, 44. [CrossRef]
24. Sent, D.; Overmars, M.H. Motion planning in environments with danger zones. In Proceedings of the 2001 ICRA, IEEE

International Conference on Robotics and Automation (Cat. No.01CH37164), Seoul, Korea, 21–26 May 2001; Volume 2, pp.
1488–1493. [CrossRef]

25. Melchior, P.; Orsoni, B.; Lavialle, O.; Poty, A.; Oustaloup, A. Consideration of obstacle danger level in path planning using A*
and Fast-Marching optimisation: Comparative study. Signal Process. 2003, 83, 2387–2396. [CrossRef]

26. Shahzad, K.; Iqbal, S.; Bloodsworth, P. Points-based safe path planning of continuum robots. Int. J. Adv. Robot. Syst. 2015, 12, 107.
[CrossRef]

27. Lacevic, B.; Rocco, P. Safety-oriented path planning for articulated robots. Robotica 2013, 31, 861–874. [CrossRef]
28. Quinlan, S.; Khatib, O. Elastic bands: Connecting path planning and control. In Proceedings of the IEEE International Conference

on Robotics and Automation, Atlanta, GA, USA, 2–6 May 1993; Volume 2, pp. 802–807. [CrossRef]
29. Silveira, Y.S.; Alsina, P.J. A New Robot Path Planning Method Based on Probabilistic Foam. In Proceedings of the 2016 XIII

Latin American Robotics Symposium and IV Brazilian Robotics Symposium (LARS/SBR), Recife, Brazil, 8–12 October 2016;
pp. 217–222. [CrossRef]

30. Nascimento, L.B.; Barrios-Aranibar, D.; Alsina, P.J.; Santos, V.G.; Fernandes, D.H.; Pereira, D.S. A Smooth and Safe Path Planning
for an Active Lower Limb Exoskeleton. J. Intell. Robot. Syst. 2020, 99, 1–19. [CrossRef]

31. do Nascimento, L.B.P.; da Silva Pereira, D.; Sanca, A.S.; Eugenio, K.J.S.; da Silva Fernandes, D.H.; Alsina, P.J.; Araujo, M.V.;
Silva, M.R. Safe Path Planning Based on Probabilistic Foam for a Lower Limb Active Orthosis to Overcoming an Obstacle. In
Proceedings of the 2018 Latin American Robotic Symposium, 2018 Brazilian Symposium on Robotics (SBR) and 2018 Workshop on
Robotics in Education (WRE), João Pessoa, Brazil, 6–10 November 2018; pp. 413–419.

32. Santos, V.G.; Nascimento, L.B.P.; Fernandes, D.H.S.; Pereira, D.S.; Alsina, P.J.; Araújo, M.V. Step modeling and safe path planning
for a lower limb exoskeleton. In Proceedings of the 2019 19th International Conference on Advanced Robotics (ICAR), Belo
Horizonte, Brazil, 2–6 December 2019; pp. 560–565. [CrossRef]

33. Quinlan, S. Real-Time Modification of Collision-Free Paths. Ph.D. Dissertation, Stanford University Stanford, Stanford, CA, USA,
1995.

34. Nascimento, L.B.P.; Pereira, D.S.; Alsina, P.J.; Silva, M.R.; Fernandes, D.H.S.; Roza, V.C.C.; Sanca, A.S. Goal-biased probabilistic
foam method for robot path planning. In Proceedings of the 2018 IEEE International Conference on Autonomous Robot Systems
and Competitions (ICARSC), Torres Vedras, Portugal, 25–27 April 2018; pp. 199–204.

35. Artin, E. The Gamma Function; Holt, Rinehart and Winston: New York, NY, USA, 1964.
36. Li, S. Concise formulas for the area and volume of a hyperspherical cap. Asian J. Math. Stat. 2011, 4, 66–70. [CrossRef]
37. Qu, Y.; Zhang, Y.; Zhang, Y. A Global Path Planning Algorithm for Fixed-wing UAVs. J. Intell. Robot. Syst. 2017, 91, 1–17.

[CrossRef]

http://dx.doi.org/10.1177/0278364917714338
http://dx.doi.org/10.1016/j.robot.2018.06.013
http://dx.doi.org/10.1177/0278364911406761
http://dx.doi.org/10.1109/70.508439
http://dx.doi.org/10.1017/S0263574718000164
http://dx.doi.org/10.1109/TASE.2009.2015886
http://dx.doi.org/10.1109/MRA.2008.921540
http://dx.doi.org/10.1016/j.robot.2019.02.002
http://dx.doi.org/10.1177/0278364907079280
http://dx.doi.org/10.1017/S0263574718000127
http://dx.doi.org/10.3390/a11040044
http://dx.doi.org/10.1109/ROBOT.2001.932821.
http://dx.doi.org/10.1016/S0165-1684(03)00191-9
http://dx.doi.org/10.5772/60857
http://dx.doi.org/10.1017/S0263574713000143
http://dx.doi.org/10.1109/ROBOT.1993.291936
http://dx.doi.org/10.1109/LARS-SBR.2016.43
http://dx.doi.org/10.1007/s10846-019-01134-7
http://dx.doi.org/10.1109/ICAR46387.2019.8981644
http://dx.doi.org/10.3923/ajms.2011.66.70
http://dx.doi.org/10.1007/s10846-017-0729-9

Sensors 2021, 21, 4156 20 of 20

38. Zeng, Z.; Sammut, K.; Lian, L.; He, F.; Lammas, A.; Tang, Y. A comparison of optimization techniques for AUV path planning in
environments with ocean currents. Robot. Auton. Syst. 2016, 82, 61–72. [CrossRef]

39. Hart, P.E.; Nilsson, N.J.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Trans. Syst.
Sci. Cybern. 1968, 4, 100–107, reprinted in SIGART Bull. 1972, 28–29. [CrossRef]

40. Fu, B.; Chen, L.; Zhou, Y.; Zheng, D.; Wei, Z.; Dai, J.; Pan, H. An improved A* algorithm for the industrial robot path planning
with high success rate and short length. Robot. Auton. Syst. 2018, 106, 26–37. [CrossRef]

41. Russell, S.J.; Norvig, P. Artificial Intelligence: A Modern Approach, 1st ed.; Prentice-Hall: Englewood Cliffs, NJ, USA, 1995;
Volume 25.

http://dx.doi.org/10.1016/j.robot.2016.03.011
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1016/j.robot.2018.04.007

	Introduction
	The Probabilistic Foam Method
	Foam Propagation
	Pseudocode of PFM

	Variants of Probabilistic Foam
	Goal-Biased Probabilistic Foam
	Radius-Biased Probabilistic Foam
	Heuristic-Guided Probabilistic Foam

	Safety Measurement
	Results
	Conclusions and Future Works
	References

