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Abstract: This article presents a framework for planning a drone swarm mission in a hostile environ-
ment. Elements of the planning framework are discussed in detail, including methods of planning
routes for drone swarms using mixed integer linear programming (MILP) and methods of detect-
ing potentially dangerous objects using EO/IR camera images and synthetic aperture radar (SAR).
Methods of detecting objects in the field are used in the mission planning process to re-plan the
swarm’s flight paths. The route planning model is discussed using the example of drone formations
managed by one UAV that communicates through another UAV with the ground control station
(GCS). This article presents practical examples of using algorithms for detecting dangerous objects
for re-planning of swarm routes. A novelty in the work is the development of these algorithms in
such a way that they can be implemented on mobile computers used by UAVs and integrated with
MILP tasks. The methods of detection and classification of objects in real time by UAVs equipped
with SAR and EO/IR are presented. Different sensors require different methods to detect objects.
In the case of infrared or optoelectronic sensors, a convolutional neural network is used. For SAR
images, a rule-based system is applied. The experimental results confirm that the stream of images
can be analyzed in real-time.

Keywords: mission planning; UAV swarms; object detection; CNN; SAR; EO

1. Introduction

Planning and supervising the course of missions carried out by drone swarms in a
dangerous environment requires taking into account the need to re-plan the mission, which
usually means at least the need to change the planned flight route. Considering the fact
that the drone swarm performs tasks related to the recognition of one or more objects in
the field, changing the drone flight plans also requires the definition of a new payload
work plan. New configuration parameters must be defined for each sensor with which a
swarm’s UAV is equipped so that the collected reconnaissance data are of the best quality.

The process of changing the swarm’s flight plan may be initiated automatically or
semi-automatically by algorithms for detection of dangerous objects located on the swarm’s
flight route. For the process to be efficient, each UAV should be equipped with algorithms
for automatic detection of objects in photos and/or SAR scans. After detecting a threatening
object, the UAV may try to determine a new flight route.

This article presents the methods of planning and correcting the route plan based on
the data provided by algorithms for automatic detection of dangerous objects.

The term UAV swarm denotes a group of drones performing a mission where all tasks
are linked. Each drone is assigned a task to be performed. Some drones can be used to
recognize or identify objects at close range using EO/IR devices. Others can use synthetic
aperture radar (SAR) to recognize objects from a distance of several kilometers.
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This article is a continuation of one of the authors’ work [1], which describes how to
plan a mission for a group of drones performing reconnaissance tasks, but not cooperating
with each other.

Using the categorization of drone swarms described in [2], it can be said that the
article presents a model of operation of a drone swarm that uses EO/IR to identify targets
at close range and SAR from a distance of more than 8 kilometers. All drones communicate
with each other, but only one of the drones is equipped with a radio link that allows
communication with the ground control station (GCS). This drone is used as an element for
transmitting control messages from the GCS to any of the drones. This model of operation
is widely used in military reconnaissance drones. The drone that connects the GCS to the
swarm is called the information node.

In order to make the presented model more flexible, it is assumed that the UAV
retranslator is equipped with a SAR and conducts additional reconnaissance of the area
itself. In the presented model, it is also assumed that the drone swarm may consist of
several information hubs, each of which manages its own group of drones. To the best of
our knowledge, there are no models in the literature that present such a configuration of
the swarm’s operation. The form of the optimization task and its connection with the object
detection algorithms proposed in this article is the most important research achievement.

The rest of this article is organized as follows. In Section 2, the reader is introduced
to the current state of modeling the operation of drone swarms that are equipped with
threat-detection algorithms based on the analysis of collected photos and scans. This part
also presents the works that formed that basis for the model in question. Section 3 presents
the optimization model used for planning a swarm mission. The model of the network
representing the area used to determine the swarm’s flight routes is described (Section 3.2).
Then, the task of optimizing the route plan on the constructed network of connections
is presented (Sections 3.3–3.5). Task constraints are divided into groups. The first group
includes the constraints used to model drone missions that do not need to work together.
The second group shows the constraints of network flow behavior in routed networks. The
third group presents constraints on a swarm of drones in which one UAV coordinates the
work of the others. Several variants of the objective function are presented and used in the
experiments (Section 3.6). In Section 3.7, a route replanning scheme is presented. The next
section presents the convolutional neural networks (CNNs) for object detection with IR and
OE cameras (Section 3.8). In Section 3.9, SAR image preprocessing, segmentation, region
analysis and classification algorithms are described. Section 4 presents the most important
results of the conducted experiments. Section 5 presents the conclusions of this work.

2. Related Work

Planning of drone missions, an important part of which is to determine the drone
flight route and how to use the payload, is of particular importance when managing
a swarm mission consisting of many cooperating unmanned platforms. Depending on
the class of the platform, the sensors installed may have different purposes. In small
platforms, they only support navigation and are used for detection of obstacles in the field
at short distances from the UAV. In this case, the flight planning subsystem dynamically
builds a new flight trajectory. Determining such a trajectory corresponds to solving a local
optimization problem that takes into account the obstacles to be avoided. A good example
of this type of method is the method shown by Wen et al. [3]. In this method, a dynamic
domain rapidly-exploring random tree is combined with the motion planning method
when searching local paths under threats and uncertainties that may be met during a
mission execution.

