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Abstract: An alignment-free sensing module for the positioning system based on tunneling magne-
toresistive (TMR) sensors with an absolute-incremental-integrated scale is demonstrated. The sensors
of the proposed system for both lines consist of identical layer stacks; therefore, all sensors can be
fabricated in identical processes from thin film deposition to device patterning on a single substrate.
Consequently, the relative position of the sensors can be predefined at the lithography stage and
the alignment error between sensors caused by the manual installation is completely eliminated.
Different from the existing sensing scheme for incremental lines, we proposed to utilize the magnetic
tunnel junctions with a perpendicular anisotropy reference layer and an in-plane anisotropy sensing
layer. The sensors are placed parallel to the scale plane with magnetization of the sensing layer in
the plane, which show the capability of polarity detection for the absolute line and reveal sinusoidal
output signal for the incremental line. Furthermore, due to the large signal of TMR, the working
distance can be further improved compared with conventional sensors. In addition, the cost of the
positioning system is expected to be lowered, since all the sensors are fabricated in the same process
without extra installation. Our design may pave a new avenue for the positioning system based on a
magnetic detection scheme.

Keywords: TMR sensor; positioning system; absolute and incremental integrated system

1. Introduction

As the demands for automated manufacturing rise, the requirements for precise
position control are enhanced. Linear positioning systems are often used in machine
tools and robotic applications. Most of the positioning systems are based on optical
or magnetic sensing principles. Although the optical positioning systems have higher
resolution, the performance, such as accuracy, and the stability are strongly degraded in
an unclean environment with the presence of oil and dust. In addition, higher energy
consumption and cost are also concerned. In contrast, as the accuracy enhances, the
magnetic positioning systems become more competitive due to their high environmental
endurance. Furthermore, they require lower power consumption with lower cost and
better scalability [1].

Two types of magnetic positioning systems are commonly used, as shown in Figure 1a.
The magnetic polarities of the absolute-type (ABS) scale are randomly altered. Each
position on the ABS scale is assigned a binary code; the decoder is composed of an array
of sensors with separation corresponding to the pole pitch. By reading out the polarities
of each pole, the absolute position can be obtained by referring the signal to the assigned
binary code [2]. The advantage of the ABS-type encoder is that the absolute position can
be known immediately without initialization when rebooting the system [3]. However,
the position resolution is limited by the pole pitch of the scale. In order to know the
displacement distance even smaller than the pole pitch, the incremental-type (INC) is
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applied. The magnetic pattern of the incremental-type (INC) scale is magnetized with
alternate polarities. As the sensor goes through the INC scale, the dual Wheatstone bridges
in the sensor detect the magnetic flux and generate two analog sinusoidal signals with
90-degree phase shift. With the measured sine/cosine waves, the circular Lissajous curve
can be created by plotting the magnitude of the sine wave on the y-axis and the cosine
wave on the x-axis [4]. By dividing the Lissajous circle into many small segments, so-called
the interpolation techniques, with readout IC, a displacement much smaller than the pole
pitch can be detected [5,6]. However, since it only detects the relative displacement, when
the system is rebooted, it always takes time to travel back to the starting point for the
initialization, which increases the time cost in the manufacturing industry. To obtain the
precise displacement without initialization, both scales needs to be used simultaneously.
In this work, we use the integrated scale, in which both INC and ABS scales (lines) are
magnetized in the perpendicular direction separately, located on the same magnetic matrix.
Figure 1b shows the integrated scale with 1mm pole pitch used in this work. The magnetic
pattern of both lines can be observed through the magnetic field viewing film (MFVF).
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Figure 1. (a) The illustrations of incremental and absolute scales. (b) The integrated scale used in this
work. The MFVF reveals the magnetic pattern on the scale.

