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Abstract: Detecting nuclear materials in mixtures is challenging due to low concentration, environ-
mental factors, sensor noise, source-detector distance variations, and others. This paper presents new
results on nuclear material identification and relative count contribution (also known as mixing ratio)
estimation for mixtures of materials in which there are multiple isotopes present. Conventional and
deep-learning-based machine learning algorithms were compared. Realistic simulated data using
Gamma Detector Response and Analysis Software (GADRAS) were used in our comparative studies.
It was observed that a deep learning approach is highly promising.
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1. Introduction

Illegal use of nuclear materials can cause social unrest and dangers to human lives.
It is critical to stop the smuggling of nuclear materials at customs or border checkpoints.
Although there are devices such as Sodium lodide (Nal) and other detectors, they may
not function well if the material concentration is low or there are several isotopes mixed
together. In recent years, there have been new developments in machine learning/deep
learning that have great potential to enhance the detection and classification of nuclear ma-
terials with low concentration or mixtures [1-4]. However, it is still challenging for several
reasons. First, machine learning (ML) requires a lot of training data. Fortunately, there are
software simulation tools, such as GADRAS [5], that can be used to generate training data.
Second, the spectral data collected by the detectors normally contain background noise and
interferences. This necessitates robust algorithms for material classification. Third, there
may be scenarios where multiple nuclear materials may be present, making the spectral
signatures more complicated. Some spectral unmixing may be needed in order to correctly
classify the different nuclear materials.

Radiation spectrum analysis has been traditionally done by looking at certain regions
of interest (ROI) in the gamma ray spectrum [6-9]. One drawback of the aforementioned
approaches is that they may not perform well when ROIs overlap significantly with large
libraries of radio-isotopes. Recently, researchers have taken the entire spectrum into
account for isotope identification [10,11]. One key benefit is that the Compton continuum
can be taken into account and the entire spectrum is shown to allow for some tolerance to
gain shift.

To analyze spectral signatures from a mixture of materials, there are some additional
methods that are popular in various fields. Non-negativity Constrained Least Square
(NCLS) has been used in chemical agent detection [12]. Partial Least Square (PLS) has been
used in rock composition analysis in Laser Induced Breakdown Spectroscopy (LIBS) [13] on-
board the Mars rover Curiosity. Deep Belief Network (DBN) has been used in hyperspectral
image classification [14]. Linear regression (LR) and Random Forest Regression (RFR) [15]
are also conventional machine learning tools that can be used for unmixing analysis.

Deep learning has made significant progress since the seminal work by Hinton’s
group in 2012 [16]. After that, deep learning has been widely used in many applications
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such as target detection and classification [17,18], stock market forecasting [19], land cover
classification [20], image enhancement [21], and many more [22].

In this study, we propose to apply both conventional machine learning and recent
deep learning approaches to detecting and classifying nuclear materials in mixtures. We
mainly focus on mixtures containing multiple nuclear materials. We examined realistic
gamma ray spectral data to test our identification and mixing ratio estimation methods.
In particular, we used GADRAS to generate realistic spectral data for comparing different
algorithms. We then proceeded with two additional investigations. First, we performed
relative count contribution (mixing ratio) estimation performance analyses for high and low
mixing ratio mixture datasets. Second, we performed robustness analysis on the mixing
ratio estimation methods when unknown number of source mixtures is present and also
when the source-to-detector distance varies. Third, we studied the use of using foreground
spectra only for mixing ratio estimation.

Our contributions are two-fold. First, we thoroughly compare conventional and
deep learning algorithms in the context of material detection in mixtures. Second, we
demonstrated that a deep learning algorithm has great potential in mixing ratio estimation
in mixtures using realistic data generated by GADRAS.

This paper is organized as follows. Section 2 briefly reviews the six algorithms
for spectral analysis and relative count contribution/mixing ratio estimation. Section 3
summarizes how the data were generated using GADRAS. Section 4 presents unmixing
results using realistic simulated data generated from GADRAS. Finally, some concluding
remarks and future directions are mentioned in Section 5.

2. Radioactive Mixture Identification and Relative Count Contribution
Estimation Algorithms

In this section, we provide brief technical information about the six relative count
contribution or mixing ratio estimation methods that were applied in a number of different
analyses in this work. One is a signature-based method, three of them are machine-learning-
based methods, and two are deep learning methods.

2.1. Non-Negativity Constrained Least Squares (NCLS)

A non-machine learning (ML) approach can be useful to handle some unexpected
situations such as multiple nuclear materials where the spectrum will be mixed. If known
spectral signatures of individual materials are available, then we can apply a technique
known as NCLS to unmix the spectrum and classify the materials. We have used NCLS for
chemical agent detection [12] before and observed good performance.