This article uses a different assumption. Due to the fact that medium-altitude long-
endurance (MALE) class platforms and tactical class platforms are able to recognize targets
and detect threats from a distance exceeding several kilometers, it can be assumed that
the route plan prepared before the mission can be recalculated or, in fact, corrected only
for a part of the designated route. Therefore, numerical methods based on vehicle route
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planning with time windows (VRPTW) tasks can be used, which provide more accurate
solutions at the expense of finding them. A new plan can be designated at the ground
control station and sent to the UAV as a new task. However, the platform has sufficient
hardware capabilities on-board to solve such a task.

This article describes the planning of drone swarm missions for drones that recognize
objects in the field. In the article, a swarm of drones is understood as a group of unmanned
aerial platforms carrying out a common mission. In such a mission, each of the drones is
assigned a task. Some drones can be used to identify targets at close range with EO/IR
systems. Others use SAR radars to identify the target from a distance of several kilometers.
The detection of dangerous objects, such as tanks, convoys or trucks, is an essential part
of the drone mission. Object detection is utilized in many applications. However, when
compared to classic methods, item detection in aerial images has many different challenges.
First of all, drones are equipped with different types of sensors: CCD cameras, infrared
cameras, optoelectronic sensors and SARs. The same object looks quite different in photo-
graphic and SAR images. Aerial images are also noisy and have a smaller scale. Figure 1
presents images of tanks taken with an optoelectronic sensor (EO) (Figure 1a) and SAR
(Figure 1b).

(a) (b)

Figure 1. Tank images taken with (a) EO camera; (b) SAR.

In the literature related to the planning of drone swarm missions, drone swarms
are often categorized according to the way the swarm is moving, or the rules of com-
munication between individual unmanned platforms. The method of using the payload
during target recognition is also taken into account. Based on the classification presented
in Boskovitz’s [4] research, the problem of UAV swarm intelligence can be decomposed
into five layers: the mission decision-making layer, the planning layer, the control and
communication layer and the application layer.

In the decision-making layer, mission plans are determined based on tasks to be
performed, which are assigned specific priorities. The planning layer defines the details
of the mission, such as determining the flight path of a swarm of drones. In the control
layer, the implementation of the swarm’s mission is supervised, including the method of
avoiding obstacles or the adopted formation of the swarm’s flight. In the communication
layer, it is planned how to ensure the connection between drones, the scope of information
exchanged or the fusion of data obtained by drones. The application layer determines the
environment in which the drone swarm is used. A detailed description of the classification
of drone swarm mission management algorithms is given in the study [5].

The framework for planning and execution of a drone swarm mission in a hostile
environment presented in this article is based on components from two layers: the plan-
ning layer and the application layer. In the planning layer, the swarm’s flight paths are
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determined. In the application layer, methods for the detection of objects of various types
are implemented. The results of these algorithms are then used to re-plan the missions.

The basic method of modeling the flight paths of a swarm of drones is to prepare the
model in the form of a MILP class task. VRPTW models are usually built, which describe
the movement of drones that visit the indicated places at given time intervals. Proper
development of the model guarantees obtaining the optimal solution, provided that one
exists. Unfortunately, it usually takes a long time to find such a solution and, therefore,
heuristic algorithms are usually used.

The description of even some of the most important articles constituting the basis of
route planning algorithms on the directed network exceeds the scope of this article. The
interested reader is referred to the very deep overview of algorithms given by Zhou [5].

Nevertheless, among many works in the field of route planning, the following algo-
rithms can be mentioned: ant colony optimization [6], particle swarm optimization [7],
the bee colony algorithm [8], the multi-swarm fruit fly optimization algorithm [9] and the
firefly algorithm [10]. Genetic algorithms are also used for route planning. Xin et al. [11]
proposed a modification to the algorithm that increases the efficiency of the process of
generating new populations. Arc routing problems are described by Liu et al. [12], who
discussed the problem of capacitive arc routing that minimizes overall travel costs. Another
work by Chow [13] investigated a drone routing problem that required multiple visits to
the arcs.

The model presented in this article plans drone swarm missions in guided networks
consisting of several groups of constraints. The model is based on the source model
presented in Stecz [1,14]. The article shows the model’s extensions that allow an analyst
to plan a swarm mission. The first group consists of constraints on the behavior of the
flow in networks. The second group consists of constraints specific to the UAV performing
reconnaissance tasks. The group takes into account the requirements for sensors. The
last group consists of constraints related to the planning of swarm operations, in which
individual UAVs exchange information with each other.