To detect the position, different magnetic sensors are used for individual lines. Typi-
cally, multiple numbers of digital Hall sensor are used to detect the N and S poles for the
ABS line, and various magnetoresistance (MR) sensors, including anisotropic magnetore-
sistance (AMR), giant magnetoresistance (GMR), and tunneling magnetoresistance (TMR)
sensors, are used to detect the angular change of the field and generate the sinusoidal
output signal for the INC line due to their larger signals compared with Hall sensors [7–9].
However, the good alignment between sensors needs to be considered, which is difficult to
be achieved with surface mount assembly process and installation. For alignment between
the sensors in ABS, if one of the sensors is slightly offset from the designated position,
the non-synchronized ABS position information causes the misreading of the absolute
positional code, leading to a false interpretation. On the other hand, if the misalignment
occurs between sensors for ABS and INC, it takes efforts to compensate the misalignment
through signal processing, which is not an efficient way for the commercial products.

To solve the misalignment issues among sensors, and to reach both of the output
requirements for ABS and INC simultaneously, we propose to use the TMR sensors,
composed of magnetic tunneling junctions (MTJs), for both ABS and INC lines, in which
MTJs are composed of a reference layer (RL) with perpendicular magnetic anisotropy
(PMA) and a sensing layer (SL) with the magnetization along the in-plane direction. The
TMR sensors consisting of MTJs have been used for INC lines [10]. However, these MTJs
possess the magnetization of RL and SL, both along the in-plane direction, which cannot
be used for the ABS and INC detection simultaneously, as discussed in the next section.
Therefore, in the existing design, TMR sensors are used for INC lines only, and extra
Hall sensors are needed for ABS lines. In our design, we use the identical film stack for
all sensors, so the same layer structure can be deposited on a single substrate, and the
multiple sensors for both ABS and INC lines can be patterned and etched in an identical
manufacturing process on the same substrate. Consequently, the cost is expected to be
lower. Most importantly, the relative positions of the sensors are well-defined at the
lithography stage; therefore, the feasibility of an alignment-free sensor module with easy
installation is demonstrated.
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2. Design of the Sensors for Integrated System
2.1. Existing System

Figure 2a shows the setup for the ABS and INC integrated system in the existing
products. For the INC line, in order to compensate the output fluctuation caused by
temperature drift, a Wheatstone bridge configuration is needed for the INC sensor, typically
composed of MR sensors, such as AMR or TMR sensors [10,11], in order to have a larger
signal-to-noise ratio compared with Hall sensors. Ideally, the fields generated by the INC
scale have two sinusoidal components, Hx and Hz, which have identical field amplitude
but with 90◦ phase difference. Therefore, the field vectors can be expressed as:

Hx = Hmax × sin(xπ/P) x̂; Hz = Hmax × cos(xπ/P) ẑ (1)

where Hmax is the maximum amplitude of the field, x is the position, and P is the pole pitch.
Thus, the total field experienced by the sensing element can be expressed as:

Htotal = Hx + Hz = Hmax × sin(xπ/P) x̂ + Hmax × cos(xπ/P) ẑ (2)
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Assuming xπ/P = θ, as the sensor moves, the field experienced by sensors is equiva-
lent to a constant amplitude of H with a varying angle θ. Therefore, if the MR sensor is
placed with the magnetization of sensing and reference layers being aligned in an x–z plane
(See Figure 2b), then the field provided from the scale leads to the magnetization rotation
of the sensing layer and generates the desired sinusoidal output [12]. When applying
the Wheatstone bridge configuration, if all the sensing elements respond identically to an
applied field, then the bridge output becomes null. To make the bridge operational, in most
of the applications, pinning direction of the elements in the bridge should be opposite,
introducing a phase difference between elements, which usually requires additional ef-
forts [8,13]. However, in this magnetic scale detection, the phase difference is established by
the spatial separation of the elements. Therefore, the pinning directions of each element are
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identical. Figure 2b shows the magnetization directions of each MTJ in the existing system
with TMR dual Wheatstone bridge sensors for the INC line. In this Wheatstone bridge
configuration, A1 and A3 are in phase, and their resistance changes identically, while A2
and A4 are 180◦ phase, shifted from A1 and A3 in order to have maximum sensitivity [14].
In a single bridge, the MTJs are placed with distance P apart, making the experienced
fields always 180◦ opposite. On the other hand, the two bridges are 90◦ phase shifted
(0.5 P apart) to each other in order to create sine/cosine output. The magnetization of the
sensing layer rotates with the angle of the external field at a different position, resulting in
the desired sinusoidal outputs. On the other hand, for the ABS line, several Hall sensors
are used for detecting the polarity of the poles in a perpendicularly magnetized scale.
However, since multiple sensors are used in the system, the installation and the alignment
between sensors are critical. For the sensors in the ABS line, the distance between sensors
needs to be well controlled to be the same as the pole pitch P, or the non-synchronized
ABS position information occurs. Likewise, it is also important for the alignment between
sensors in INC and ABS lines. Although the misalignment can be adjusted through signal
processing, if the amount of the misalignment varies, it is quite challenging to compensate
the misalignment one by one. Therefore, as the number of sensors increases, the installation
and the alignment become more complex. A possible solution is to integrate all the required
sensors on a single substrate. However, it is quite difficult because the existing sensors for
two lines are different. Most importantly, as discussed previously, the INC sensors based
on angular dependence need to be placed in an x–z plane, making it impossible to integrate
all the sensors on the same wafer level to sense ABS and INC lines simultaneously.