The NCLS approach is related to the following optimization problem,

Minimize LSE = (M« — 1)’ (M« — r) subject to aj >0 1)

where LSE is the least squares error used as a criterion for optimality, and a; > 0 represents
the non-negativity constraint for 1 < j < p. In NCLS, suppose the spectra of which its
composition estimate is aimed to be found is denoted by r, and the gamma ray signature
library is denoted by M. NCLS aims to estimate « (concentration estimates) from r (gamma
ray spectra of the radioactive mixture sample) and M (gamma ray signature library). In
order to use the Lagrange multiplier method, a p-dimensional unknown positive constraint

vector ¢ = [cl, Cynnn, cp] T with ¢ = 0 is introduced, where 1 < j < p and the Lagrange

multiplier vector is A = [)\1, Ao, ..o, )\p] T A Lagrangian, [(«), by means of ¢ is formed as
J(«) = (1/2) (Mo — r)T (Mo — 1) + AT (x — ¢) )
subject to the constraint & = ¢. Differentiating J(«) with respect to « yields

9 A
@  =0=M"Mancis —Mr+A (3)
« XNCLS
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Equation (1) results in the following two iterative equations
-1 -1
ANCLS = (MTM) MTr — (MTM) A @)
A -1
&g = (MTM) MTr (5)

Equations (4) and (5) can be used iteratively to solve the optimal solution &NCLS-
Details of the NCLS can be found in [12].

2.2. Partial Least Squares (PLS)

Suppose a process is modeled by
Y=XB+E (6)

where X € RN and Y € RN*/ are the input and output data matrices, and B € R"*! is a
parameter matrix. Suppose X is defined as

X1,
X2/
X = . | € N> 7)

XN/

where x; € R is the i*" observation of the inputs [13]. In PLS, suppose the gamma ray
spectra are denoted by X and the radioactive material compositions of X are denoted by Y.
The PLS model is then based on predicting Y from X, where Y = XB; that is, PLS estimates B.
We have applied PLS in LIBS data analysis for rock composition determination before [13].

2.3. Deep Belief Network (DBN)

Restricted Boltzmann Machines (RBM), which are generative undirected graphical
models, make up the architecture of the Deep Belief Networks (DBNs) [23]. DBNs are
formed by stacking RBMs and training the units of the DBN architecture with stochastic
gradient descent techniques [23]. In an RBM, the lower layer is called the visible layer and
the top layer is the hidden layer. The units in the two layers can be interpreted as stochastic
binary variables [23]. These units are connected to each other via undirected weights. An
RBM can learn a probability distribution over its set of inputs [24]. Thus, a trained RBM
model can generate data like the training data. Training RBM consists of maximizing the
product of probabilities assigned to training dataset. RBMs can be also configured to be
used for classification problems [25].

In training of a DBN which consists of multiple stacked layers of RBMs, the first RBM
is trained, then the second RBM is trained using the first RBM’s hidden layer as the second
RBM'’s visible layer [23], and this process repeats itself for all RBM layers. The last layer of
DBN, which is the label layer, can be any standard classifier [23]. In this work though, we
used DBN for a regression problem. DBN is used as one of the benchmark methods in this
work since it consists of stacking learning units in its architecture for deep learning. It has
also been noted that due to its use of RBMs, DBNs can mitigate the impact of noise that can
be present in the training data [23].

Deep Belief Network (DBN) [14] used in this work is a three-level DBN architecture
with sigmoid activation function, which can be seen in the following. The first two levels
of DBN architecture consist of RBMs.

(a) Level-1 (RBM with 50 hidden units): 1000 epoch training
(b) Level-2 (RBM with 50 x 50 hidden units): 1000 epoch training
(c) Level-3 (connection to y (output) with neural network (NN)): 30,000 epoch training
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2.4. Dense Deep Learning for Regression

Dense layer, also known as fully connected (FC) layer, is a neural network layer in
which a neuron in this layer receives input from all neurons in the previous layer. The
dense layer can be considered as performing a matrix vector dot product where matrix is
the weights matrix and vector is the input tensor [26]. The bias vector is added to the result
of the dot product followed by applying an activation function to introduce nonlinearity in
the network. By stacking dense layers, deep learning architectures can be formed which
can be used for classification and regression problems. Depending on the problem type,
choice of loss function and optimization method in model training becomes important.
The mixing ratio estimation performance of a dense deep learning model for multi-input
multi-output regression is examined in this investigation. We have selected a deep learning
architecture with dense layers since their effectiveness was demonstrated in classification
and regression problems.

The dense deep learning model is designed using Keras’s sequential model [15]. The
sequential model contains three Dense layers with Rectified Linear Unit (ReLU) activations.
For optimization, Adam optimizer [27] is used. After an optimal hyperparameter search,
the number of neurons in the first layer is set to 800. The number of neurons in the second
layer is set to 256. The number of neurons in the third layer is set to 13 which is the same
number of radioactive isotope materials. The dense deep learning architecture is depicted
in Table 1. We will call this model “Deep Regression (DR)” throughout the rest of this paper
when presenting the conducted analyses.

Table 1. Dense deep learning model for multi-input multi-output regression (DR).

Model Layers Optimizer

Layer 1: 800 nodes with ReLu; Layer 2: Loss function: Mean Square

Sequential 256 nodes with ReLu; Layer 3: linear Error; Optimizer: Adam

2.5. Linear Regression and Random Forest Regression Algorithms

We also used linear regression (LR) and random forest regression (RFR) algorithms in
the Keras library [15] in our investigations. These are considered as classical benchmark
machine-learning-based methods for regression problems, and they are included in this
work for comparison purposes with the deep-learning-based methods.