A classic system of object detection consists of three stages: segmentation, feature
extraction and classification. During the segmentation process [15], the regions that contain
the object of interest are extracted. The most popular are thresholding methods, multi-Otsu
algorithms or sliding-window techniques [16]. In each extracted region, the features are
extracted. Usually, scale-invariant feature transform (SIFT) [17], the histogram of oriented
gradients (HoG) [18] and Haar-like [18] features are used during classification. Support
vector machine (SVM), naive Bayes (NB) and random forest (RF) are the most efficient and
robust classifiers [19]. Recently, convolutional neural networks (CNNs) in image processing
and object detection have made tremendous progress [20]. They usually require one stage
in the process of detection (e.g., RetinaNet [21] and You Only Look Once net (YOLO) [22]),
or a two-stage detection (e.g., Fast R-CNN [23]). CNNs have millions of parameters, so
they require large datasets. Public, well-annotated databases of different types of objects
are available (ImageNet [24], CitySpace [25]). However, they do not contain items relevant
to the military application.

3. Swarm Mission Planning
3.1. A Framework for Mission Planning

The mission planning process described in this article concerns determining the routes
of swarm flights to recognized objects, the location of which is known before starting the
planning. This is the most common object recognition task. The reconnaissance mission
process is shown in Figure 2. To start the mission, a mission plan should be sent to the
UAV, as described briefly in [1]. The mission plan includes the route of the UAV and a set
of objects to be recognized. As part of the recognition of the object, the following activities
are performed: selection of the sensor type, setting of the sensor operating parameters,
carrying out the recognition using the sensor, recording the data from the recognition and
data processing.



Sensors 2021, 21, 4150 5 of 18

Usually, the reconnaissance is performed on-line by payload operators (except for
missions carried out in the autonomous mode without contact with the GCS). However,
this is not the only way to conduct reconnaissance. Another method of operation is the
reconnaissance carried out by the UAV operating in an autonomous mode, when data from
selected sensors is first collected and then sent afterwards, or sent immediately but only
when a particularly dangerous object is detected.

Figure 2. Schematic diagram of the object recognition process with the use of available sensors
(EO/IR and SAR) in the form of a state machine in UML notation. If a threat is detected, the flight
plan change process is triggered.

In both of the above cases, UAV management systems must implement procedures
that allow for automatic processing of collected data in order to identify direct threats to
flying platforms. For platforms operating only in GCS control mode, such procedures
are GCS software components. In the case of platforms operating as standalone, threat
identification packages must be implemented on these platforms. This article presents the
concept of building a system for an autonomous platform that uses dedicated software to
identify threats based on data collected from the EO/IR and SAR.

Figure 2 shows a diagram of the mission execution process by the UAV in an au-
tonomous mode. While recognizing objects with the use of available sensors (function
object recognition), the UAV automatically identifies and classifies the objects found. Based
on this, the UAV can determine whether they constitute a direct threat to the air platform.
If such a threat is identified, the flight plan change function is triggered.

Each UAV is described by the following parameters: the maximum possible flight
time of the UAV (τ), the type of UAV (q) and the set of sensor types with which the UAV is
equipped {ωs}, where s is a sensor index.

The presented model describes the planning of missions of two types of drone. The
first type includes drones equipped with EO/IR sensors. All of them can recognize objects
at close range. The second group includes UAVs that act as information nodes connecting
the GCS with the first group of drones. UAVs belonging to the second group may be
equipped with sensors enabling recognition from a greater distance (most often SAR).

3.2. Terrain Model for Mission Planning

The representation of the terrain model on which drone swarm missions are planned
depends on the adopted method of modeling the swarm optimization task. This article
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uses the tasks planned on the network of connections, which requires the preparation of
the network described in [1,14].

The network used in terrain modeling is denoted as SSS =< VVV, EEE > where VVV models
the set of vertices, |VVV| = V, and EEE models the set of edges, |EEE| = E.

Each vertex of the network SSS is described by the coordinate vector < (x, y, z)i >,
i = 1 . . . V. The vertices modeling the places where the reconnaissance task begins may be
additionally described with such parameters as:

pi—the profit gained when the vertex is recognized by the UAV,
T I

i —the recognition time needed for the UAV to complete the task,
ei—the earliest possible date and time of object recognition,
di—the latest possible end date and time for a scheduled object recognition.

Each arc of SSS is described by adjacent vertices (i, j) ∈ EEE.
The network edges model the route segments that can be divided into two groups.