2.2. Proposed System

In order to solve the installation and alignment problems, a new sensing scheme is
proposed, as shown in Figure 3a. All the required sensors are replaced by the identical
MTJs. The sensors for the ABS line consist of an array of MTJs instead of Hall sensors. The
MTJs for INC are arranged into a Wheatstone bridge as the conventional system. Note that
all the sensors have an identical layer stack so they can be patterned on the same wafer
with the same fabrication process. Since the positions of the sensors are well-defined at
the photolithograph and patterning stage, the alignment error is totally eliminated and
the installation procedure is strongly simplified because all the sensors are integrated on
a single substrate. To achieve this purpose, all sensors are required to be placed in the
x–y plane. Therefore, all the sensor planes are parallel to the scale plane, as indicated in
Figure 3a. Note that, if we used the same layer structure as the existing system, where the
magnetization of RL and SL are both aligned in the x–y plane, the output signal cannot be
a desired sinusoidal wave. Therefore, we propose to design our magnetization of RL along
the direction perpendicular to x–y plane, and magnetization of SL aligned in the x–y plane,
so-called cross-anisotropy. Unlike the existing system for INC scale, which detects both the
x and z field, in our proposed system, sensors detect mainly the magnitude of z-field Hz.
Because our RL possesses strong perpendicular anisotropy, any variations of in-plane field,
including x field, would not significantly change resistance. As mentioned previously, the
perpendicularly magnetized INC scale exhibits field profile with a sinusoidal wave in the z
direction. The intensity of Hz as a function of position (x) can be written as:

Hz(x) = Hmax × cos(xπ/P) (3)

Because of the presence of cross-anisotropy between RL and SL magnetization, the
variations of resistance with the z field, the so-called RH transfer curve, should be a linear
relationship [15], and can be expressed as the following:

R(Hz) = S × Hz + R0 (4)
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where S is the sensitivity, Hz is the applied field intensity along the z direction, and R0 is
the resistance at zero field. Therefore, by combining (3) and (4), we can get:

R(x) = S × Hmax × cos(xπ/P) + R0 (5)

As a result, the magnetization of the SL would be changed according to the magnitude
of Hz, and the sensor output would reflect the experienced Hz sinusoidal field profile
as expressed in (5). Therefore, a sinusoidal resistance change as a function of position
is obtained, which achieves the purpose of positioning the system. Figure 3b shows
the working principle of our proposed INC sensor. A1, A3 and A2, A4 are separated
with distance P in order to have 180◦ phase difference, similar to the existing system
for INC sensors. Furthermore, with the linear transfer curve with respect to Hz, the
polarity detection of the perpendicularly magnetized ABS line can also be obtained by
determining if the measured resistance is larger (noted as 1) or smaller (noted as 0) than
the threshold resistance.
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3. Materials and Methods