Since linear regression (LR) [28] is a well-established method, we will not provide
technical details. Random forest regression (RFR) [29] is an ensemble method in which
multiple decision trees (DTs) are constructed. DT is a non-parametric supervised learning
method that predicts the value of a target by learning decision rules and these rules are
extracted from the data features [30]. For an unseen test data sample, the decisions from
each of the DTs in RER are averaged to finalize the output decision [30]. In this work, after
a number of trial and errors to find the best performance, the number of DTs in RFR is set
to 100. RFR due to its nonlinearity can perform better than linear methods. However, it has
some disadvantages such as overfitting and the need to search for an optimal number of
DTs in the model training.

3. Radioactive Mixture Data Generation Using GADRAS

GADRAS is a powerful simulation tool that can generate realistic gamma ray spectra
under various conditions. We familiarized ourselves with GADRAS [5] software so that
we can emulate gamma ray spectra of individual radioactive materials and also synthesize
mixtures of these radioactive materials at different relative count contributions. We then
performed radioactive material mixture simulation using GADRAS’ Inject tool. We used
GADRAS to generate mixtures of different radioactive materials with different relative
count contributions. We also use the term ‘relative count contribution’ for the mixing ratio.
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3.1. Detector Settings in GADRAS Simulation

In the conducted investigations, Nal detector was used in GADRAS [5] to simulate the
detector responses to the radioactive materials and their mixtures in gamma ray spectra.
The height for the detector was set to 56 cm (H = 56 cm) and the distance of the detector to
the radioactive materials was set to 122 cm (@ 122 cm, H = 56 cm). The complete Sodium
Iodide (Nal) detector parameters used in the simulation can be seen from the GADRAS
graphical user interface (GUI) screenshot for the Detector tab in Figure 1.

I‘ GADRAS-DRF 18.7.6 3x3\Mal MidScat

Detector  Plot TimeHistory Analyze Meutron  Inject  Tools  Setup

File  Restere Points  Help

Detector Properties Environment
Default Energy Calibration

Type Nal ~ @ Prefer Ecal in File On Ground ~
Efficiency (%) O Aways Use This Ecal Photon Scatter
Dimensions Order Din E |4.41 Clutter |2.15
Setback (em) |0.3 Order 1in E |3198.33 0 Degrees |1.00
Length (cm) (7 Order 2in E |0 45 Degrees (064
Width (cm) (6.65 Order 3in E |0 90 Degrees |3.63
Height/Width |1 Low Energy (0 135 Degrees |3.62
Deasdhi::e':aﬂ'cntr:; ;DD Inner Attenuator F{ate1(:>DED-i§Il:_r§es :3
s |E Atomic Number |13 o= 1
AD (g/em2) |03 Rate @ E ->0 |0.02
Peak Shape Porosty (%) |0 Increase with E (0.08
FWHM @ E>0 (V) |5 Quter Attenuator + Advanc:e;::tﬂeer —
FWHM @661 (%) (6.4 .
FWHM Energy power |0.606 Aormic Number |4
Low-E Skew |0 AD /o2 P * ArPressure
Porosity (%) |0
High-E Skew |0 + Neutron Scatter
Low-E Skew Power (0 Timing . =
. ompute Fileup ]
oo e s L
Lower Level Discriminator * Shield / Collmator
LLD (xeV) |34 + Fuorescence ¥-ays
LLD Shapress |0

+ Coincidence / Imaging

Figure 1. Nal Detector parameters used in the GADRAS simulation.

3.2. Radioactive Materials Used in the Individual Source-Only Simulation with GADRAS’
Inject Tool

According to [31], most of the nuclear trafficking consists of a certain group of ra-
dioactive materials. The second column of Table 2 shows 13 of these radioactive materials.
When we checked GADRAS, we saw that these nuclear materials exist in GADRAS’s
isotopes library. Using this library, we generated individual gamma ray signatures of these
13 radioactive materials with respect to the Nal detector (122 cm @ H = 56 cm) in GADRAS.
Using these simulated signatures, we created a signature library to identify materials and
quantify their relative count contributions using spectral unmixing-based methods which
require a signature library in advance like the NCLS method. The activity units for these
13 radioactive materials are in Curies (Ci) and the base activity units for each radioactive
material when forming the signature library are selected such that the detector responses
to these materials have similar amplitudes. The selected units for these materials can be
seen in Table 2.
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Table 2. Radioactive materials and their activity units used in the GADRAS simulation with Nal detector.

Index Radioactive Material Unit in Curies (Ci)
1 241 Am 35 uCi
2 239py 20,000 uCi
3 133Ba 30 uCi
4 19271, 30 uCi
5 238y 150 uCi
6 137¢g 150 uCi
7 223Ra 35 uCi
8 152py 15 uCi
9 226Ra 40 uCi
10 153Gd 10 uCi
11 282Th 30 uCi
12 1821, 15 uCi
13 235y 30 uCi