The first group includes the edges on which the UAV performs reconnaissance. Edges
are assigned the highest priority. In the optimization task, the priority corresponds to the
profit from planning a flight on a given route segment. The process of determining the
position of the points in the field that are modeled with the highest priority vertices and
edges is very complicated. The position of the vertices and edges depends on a few basic
things: the anticipated dislocation of the recognition target, the terrain and the sensor that
can be used for recognition. This is described in the article [1]. The object identification
algorithms described in this article are crucial in this case. The maximum profit value is
predefined. The second group includes the edges on which the UAV has to fly in order
to reach the reconnaissance segment of the route. Depending on the task, the values of
the priorities (profits) may be changed. This depends on the individual assessment of the
planner. This is the normal operating procedure for planning a UAV mission. The vertices
of the network representing points in the field can have different meanings. In the case of
segments where the UAV conducts reconnaissance, the vertices model the places where
the reconnaissance begins and ends. In the vicinity of such places, other vertices modeling
the places where the sensors are calibrated are often determined. There may also be places
where the UAV starts sending photos or SAR scans if the mission plan specifies that the
UAV cannot send data during reconnaissance. The set of network vertices may include
vertices and edges that model the route segments of the flight that are safe for UAVs. An
example of the method of determining such segments is shown in [1], where the method of
generating networks in the area with dangerous objects is illustrated.

The network model presented in this article has been extended in relation to the base
model used in the works [1,14]. The article takes into account that the vertices of the
network can be located at three different altitudes, which allows for efficient recognition
of objects of various types. By default, the drones belonging to the swarm fly at prede-
fined operational levels that minimize energy consumption. In the presented article, this
assumption has been modified.

3.3. Constraints for UAVs without Cooperation

This part of the article presents the problem of swarm flight planning based on the
formulation of the vehicle route planning with time windows (VRPTW) task in the form
of mixed integer linear programming (MILP). Such a definition of the problem allows
finding the optimal or close to optimal solution, when the analyst does not want to wait for
the solver to complete the calculations. The present article introduces a number of new
constraints related to the modeling of a swarm of drones. Some of the constraints presented
in the articles [1,14] have been modified. These constraints will be discussed in detail in
this article. Model variables are as follows:

xih = 1 if the UAV h ∈ HHH visits the waypoint i ∈ VVV; 0 otherwise.
yijh = 1 if the UAV h ∈ HHH visits the edge (i, j) ∈ EEE; 0 otherwise.
tih describes the arrival time of the UAV h ∈ HHH to the waypoint i ∈ VVV.
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fijωh = 1 if the target assigned to the route segment yijh is recognized with the sensor
ω ∈ ΩΩΩ by which the UAV h ∈ HHH is equipped; 0 otherwise.

The most important constraints defined in the swarm flight model are presented
below. These constraints are similar when modeling the flight of single UAVs and swarms
of drones. Some of them are described in [1]. In this article, some constraints have been
modified for the needs of swarm flight modeling.

tjh ≥ tih + Tij · yijh −M(1− yijh) + xih · T I
i ,

∀(i, j ∈ VVV : j 6= i, h ∈ HHH)
(1)

xih · eih ≤ tih , ∀(i ∈ V′V′V′ ⊂ VVV, h ∈ HHH) (2)

xih · dih ≥ tih , ∀(i ∈ V′V′V′ ⊂ VVV, h ∈ HHH) (3)

xih − xjh = 0, ∀(i ∈ VVV : i ∈ {k, l},
j ∈ VVV : j ∈ {m, n}, h ∈ HHH)

(4)

∑
i∈VVV:i∈{k,m},j∈VVV:j∈{k,m},i 6=j

yijh ≤ γ, ∀h ∈ HHH (5)

∑
i∈VVV:i∈{l,n},j∈VVV:j∈{l,n},i 6=j

yijh ≤ γ, ∀h ∈ HHH (6)

∑
i,j∈VVV:i 6=j

Tijh · yijh + ∑
i∈VVV

xih · T I
i ≤ τh, ∀h ∈ HHH (7)

In optimization problems with time constraints imposed on visiting selected network
vertices, the time when the UAV enters the next vertex tjh must be determined according
to the Constraint (1). This means that flight times Tij between the vertices i and j of the
network have to be taken into account. The recognition time of the object at the vertex
T I

i must also be accounted for. In order to speed up the solver calculations in the drone
swarm mission planning task, time windows (ei, di) should be defined only for selected
vertices (Constraints (2)–(3)). This only applies to those vertices that are assigned to the
objects that need to be recognized (see [1,14]). The analyst should remember not to impose
unnecessary time constraints. The time window is defined before planning the mission.
It is given in the object recognition task. In practice, defining time windows is needed to
identify priority targets that can only be recognized at a given time.

Constraint (1) includes the “big-M” component used for elimination of the logic part
of this constraint. A short description of this method is presented in Appendix A.

The next three Constraints (4)–(6) model the possibility of recognizing the object by
one or more UAVs, which will conduct reconnaissance flights along different segments of
the designated routes. In the case of reconnaissance conducted by several platforms, this
is a common situation. γ is the number of platforms that can perform recognition of the
object. The model assumes that the analyst has defined only two such segments to identify
one target (edges ((k, m) ∈ EEE, (l, n) ∈ EEE)). The presented constraints do not enforce the
flight direction over the chosen edge.

The flight time of each UAV must not exceed its maximum capability denoted by τh,
which is modeled by the Constraint (7).