The MTJ film was deposited by using Applied Materials Endura Clover PVD System
on an 8 inch wafer at a background pressure of 2.4 × 10−9 torr. The layer structure for the
sensor was as follows: Ta(3)/Ru(20)/Ta(1)/Pt(1)/[Co(0.75)/Pt(0.3)]3/Co(0.75)/Ru(0.9)/[Co
(0.5)/Pt(0.3)]2/Co(0.6)/Ta(0.5)/CoFeB(0.85)/MgO(2)/CoFeB(t)/Ta(5)/Ru(3)/Ta(10) (the
numbers represent the layer thickness in nm). Ta/Ru/Ta was used as the bottom and top
electrode. The combination of CoFeB/MgO/CoFeB was selected to have a high TMR ratio
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due to the coherent tunneling [16]. The thickness of top CoFeB was tuned to adjust the
out-of-plane anisotropy Hk of the sensing layer, which needed to be a moderate magnitude
to fit the field range of the scale while retaining the sensitivity. Co/Pt multilayers were
introduced to increase the Hc of RL. The synthetic anti-ferromagnet (SAF) was also applied
to enhance the PMA and reduce the stray field from RL acting on SL. After the deposition,
the annealing process at 350 ◦C for 1 h was applied to build the interfacial anisotropy
between MgO and CoFeB, which caused the bottom CoFeB to become PMA and reduced
the in-plane anisotropy of the top CoFeB [17,18]. The MR ratio was also enhanced due to
the crystallization of CoFeB and MgO during the annealing process [19]. To demonstrate
the feasibility, a single MTJ and a Wheatstone bridge were patterned for ABS and INC
lines, respectively, by ion beam etching (IBE). The size of the MTJs were 15 µm × 15 µm.
The magnetic property was measured by vibrating sample magnetometer (VSM) and su-
perconducting quantum interference device (SQUID). The MR measurements were done
with a 2-point probe with out-of-plane field applied. After checking the magnetic property
and MR response, the devices were wire-bonded and packaged for the scale measurement.
The integrated magnetic scale with 1 mm pole pitch was placed on the platform driven
by a linear motor. The sensors were fixed above the scale with moderate air gaps. The
output signals were detected while the relative displacement between the scale and the
sensor presented.

4. Results and Discussion

In our proposed magnetic scale-based positioning system, several factors need to
be carefully considered according to the field profiles of the scale. Figure 4a shows the
field profile of the INC line, with perpendicular magnetization measured by a 3-axis Hall
sensor with air gap = 0.1 mm. Both Hx and Hz exhibit sinusoidal behavior with identical
magnitude and a 90◦ phase difference. The Hy is quite small compared with Hx and
Hz. To achieve a high-performance positioning sensor, the following magnetic properties
need to be well-controlled. First of all, the coercivity (Hc) of the RL needs to be larger
than Hz,max, which prevents the RL from switching during the measurement. It is worth
mentioning that, even if the Hc of RL is larger than Hz,max, with the assistance of the Hx,
the RL may still be switched based on the Stoner–Wohlfarth astroid [20]. Either the low Hc
or Hk would make the RL switched, which leads to an undesirable output signal. Here we
show one example in Figure 4b, in which the RL is only composed of Pt/Co multilayer
without the SAF structure, so that the Hc of RL is reduced to only 500 Oe and Hk = 2 k Oe.
Figure 4b shows the measurement results with pole pitch equal to 1 mm for the INC scale.
Since our sensor possesses cross-anisotropy, if the magnetization of RL is firmly pinned,
the linear RH response should lead to the periodicity of the output signal equal to 2P, as
shown in Figure 3b (also shown in Figure 4b as the red dash line). The arrows in Figure 4b
show the magnetization directions of the pinned and sensing layer for the sensors with
strong PMA (ideal case) and weak PMA (Hk = 2 k Oe, measured curve), respectively. The
magnetization of the sensing layers rotates identically in both cases; however, when the
perpendicular anisotropy of RL is not strong enough, the magnetization of RL is switched
with the assistance of Hx during the measurement, resulting in sign change of dR/dx and
a triangle-like sharp peak with a wrong periodicity (~1 mm). Therefore, the strong PMA is
essential to suppress the RL tilting caused by the presence of Hx.
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Figure 4. (a) The field profile of the INC line measured by 3-axis Hall sensor. (b) The output signal
for the MTJ with RL switched during the scale measurement.