To emulate the individual material gamma ray spectra with the Nal detector when
forming the signature library, we considered three different ways in GADRAS. These are:
(1) using GADRAS’s Inject tool with foreground and background (with Poisson statistics)
and then subtracting background from foreground, (2) using GADRAS’s Plot tool that
plots just the detector response to the isotope in gamma ray spectrum, and (3) using
GADRAS'’s Inject tool with no background and no Poisson statistics with Nal detector @
122 cm, H = 56 cm, meaning that a source-to-detector distance is 122 cm and the height
of the detector is 56 cm above ground. Figure 2 shows an estimated source spectrum
(foreground-background) for one of the radioactive materials (3*U, 10 uCi) using these
three different ways. As can be seen from Figure 2, even though the background-subtracted
spectrum (first way) is almost the same in value and shape to the individual material
spectrum using GADRAS'’s Inject tool without background simulation (third way), the
spectrum using GADRAS’s Plot tool generated a spectrum similar in shape but with a very
different amplitude scale. Because we found this to be confusing and not very intuitive,
we communicated with the GADRAS team in Sandia Labs regarding this and shared our
observations. We received a quick response from them saying that this issue would be fixed
in the next release of GADRAS. For this reason, for the signature library, we generated the
pure individual source-only spectra of these 13 radioactive materials, using the third way
which consists of using GADRAS' Inject tool with no background and no Poisson statistics
for Nal detector @ 122 cm, H = 56 cm. These individual gamma ray spectra of 13 materials
are used when forming the signature library in NCLS. Figure 3 shows the batch inject setup
screenshot in GADRAS for one of the 13 radioactive sources. Figure 4 shows the resultant
gamma-ray spectrum signatures of the 13 radioactive materials in the signature library for
NCLS with the activity units listed in the third column of Table 2.

3.3. Radioactive Material Mixture Simulation Using GADRAS’ Inject Tool

For radioactive mixture data, we generated all combinations from 13 radioactive
materials. In particular, there are 78 combinations in two-source case, 286 combinations in
the three-source case, 715 combinations in the four-source case, and 1287 combinations in
five-source case.
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Figure 2. Estimated source spectra (foreground-background) using the inject tool of GADRAS with background, using Plot
tool alone and using the Inject tool with no background and no Poisson statistics for 228U, 10 uCi source with Nal detector @

122 cm, H = 56 cm.
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Figure 3. GADRAS Inject tool settings for generating individual radioactive source-only spectra with Nal detector @ 122 cm,

H =56 cm.
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Figure 4. Gamma ray signatures of the individual radioactive materials generated with GADRAS (Nal detector @ 122 cm,

H =56 cm).

For the relative count contributions of materials that are present in the emulated
mixtures, two different relative count contribution or mixing ratio ranges were considered.
The first mixing ratio range corresponds to a range between 0.25 and 3. This range can
be considered for the scenario where there is abundant radioactive material such that the
detector response for the mixture is significantly bigger in amplitude than the detector’s
response for background. The mixing ratio of the material in the emulated mixture is
determined randomly within this mixing ratio range for that radioactive material. As an
example, a mixing ratio value of 1.2 for 137Cs indicates that the curie unit of 137Cs is 180 uCi
in the mixture since the base curie unit for 1¥Cs was 150 uCi and 1.2 mixing ratio unit of
base 137Cs, 150 uCi corresponds to 180 uCi (1.2 x 150 uCi = 180 uCi).

The second mixing ratio range corresponds to a range between 10~ and 10~!. This
mixing ratio range can be thought for the scenarios where the detector responses for the
radioactive mixture and background have similar amplitude scales. It is worth mention-
ing that when the mixing ratio range is selected lower than this range, the background-
subtracted spectra start to have oscillating waveform shapes around 0, which are not
reliable for applying spectral unmixing methods. For this reason, we did not consider
mixing ratio ranges lower than this in the investigations.

For each two-source mixture combination, 55 mixtures of this same material combi-
nation with different mixing ratios are generated which makes a total of 4290 two-source
mixtures (78 x 55). For each three-source mixture combination, 15 mixtures of the same
mixture combination with different mixing ratios are generated which makes a total of
4290 three-source mixtures (286 x 15). For each four-source mixture combination, six
mixtures of the same mixture combination with different mixing ratios are generated which
also makes a total of 4290 four-source mixtures (715 x 6). Finally, for each five-source mix-
ture combination, three mixtures of the same mixture combination with different mixing
ratios are generated which makes a total of 3861 three-source mixtures (1287 x 3).

The GADRAS inject tool is used to generate the detector responses for the mixtures in
gamma ray spectrum. This tool emulates both the measured foreground and background
spectra. The mixture spectrum is then obtained by subtracting the background spectrum
from the foreground spectrum. For background spectrum, in GADRAS, the location is
set to Baltimore, Maryland (MD). Terrestrial and cosmic from location are also included
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in background spectrum simulation. The parameter settings for background spectrum
simulation used in GADRAS can be seen in Figure 5.

Background
Location

Baltimore, MD w
Latitude (deg M): |39.2

Longitude (deg E): |283.4

Blevation (meters): |6

Floors Above: |0

org/ecm”™2: |0

Temestrial Background Include

Estimate NORM for Location

K | 038
Uppm: @
Th ppm: |
Attenuation: [ E
Cortiunm: § o]
Cortiasam: ]

Include Cosmic from Location

Figure 5. GADRAS Inject tool settings for generating background spectrum with Nal detector @
122 cm, H = 56 cm (Baltimore, MD location is used, and terrestrial and cosmic are included).