3.4. Constraints for Flow Networks

The flow network on which the optimization model is built enforces the definition of
constraints that allow for determination of flight routes. These are the constraints specific
to VRP class models. The constraints commonly used to model network flows and to
eliminate subtours in VRP have been omitted. They may be checked in [1,14].

∑
j∈VVV

y0jh ≤ 1 , ∀(h ∈ HHH : qh = 1) (8)
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∑
j∈VVV

y0jh = 1 , ∀(h ∈ HHH : qh = 0) (9)

∑
j∈VVV

yjbh = 1 , ∀(b ∈ VVV : b = V, h ∈ HHH) (10)

∑
h∈HHH

yijh ≤ κ , ∀(i, j ∈ VVV : i 6= j) (11)

This article assumes that the UAV working in a swarm as an information node must
fly on each mission. The remaining platforms do not have to fly as long as only one UAV
being the information node is equipped with the appropriate payload for observing the
objects. Usually, there is no need for all platforms belonging to the swarm to start missions,
which is described by the Constraints (8)–(9), where qh = 0 is the information node. Each
UAV that has begun its mission must return to the base b ∈ VVV (10). The landing base
number is equal to V. The take-off base is indexed 0. Constraint (11) ensures that each route
segment can be visited more than once but less than κ. This is a modification introduced
for the purposes of planning a swarm mission.

3.5. Constraints for the Swarm

The article presents two groups of constraints that relate to modeling the behavior of
a swarm of drones. The first group of constraints concerns the planning of a swarm flight
in such a way that UAVs are within communication range.

The second group of constraints concerns the modeling of the UAV’s flight plans on
a network whose vertices model points at different heights above the ground level. This
allows for better planning of the method of recognizing the terrain object using the sensor
with which the UAV is equipped.

3.5.1. Constraints for the Range of the Data Link

To define these constraints one must define the position of the ground control station
that controls the swarm. GCS position is defined as (x, y, z)GCS. Therefore, the constraint is

||(x, y, z)i, (x, y, z)GCS|| ≤ R + M · (1− xih),

∀(i ∈ VVV, h ∈ HHH : qh = 0)
(12)

R means the safe distance from the GCS, where communication between the GCS and
the UAV will be maintained even in unfavorable weather conditions. qh means that the UAV
is an information hub that cooperates with the GCS and other UAVs. Equation (12) has a
form of quadratic equation. A detailed algorithm for linearization of quadratic equations is
presented in [14]. This article omits these transformations for the sake of simplicity.

(tih − tju)− δ ≤ M · (1− z1ihju),

∀(i, j ∈ VVV), ∀(h, u ∈ HHH)
(13)

(tih − tju) + δ ≥ −M · (1− z2ihju)

∀(i, j ∈ VVV), ∀(h, u ∈ HHH)
(14)

z1ihju + z2ihju ≤ 2, ∀(i, j ∈ VVV), ∀(h, u ∈ HHH) (15)

||(x, y, z)i, (x, y, z)j|| − R ≤ M · (1− xih)

+M · (1− xju) + M · (2− z1ihju − z2ihju),

∀(i, j ∈ VVV), ∀(h, u ∈ HHH)

(16)

Constraints (13)–(16) force each pair of unmanned platforms to be within communica-
tion range at any time during the flight. For this purpose, additional auxiliary z variables
were introduced according to the big-M rule. The (16) constraint is only active when two
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UAVs occupy the corresponding vertices of the network at the same time, which is checked
in Constraints (13)–(14). Vertices must be within a distance of R.

3.5.2. Constraints for the Flight Altitude Restriction

The model assumes that the UAV can change the altitude in a given flight segment in
accordance with its technical capabilities. Variable zh

j is the UAV’s flight altitude at vertex
(waypoint) j. If the UAV flight altitude’s change is within the allowable range and the
climb angle does not exceed the optimal β, the constraint that takes the form

(zh
j − zh

i )/Tij − β ≤ 0 (17)

is transformed into
(zh

j − zh
i )/Tij − β ≥ −M · a1 (18)

When the height is changed beyond the given angle βmax, the constraint

(zh
j − zh

i )/Tij − βmax ≥ 0 (19)

is transformed into

βmax − (zh
j − zh

i )/Tij ≥ −M · a3 (20)

If the change in UAV flight altitude is within the acceptable range, so the climb angle
does not exceed the maximum angle of βmax, the constraints take the form

(zh
j − zh

i )/Tij − β ≥ −M · a2 (21)

βmax − (zh
j − zh

i )/Tij ≥ −M · a2 (22)

An additional equation must be satisfied:

∑
i=1...3

ai = 1 (23)

In the described case, Constraint (1) can be written as

Tij = a1 · T
opt
ij + a2 · T

avg
ij + a3 · Tmax

ij (24)

where Topt
ij represents the shortest flight time between the vertices i and j, Tmax

ij represents

the longest flight time between the vertices i and j and Tavg
ij represents the average flight

time between the vertices i and j.

3.6. Optimization Objectives

Two optimization functions have been used in the presented model. The first function
is used to maximize the profit obtained by a swarm visiting a set of route points, which
increases with the number of objects identified:

∑
i∈VVV,h∈HHH

(xih · pi) + ∑
(i,j)∈VVV,h∈HHH

(yijh · pij) (25)

The objective function presented in (25) features two parts. The first one is used to sum
a profit (pi) from the visited vertices and the second part sums the profit from the visited
arcs (pij). The profit value for each UAV that flies over the vertex of i or the edge of (i, j) is
determined in this article as follows. If the object of interest to the analyst can be recognized
from the vertex or edge, the value of pi or pij is set to the maximum predefined value. The
vertices that are in the vicinity of potential threats without the possibility of recognizing
any object have the lowest value of profit. The same principle applies to determining the
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profit for the edge. It should be remembered, however, that it is the planner who decides
to prioritize (profit from) the recognition of each element modeled by a vertex or an edge.

The second goal function used in the experiments minimizes the flight time of
each UAV:

ρ ∑
i,j∈VVV

Tij · yij − [∑
i∈VVV

pi · xi + ∑
(i,j)∈EEE

pij · yij] (26)

This function features two parts. The first part with ρ as the optimization coefficient
(ρ ∈ [0, 1]) models the travel times of UAVs. The value of the coefficient reduces the impact
of Tij, which is the flight time of the drone between the vertices of the network. The next
part models the profits from visiting some number of the targets with the predefined
priorities. It is up to the analyst to determine whether to prefer the minimization of UAV
flight time or prefer the maximization of recognized targets.

3.7. Route Replanning Scheme

An unmanned platform equipped with devices for recognizing and identifying dan-
gerous objects must be equipped with algorithms that define how to avoid these threats. If
it is necessary to plan an alternative route for the UAV after detecting a threat, it is possible
to use one of the two approaches that fall into the category of local optimization problems,
because the new route is defined for a short distance and, using these algorithms, it is not
possible to calculate the entire plan from the beginning.

In [3], a route correction algorithm based on the dynamic domain rapidly-exploring
random tree mechanism was proposed. This article takes into account both static and
moving threats. In order for the algorithm to work properly, it is necessary to define the
model of the flight dynamics of the unmanned platform.

For larger platforms, a different approach is used, as shown in [14]. When a threat is
detected, the detection algorithm identifies the type of object that poses the threat. In this
case, the site where the object is located is the center of the UAV’s prohibited area. The
forbidden area is a hemisphere centered on the location of the threat. The UAV cannot enter
this area. Based on the network on which the routes have been calculated, the algorithm
of dynamic trajectory planning shown in [14] can be used and a method of avoiding the
hazard can be determined.

An alternative to the described algorithms is the mechanism of correcting the flight
paths of a swarm of drones based on recently determined routes. In such a case, MILP
solvers provide a warm-start mechanism, which enables the task to be resolved and a global
solution determined without the need to recalculate the entire task from the beginning.
The solver remembers the necessary data that allows it to start computing in such a way
that the last found solution is the initial solution of the new problem. In this case, if it is
possible to correct the route (if such a route exists at all), the calculations will be much
more efficient. The experiments carried out by the authors show that the route correction is
usually determined in a time equal to 10–20% of the time needed to find the original flight
paths of the swarm. The most important feature of this approach is that it does not differ
from the solution of the basic task.

3.8. Object Detection with EO/IR

You Only Look Once (YOLO) is a real-time object detection algorithm that was created
in 2016 by Joseph Redmon and Ali Farhadi [22]. In our approach, version 3 implemented
in the ImageAI library is used [26]. The YOLO model has several advantages as compared
to traditional methods of object detection and classification. Article [27] shows that YOLO
can analyze 40–90 images per second. This means that streaming video can be processed in
real-time, with negligible latency of a few milliseconds.

It encodes contextual information about classes and learns generalizable representa-
tions of items.

Figure 3 shows sample images obtained from an optoelectronic sensor (a–c) and an
infrared camera (e–f).
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(a) (b) (c)

(d) (e) (f)

Figure 3. Sample images: (a–c) images obtained from an optoelectronic sensor; (d–f) images obtained
from infrared sensor.

Figure 4 shows the result of image analysis using the YOLOv3 network trained on the
public database [26].

Figure 4. The result of image (Figure 3c) analysis.

The image shows the location of the object, the name of the class and the probability
of correct classification. The tanks are classified as boats or trucks. The misclassification is
due to the fact that there were no images of tanks in the database. Objects in the images in
Figure 3a and from the infrared camera were not recognized by the network. In Figure 3b,
only the vehicle in the upper part of the image has been recognized.

Since there are no public databases containing images of military objects observed by
aircraft, we started collecting a large dataset to teach the YOLOv3 network.