It is worth mentioning that for each emulated mixture foreground gamma ray spec-
trum, we selected ‘paired make background’ option in the Inject tool which also emulated
a paired background gamma ray spectrum using the background settings in Figure 5. Since
we needed to emulate thousands of different-source mixture combinations, we created
inject text files for each mixture combination using an automated Matlab script and then
used GADRAS’s “Run Batch” command which used these inject text files in a loop to
synthesize these spectra. As an example, the background spectra for the 4290 three-source
mixtures can be seen in Figure 6. When zoomed to these background spectra as can be seen
in Figure 6b, the variation in the background spectra can be seen fine. However, overall,
the variations in the emulated background spectra with GADRAS are not found to be large
as was initially that thought they would be.



Sensors 2021, 21, 4155

10 of 23

18000

T T T T T
16000 - —
14000 -
_ 12000 -
(4]
=
(=
S 10000 -
(5]
2
c 8000 H -
-
O
o
6000 —
4000 H -
2000 W —1
ol ) N 1 | - |
0 100 200 300 400 500 600
Channel number
(a)
3000 g
2500
© 2000
=
©
¥ -4
(&
3 1500
e
=]
o
o

1000

500

1 1 1 1 L 1

50 60 70 80 90 100
Channel number

(b)

Figure 6. Emulated background gamma ray spectra (for Baltimore, MD) for 4290 separate simulations. (a) whole spectrum;

(b) zoomed version.

4. Radioactive Mixture Identification and Mixing Ratio Estimation Results Using
GADRAS Generated Data

In Section 4.1, we will summarize the results from the adaptation of a deep learning-
based regression method for mixing ratio estimation (quantification) of multi-source mix-
tures. This section will also contain results from three other methods for comparison
purposes with the deep-learning-based method. The dense deep learning model was
applied to previously generated GADRAS datasets (“high-mixing-rate” and “low-mixing-
rate” two-source, three-source, four-source and five-source datasets) which consist of
different combinations of 13 isotopes. The detector was Nal. These datasets can be con-
sidered as highly homogeneous datasets since the detector parameters such as source
height, detector-to-source distances, shielding and shielding density were set to fixed
values when generating the mixture spectrum data in these datasets. Deep regression
method is found to perform better than other three methods for all considered mixture
cases of the high-mixing-rate mixture dataset. Similarly, it is also found to perform better
than other methods for all considered mixture cases of the low- mixing-rate mixture dataset
with the exception of the five-source mixture dataset. Deep regression method is found
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to be robust when a higher number of source mixtures are used for training and when
the test dataset consists of smaller number of source mixtures. However, for the opposite
case, PLS is observed to be more robust than the deep regression method. The conducted
investigations above used background-subtracted foreground spectra (source) for mixing-
rate estimation. Considering there could be cases where background measurements are
not available, the previously applied methods and the low-mixing-rate mixture dataset
are used for mixing-rate estimation with foreground spectra only. The results showed
that NCLS method performs poorly when foreground spectra are used. Deep regression
method, on the other hand, is found to perform better than other methods including the
five-source mixture case.

In Section 4.2, we will summarize our investigations on how the mixing-rate estimation
methods would perform when the detector-to-source distance varies; namely, when the
dataset of interest, is not homogeneous. We considered low-mixing-rate two-source mixture
dataset and using GADRAS we generated training data for five different source-detector
distances, which are 72, 122, 172, 222 and 272 cm. A total of 13 isotopes are used when
forming the mixture spectrum data like before. When source spectra and foreground
spectra are used, deep regression method is found to perform better than others followed
by the RFR method. This investigation also showed that when the test dataset mixtures
have a detector-to-source distance that is different than the one which NCLS signature
library is formed of, NCLS performed poorly.

4.1. Relative Count Contribution (Mixing Ratio) Estimation Performance Analyses for High and
Low Mixing Ratio Mixture Datasets

4.1.1. High Mixing Ratio Mixture Dataset Results

Table 3 shows the average root mean square error (RMSE) results for “high-mixing-rate
mixture” dataset which represents the high signal-to-background ratio case. When forming
this dataset, the mixing-rate range used for synthesizing mixtures was set to: [0.25 3.00], Min:
0.25 Max: 3.00. It is worth mentioning that when the mixing ratio estimation methods are
applied to this dataset, background-subtracted foreground spectrum (which is equivalent
to source spectrum) are used for training models and for testing with the assumption that
one will have the corresponding background spectrum measurement in hand. Figure 7
shows the average RMSE plots in bar chart with respect to mixture case and Figure 8 shows
the same results in bar chart with respect to applied mixing ratio estimation method. It
can be seen from Table 3 and the two bar chart plots that deep regression (DR) method
performs better than other methods for all considered mixture cases of the high mixing-
rate mixture dataset. Figure 9 shows an example for three-source mixture mixing ratio
estimation in which source spectrum is used with the mixing-rate estimation methods
(source = background-subtracted foreground) in the high-mixing-rate dataset. The resultant
RMSE values for the three methods are: NCLS: 0.0181, PLS: 0.0090, DR: 0.0066.

Table 3. Average RMSE results for “high-mixing-rate mixture” dataset (Mixing-rate range used for synthesizing mixtures is:
[0.25 3.00], Min: 0.25 Max: 3.00). Bold numbers indicate best performing algorithm.