3.9. Object Detection with SAR

Synthetic aperture radar (SAR) is an imaging radar that is robust against different
weather or light conditions [28] and provides high-resolution images representing the
measure of the scene reflectivity [29]. A SAR system transmits an electromagnetic wave
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and receives an echo. The signal frequency ranges from hundreds of hertz for the airborne
system to thousands of hertz for spaceborne approaches. In the case of the airborne system,
SAR provides information on an area up to 400 km2. SAR images are usually affected by
speckle noise [30,31] and distortion, so they are challenging to interpret.

We use the classic three-stage algorithm for dangerous object detection in SAR images.
First, a median filter is applied to remove the noise [29]. A thresholding algorithm is
used during segmentation [15]. Two kinds of region are extracted: shadow region (black
pixels) and bright areas. Usually, shadows are adjacent to the underlying high objects, so
they provide contextual information [32]. Then morphological closing [33] is applied to
remove the noise. Figure 5a presents the results of the shadow extraction in a military
training ground. Red pixels represent the shadow areas. The shadows are next to tanks
and infantry fighting vehicles (the brightest spots in the image). The groups of bright pixels
need further analysis.

In the case of tanks and trucks it is assumed that the extracted bright area is within
7 × 3 m. The expected size of the target surface is determined based on the pixel resolution
in the SAR scan.

(a) (b)

Figure 5. Extracted tanks: (a) shadow areas; (b) recognized objects.

Shadows are not observed near small or short objects. Such objects require a different
method of analysis. If vehicles are detected, we look for near-rectangular areas occupied
by bright pixels. For a group of bright pixels the minimal area rectangle is computed.
If the area of the rectangle is within the required range, we assume that the vehicle is
recognized. Area no. 4 and 5 in Figure 5b have been recognized as vehicles; areas 3 and 6
are unclassified.

The group of areas recognized as vehicles can be analyzed and classified. We assume
that the convoy is a group of collinear vehicles and the distance between successive objects
is within certain limits. In Figure 6a, an image of a convoy is presented, Figure 6b presents
extracted convoy of tanks.

(a) (b)

Figure 6. Convoy detection: (a) SAR image; (b) recognized convoy.

In our experiments, a Jetson TX2 Tegra system-on-chip (SoC)-class computer was
used. Low power consumption and high computing power are the main advantages of the
platform, hence it is quite popular in UAV systems. Two kinds of power modes were tested:
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• MAXQ—maximizing power efficiency—power budget up to 7.5 W, 1200 MHz Cortex
A57 CPU, 850 MHz built-in Nvidia Pascal GPU with 256 CUDA cores,

• MAXN—maximizing processing power—power budget around 15 W, 2000 MHz
Cortex A57 CPU, 2000 MHz Denver D15 CPU (not utilized in our tests) and 1300 MHz
built-in GPU.

All algorithms were written and executed in C++ 14 standard.
Table 1 shows the average time of the convoy detection.

Table 1. Convoy classification time.

Jetson Tegra TX2
MAXQ 35 ms

MAXN 20 ms

Personal Computer 7.5 ms

In Table 2 the time of object recognition is presented.

Table 2. Object recognition.

Jetson Tegra TX2
MAXQ 69.1 ms

MAXN 40.08 ms

Personal Computer 11.9 ms

In the article [34], the results of SAR image segmentation and area classification are
presented (Figure 7). This kind of information can improve the process of planning the
aircraft’s mission and flight execution.

(a) (b)

Figure 7. The result of image segmentation and classification: (a) SAR image; (b) segmented
image [34].

4. Results
Mission Plan Construction

In the presented research, a terrain model in the form of a directed network was used,
which was composed of several vertices. This article presents the results for a network
consisting of 10, 20 and 30 vertices for a swarm of 3–5 UAVs. Mission planning was tested
for 2 different optimization models presented in Table 3.

Table 3. Optimization models tested.

Model Optimization Function Constraints

I max (25) (1)–(7), (8)–(11), (12)–(16), (17)–(24)
II min (26) (1)–(7), (8)–(11), (12)–(16), (17)–(24)

Mission plans have been designated for cases where all the targets could be observed
by the UAV from an optimal flight altitude (see Table 4). The calculations were stopped
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when the solver found an optimal solution or a suboptimal solution close to the optimal
one (MILP Gap less than 10% in CPLEX solver). In the second case, the computation was
terminated when, for a specified period of time, the solver did not find a better solution
than the best one so far.

In each optimization task, six vertices that the UAVs must visit were determined (the
vertices with the highest priorities). These vertices were used to model the recognition
sites of the most important objects. Mission plans were designated for cases where one or
more targets could only be observed by the UAV from a height greater than the optimal
flight altitude.

Table 4. Times for solving an optimization problem by CPLEX for the predefined targets. The times
given are the minimum times for the solver to find the best feasible solution in the shortest possible
time. The calculations were made on a platform with an i5 processor with CPLEX ver. 20.