Training Data Test Data NCLS PLS DBN DR
Two-source mixtures Two-source mixtures 0.0175 0.0065 0.1087 0.0022
Three-source mixtures Three-source mixtures 0.0317 0.0094 0.0985 0.0075
Four-source mixtures Four-source mixtures 0.0489 0.0124 0.0995 0.0042
Five-source mixtures Five-source mixtures 0.0659 0.0143 0.1086 0.0066
Merged two-three-four-five-source mixtures Two-source mixtures 0.0175 0.0120 0.0953 0.0013
Merged two-three-four-five-source mixtures ~ Three-source mixtures 0.0317 0.0107 0.1037 0.0020
Merged two-three-four-five-source mixtures Four-source mixtures 0.0489 0.0123 0.1120 0.0030

Merged two-three-four-five-source mixtures Five-source mixtures 0.0659 0.0164 0.1253 0.0040
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Figure 7. Average RMSE comparison using bar plots for “high-mixing-rate mixture” dataset with respect to case (Mixing-rate
range used for synthesizing mixtures is: [0.25 3.00], Min: 0.25 Max: 3.00).
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Figure 9. Three-source mixture mixing-rate estimation example (source = background — subtracted foreground) from high
mixing-rate dataset, (RMSE values: NCLS: 0.0181, PLS: 0.0090, DR: 0.0066).

4.1.2. Low-Mixing-Rate Mixture Dataset Results

Table 4 shows the average RMSE results for “low-mixing-rate mixture” dataset which
represents the low signal-to-background ratio case. When forming this dataset, the
mixing-rate range used for synthesizing mixtures was set to: [1072 10~!], Min: 1073 Max:
10~1. When the mixing-rate estimation methods are applied to this dataset, background-
subtracted foreground spectrum (which is equivalent to source spectrum) are used. How-
ever, because Poisson process is applied to both foreground and background spectra with
GADRAS during the simulation and because the mixing ratios of mixed sources are set to
smaller values, the background and foreground spectra at the end become very close in
magnitude. Thus, the use of background-subtracted foreground spectra in low-mixing-rate
datasets makes it more challenging for the mixing-rate estimation methods when compared
to using mixed sources with high mixing ratios. Figure 10 shows the average RMSE plots
in bar chart with respect to mixture case, and Figure 11 shows the same results in bar chart
plot with respect to applied mixing-rate estimation method. It can be seen from Table 4 and
the two bar chart plots that deep regression method performs better than other methods
for all considered mixture cases of the low-mixing-rate mixture dataset with the exception
of five-source mixture case.

Table 4. Average RMSE results for “low-mixing-rate mixture” dataset (Mixing-rate range used for synthesizing mixtures is:
[1073 10~1], Min: 1073 Max: 10~1). Bold numbers indicate best performing algorithm.

Training Data Test Data NCLS PLS DBN DR
Two-source mixtures Two-source mixtures 0.4138 x 102 0.7989 x 10~3 42165 x 1073 0.3140 x 103
Three-source mixtures Three-source mixtures 1.6890 x 1073 0.8518 x 10~2 3.5325 x 1072 0.4743 x 1073
Four-source mixtures Four-source mixtures 0.6578 x 1073 0.8792 x 10~2 3.3194 x 1072 0.5770 x 103
Five-source mixtures Five source mixtures 0.6994 x 103 0.9175 x 1072 3.731 x 1073 0.8196 x 1073
Merged two-three-four-five-source mixtures Two-source mixtures 0.4137 x 1073 0.8541 x 1073 3.1169 x 1073 0.3293 x 102
Merged two-three-four-five-source mixtures Three-source mixtures 1.6890 x 1073 1.2341 x 1073 3.5744 x 1073 0.5326 x 102
Merged two-three-four-five-source mixtures Four-source mixtures 0.6578 x 1073 0.9574 x 1073 3.7319 x 1073 0.5849 x 103

Merged two-three-four-five-source mixtures Five-source mixtures 0.6994 x 103 1.0262 x 1073 4.2337 x 1073 0.7652 x 1073
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Figure 10. Average RMSE comparison using bar plots for “low-mixing-rate mixture” dataset with respect to case (Mixing-
rate range used for synthesizing mixtures is: [1073 10711, Min: 10~3 Max: 10~ 1).
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Figure 11. Average RMSE comparison using bar plots for “low-mixing-rate mixture” dataset with respect to method
(Mixing-rate range used for synthesizing mixtures is: [103 107'], Min: 1073 Max: 1071).

4.1.3. Robustness Analyses of the Mixing-Rate Estimation Methods to Unknown Number
of Source Mixtures in High and Low-Mixing-Rate Mixture Datasets

We examined how robust the applied mixing-rate estimations methods were to new
mixture data. With robustness, it is meant how the methods respond when different
number source-mixtures were introduced as test data which were not included in model
training. Even though NCLS does not require model training, we still included it in the
results. DBN is not included in this analysis since its results did not look comparable to
other three methods from previous performance analyses. Tables 5 and 6 correspond to the
robustness analysis results for the low and high-mixing-rate mixture datasets. We also note
our observations for this investigation as follows:
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e  For the high mixing-rate dataset, deep regression method is found to be robust when
higher number of source mixtures are used in training and when the test dataset
consists of smaller number of source mixtures. However, for the opposite case, PLS
seems to be more robust than deep regression.

e  For the low-mixing-rate dataset, NCLS performed the best among the three. In DR,
when lower number of source mixtures are used in training and the test dataset
consists of higher number of source mixtures, deep-learning-based regression did not
perform well. For the opposite case, deep regression’s performance was better than
PLS, but it was still not as good as NCLS.

Table 5. Robustness analysis results for “high-mixing-rate mixture” dataset (Mixing-rate range used for synthesizing
mixtures is: [0.25 3.00], Min: 0.25 Max: 3.00). Bold numbers indicate best performing algorithm.

Training Data Test Data NCLS PLS DR
Two-source mixtures Three-source mixtures 0.0317 0.0114 0.0141
Two-source mixtures Four-source mixtures 0.0488 0.0208 0.0238
Two-source mixtures Five-source mixtures 0.0658 0.0321 0.0320

Three-source mixtures Two-source mixtures 0.0175 0.0093 0.0029
Four-source mixtures Two-source mixtures 0.0175 0.0151 0.0063
Five-source mixtures Two-source mixtures 0.0175 0.02269 0.0145

Table 6. Robustness analysis results for “low-mixing-rate mixture” dataset (Mixing-rate range used for synthesizing

mixtures is: [1073 107], Min: 1073 Max: 10~1). Bold numbers indicate best performing algorithm.

Training Data Test Data NCLS PLS DR
Two-source mixtures Three-source mixtures 0.0016 0.0019 0.0015
Two-source mixtures Four-source mixtures 0.0006 0.0008 0.0033
Two-source mixtures Five-source mixtures 0.0006 0.0009 0.0049

Three-source mixtures Two-source mixtures 0.4137 x 103 1.4944 x 1073 0.7797 x 1073
Four-source mixtures Two-source mixtures 0.4137 x 1073 0.8189 x 1073 0.5300 x 1073
Five-source mixtures Two-source mixtures 0.4137 x 103 0.8084 x 1073 0.9360 x 1073

4.1.4. Using Foreground Spectra (Source + Background) for Mixing-Rate Estimation

In earlier investigations, it is assumed that in addition to foreground gamma ray
spectrum measurement, another measurement for the background would also be done.
This background spectrum is then subtracted from foreground spectrum and the resultant
spectrum, which is an estimate for source, is used for mixing-rate estimation. However,
there could be cases where background spectrum is not available and only the foreground
spectrum needs to be used for mixing-rate estimation. For this investigation, the previously
applied methods with the low-mixing-rate mixture dataset are considered using foreground
spectra only. The signal to background ratio for the low-mixing-rate dataset is found to
have a range between ~0.1 and ~2.5. The histograms of the signal-to-background ratio
values for the low-mixing-rate mixture datasets for both training and test datasets can
be seen in Figure 12. The signal-to-background ratios are computed in the following
way. Suppose the total number of counts in the foreground spectrum of a multiple-source
mixture is F and the total number of counts for the corresponding background spectrum of
that multiple-source mixture is B. The signal-to-background ratio is then computed as:

Signal-to-background ratio = (F — B)/B (8)
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Figure 12. Histogram of signal-to-background ratios for the low-mixing-rate dataset.

Table 7 shows the average RMSE results when foreground spectra are used for mixing-
rate estimation in the “low-mixing-rate mixture” dataset. It can be noticed that NCLS
method performs poorly when foreground spectra are used. This is because the signature
library for NCLS consists of source-only signatures and when foreground spectra are used
for testing, the mixing-rate estimations by NCLS with source-only signature library are not
accurate anymore. For all cases, deep regression (DR) method is found to perform better
than other methods including the five-source mixture case. Figure 13 shows an example of
mixing-rate estimation for a three-source mixture from the low-mixing-rate dataset when
foreground spectrum is used for mixing-rate estimation. The RMSE values of the three
methods for this example are: NCLS: 0.0260, PLS: 0.0016, DR: 0.0007. From Figure 13, it can
be seen that NCLS's estimates are not very accurate whereas PLS and DR perform very
good with DR slightly performing better than PLS.

Table 7. Average RMSE results when foreground spectra are used for mixing-rate estimation in the “low-mixing-rate
mixture” dataset (Mixing-rate range used for synthesizing mixtures is: [1073 10~1], Min: 1073, Max: 10_1). Bold numbers
indicate best performing algorithm.

Training Data Test Data NCLS PLS DR
Two-source mixtures Two-source mixtures 0.0232 0.0006 0.0003
Three-source mixtures Three-source mixtures 0.0268 0.0007 0.0004
Four-source mixtures Four-source mixtures 0.0247 0.0007 0.0005
Five-source mixtures Five-source mixtures 0.0250 0.00074 0.00073
Merged two-three-four-five-source mixtures Two-source mixtures 0.0232 0.0007 0.0003
Merged two-three-four-five-source mixtures ~ Three-source mixtures 0.0268 0.0011 0.0005
Merged two-three-four-five-source mixtures Four-source mixtures 0.0247 0.0009 0.0005

Merged two-three-four-five-source mixtures Five-source mixtures 0.0250 0.0009 0.0006
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Figure 13. Three-source mixture example from low-mixing-rate dataset when foreground spectrum is used for mixing-rate
estimation (RMSE values: NCLS: 0.0260, PLS: 0.0016, DR: 0.0007).