Model
No of Point Linear

κ
Min Time Gap MILP

UAVs Targets Targets (s) (%)

I 3 10 2 1 <1 0.1
II 3 10 2 1 <1 0.1
I 3 20 4 1 50 4
II 3 20 4 2 40 4
I 4 20 4 1 84 5
II 4 20 4 2 190 6
I 5 20 4 1 150 7
II 5 20 4 2 84 5
II 4 30 4 2 240 9
II 4 30 4 3 240 8
I 5 30 4 3 268 10
II 5 30 4 3 260 10

The times given in Table 4 refer to the near-optimal solution, where the distance from
the optimal solution is given in the Gap MILP column. Characteristic for VRPTW tasks is
that an acceptable solution close to the optimal one can be found quickly, but finding the
optimal solution at a given Gap MILP value may take a long time. Therefore, it is usually
not worth waiting for such a solution and one should use a suboptimal solution.

One should pay attention to the route plan for the swarm shown in Figure 8 for the
presented cases. In Figure 8a,c the swarm recognizes objects as long as the capabilities of
the platforms allow it (in this case the maximum flight times). Therefore, UAVs belonging to
the swarm fly through the most important vertices marked in red several times (depending
on the value of γ parameter). In Figure 8b,d the platforms belonging to the swarm are
in the air until all of the most important objects are checked. Therefore, UAVs belonging
to the swarm fly through the most important vertices marked in red not more than once.
Depending on the task that will be set for the swarm, the swarm can be sent for single or
multiple recognition of the object. Multiple flights in the neighborhood of the recognized
object give greater certainty of recognition, but increase the risk of losing platforms.
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(a) (b)

(c) (d)

Figure 8. Route plans for a swarm with three UAVs: (a) network with 20 vertices, model I (total profit maximization);
(b) network with 30 nodes, model II (minimization of the route length); (c) network of 30 vertices, model I; (d) network with
30 vertices, model I.

5. Conclusions and Future Works

A framework for planning and execution of drone swarm missions in a hostile envi-
ronment was presented. Two main components were described: the methods of planning
drone swarm routes and the methods of detecting potentially dangerous objects in photos
from EO/IR and SAR. The method of using data from the image analysis performed au-
tomatically by the UAV was also presented. The ways of replanning the flight paths of a
swarm of drones were discussed. The mathematical model for the purpose of determining
the swarm’s flight routes was given based on the example of a swarm with one UAV being
an information hub. Such a model is used in reality and is becoming more and more
popular, especially in military applications.

The time of operation of the exact algorithm does not prevent its practical application
in a GCS. Even medium-sized GCSs have efficient computing environments that can be
used to solve optimization tasks, so there is little need to use approximate algorithms.
The use of approximate algorithms in practice is of course possible, but this topic was not
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discussed in the article due to the large number of works available in the literature. None of
these articles, however, referred to the model of swarm operation presented in this article.

The algorithms for detecting objects in the terrain using SAR scans, which are col-
lected by UAVs that recognize the indicated area, were presented. Each of the described
algorithms was implemented on the Jetson Tegra X2i mobile platform.

The main contribution to the development of research on image analysis is to show the
method of using detection and classification algorithms on lightweight mobile platforms
that can be installed on UAVs.

The presented algorithms are widely used in tasks related to the analysis of UAV
speed in the case of GPS errors. Image analysis can be used to determine the speed of the
UAV and supports the inertial navigation system to accurately determine the geolocation
of the UAV.

In our future works, we will investigate the ways to modify the mission if dangerous
objects (tanks, vehicles) are detected. The segmented images (obtained from the drone’s
sensors) will be compared to digital maps, making it possible to determine the drones’
location, even if a GPS signal is not available. The time of such image analysis is essential
during the mission execution. The experimental results confirm that the stream of images
can be analyzed in real-time.
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Appendix A

Logics and Integer-Programming Representations

In mixed-integer linear models, the big-M rule is used with the related constant M.
The big-M method transforms logical constraints into algebraic ones. The principle of the
method is to bind the constraints to large negative constants that would not be part of any
optimal solution.

The logical constraint representation b =⇒ f (x) ≤ 0 is converted to

f (x) ≤ M · (1− b) (A1)



Sensors 2021, 21, 4150 17 of 18

To ensure a constraint holds when a binary is true, we model the implication using a
big-M strategy.

The logical constraint representation b =⇒ f (x) < 0 is converted to

f (x) ≤ −ε + M · (1− b) (A2)

To ensure a constraint holds when a binary is true, we model the implication using a
big-M strategy.

The logical constraint representation f (x) ≤ 0 =⇒ b is converted to

f (x) ≥ −M · b (A3)

When f (x) becomes negative, the binary variable should be forced to be activated. Note
that a non-strict inequality is used. If behavior around f (x) is important, a margin will
have to be used as discussed before.

Representation of abs(x) as an integer programming constraint is as follows:

x ≥ −M · (1− b1)

x ≤ M · (1− b2)

b1 + b2 = 1

(A4)

Representation of max(x) as an integer programming constraint is as follows:

x− x1 ≤ M · (1− b1)
...

x− xn ≤ M · (1− bN)

∑i=1...N bi = 1

(A5)
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