4.2. Simulating Gamma Ray Mixture Spectra for Nal Detector with Various Source Detector
Distances and Checking the Robustness of the Mixing-Rate Estimation Methods

In the previous investigations when forming training and test datasets or when
forming signature library (for NCLS method), the multi-source mixture spectra were
always formed with a constant detector-to-source distance. In this investigation however, it
is assumed that this detector-to-source distance can vary. The objective of this investigation
is thus to examine how the mixing-rate estimation methods would perform when the
detector-to-source distance varies. We included Linear Regression (LR) and Random Forest
Regression (RFR) methods in this analysis to further enhance the scope of comparison with
other benchmark methods. The gamma ray spectra (source and foreground spectra) for the
235U, 10uCi isotope with the previously used Nal detector (@56 cm detector height) with
five different detector-to-source distances can be seen in Figure 14. The source-to-detector
distances in this demonstration are 72, 122, 172, 222 and 272 cm. From Figure 14, it can be
clearly seen how significantly the spectra change with different source-to-detector distance
for the same radioactive isotope. This, in a way, shows the challenges with signature-based
mixing-rate estimation methods, such as NCLS, since the signatures highly vary with
respect to the detector parameters such as detector-to-source distance or detector height
and these signature-based methods would need multiple versions of spectrum signatures
for these detector parameter combinations.
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Figure 14. Foreground and source spectra for 235 U, 10 uCi when source-to-detector distance varies (Nal detector where
detector-to-ground distance is set to 56 cm and dwell time for detector is 3600 s).

We considered low-mixing-rate two-source mixtures in this investigation, and using
GADRAS, we generated training data for five different source-detector distances which are
72,122,172, 222 and 272 cm. A total of 13 radioactive isotopes are used when forming the
mixture data like before. As a reminder, the list of the 13 isotopes can be seen in Table 2.
For each source-detector distance, 858 two-source mixtures are generated of which their
mixing ratios are randomly picked. The mixing-rate range used for assigning mixing ratios
when synthesizing two-source mixture is: [10_3 10_1], Min: 1073 Max: 10~ 1. Among the
858 spectra for a detector-source distance, 800 of them are used in training set and 58 of
them are used for test dataset. Thus, with all five different detector-to-source distance cases,
the total number of training dataset becomes 4000 and the total number of test dataset
becomes 290. The detector-to-source distances for the test dataset can be seen in Figure 15.
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Figure 15. Source-detector distance values in the test dataset.

For NCLS signature library, the signatures for the isotopes were obtained when
detector-to-source distance was set to 122 cm. For the evaluation, we considered the case in
which we assume we have the background spectrum and use the background-subtracted
foreground spectrum (equivalent to source spectrum) and also consider the case in which
we do not have background spectrum and directly use the foreground spectrum.

Table 8 shows the average RMSE values of the test dataset with five methods using
source and foreground spectra. In both two cases, deep regression method performs better
than others followed by the RFR method. Figure 16 shows the mixing-rate estimation results
for the test dataset when using source-only spectra (source = foreground — background).
This plot provides more insights about NCLS. It can be seen that when test dataset consists
of mixtures where detector-to-source distance is 122 cm, the RMSE values are very small
for NCLS and provides RMSE values even as small as deep regression method. However,
when the test dataset mixtures are generated with a different detector-to-source distance,
NCLS performs poorly. Figure 17 shows the mixing-rate estimation results when using
foreground spectra (source + background). In this case, the performance of NCLS becomes
even poorer since the NCLS signature library is formed from source-only spectra. Overall,
from this investigation we observed that the deep regression method performs very well
followed by the RFR method. Among PLS and LR, PLS is found to perform better than LR.

Table 8. Average RMSE values of the test dataset with five methods using Source and Foreground
spectra. Bold numbers indicate best performing algorithm.

Spectrum Type Used NCLS PLS DR LR RFR

Source 0.0158 0.0119 0.0028 0.0128 0.0097
Foreground 0.0323 0.0115 0.0024 0.0123 0.0092
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Figure 16. Mixing ratio estimation results when using source-only spectra (foreground — background).
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Figure 17. Mixing ratio estimation results when using foreground spectra (source + background).

5. Conclusions and Future Research

In this paper, we present new results in using conventional and deep-learning-based
algorithms for unmixing multiple nuclear materials from mixed spectra. Six algorithms
were compared in a number of analyses. It was observed that using realistic data from
GADRAS, the deep regression method (DR) yielded very accurate relative count estima-
tion results. One potential research direction is to compare different algorithms using
actual spectra
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Acronyms Used in This Paper

GADRAS Gamma Detector Response and Analysis Software

Nal Sodium Iodide
ML Machine Learning
ROI Region of Interest
NCLS Non-negativity Constrained Least Square
PLS Partial Least Square
DBN Deep Belief Network
DR Deep Regression
LR Linear Regression
RFR Random Forest Regression
ReLU Rectified Linear Unit
RMSE Root Mean Square Error
LSE Least Square Error
GUI Graphical User Interface
MD Maryland
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