The control of the anisotropy field (Hk) of the SL is also critical. If the SL exhibits a
large in-plane anisotropy, a strong z-field is needed to drive the magnetization of SL to be
tilted away from the x–y plane, resulting in a low sensitivity. If the anisotropy of SL is too
small or even exhibits PMA, the SL will be saturated easily during the position sensing,
leading to a square-like output instead of a sinusoidal output, as shown in Figure 5a.
Although the disturbance of Hx on RL can be suppressed by utilizing magnetic layers with
strong PMA, the disturbance of Hx also exerts on the SL. Due to the Hx presence, it behaves
as the stabilizing field for SL magnetization aligned in the x–y plane; therefore, the tilting
of SL magnetization away from the x–y plane depends on the magnitude of Hx field. Since
Hx varies with position, the saturation field of SL along the z direction and sensitivity (S)
change accordingly. Figure 5b shows the out-of-plane RH curves with different magnitudes
of in-plane bias fields. Ideally, according to Equation (5), the sensitivity (S) is a constant.
However, the position-dependent x field, behaving as the bias field, may result in the
variations of sensitivity [21]. As a result, the sensitivity changes as the sensor moves,
which leads to a nonlinear transfer curve with respect to out-of-plane field, which may not
precisely reflect the sinusoidal field profile of the scale. In fact, the sensitivity affected by
the presence of the orthogonal field to the sensing direction, so-called the cross-field effect,
is also observed in other types of MR sensors [22,23]. Its effects on the position accuracy
will be discussed later.
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The magnetic property of the full structure MTJ after annealing at 350 ◦C is shown
in Figure 6a. The SAF pinning layer significantly enhances the coercivity of the reference
layer, and the pinning field of the SAF is around 2500 Oe. The in-plane curve shows that
the Hk of the CoPt–SAF pinned layer is around 20 kOe, indicating that the SAF structure
indeed provides strong PMA. As a result, a robust RL is obtained. The minor loop shown
in the inset of Figure 6a reveals a linear response, indicating that the sensing layer rotates
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coherently with the field applied along the out-of-plane direction. The optimized thickness
of the CoFeB sensing layer is 1.6 nm. At t = 1.6 nm, the Hk of the SL is round 250 Oe.
Figure 6b shows the RH transfer curves with an out-of-plane applied field for the single
MTJ device. The MR is 130% and the reference layer magnetization is fixed within the
dynamic range of the sensing layer, resulting in a high effective MR response. The minor
loop of the RH curve shows the desired linearity and low hysteresis. The transfer curve
of the sensing layer is symmetric to the zero field, indicating that the stray field from the
reference layer is significantly suppressed as a result of the compensated magnetizations in
SAF [24]. The Hk of the SL is slightly increased to 500 Oe during the etching process.

1 
 

 
 

(a) (b) 
 Figure 6. (a) The in-plane (IP) and out-of-plane (OP) hysteresis loops of the full-stack MTJ film after

annealing. The inset shows the out-of-plane minor loop. The lower saturation magnetization in the
IP loop is caused by the unsaturated SAF under 1.5 T in-plane magnetic field. (b) The RH transfer
curves of the MTJ. The black (red) curve is the major (minor) RH curves.

After checking the magnetic and electrical properties of the single device, we patterned
the single MTJ for the ABS line and the Wheatstone bridge for the INC line. For the
ABS line, since it only needs to detect the polarity, there is no need to form a bridge
configuration. In contrast, Wheatstone bridges are required in the INC line since the
resistance fluctuates with the ambient temperature, resulting in a fluctuating signal and
influencing the position accuracy.

The scale measurement is performed with the sensors placed in the x–y plane above
the integrated scale shown in Figure 1b. The applied voltage for the MTJ sensors is 1V.
Figure 7a shows MTJ output for the ABS line at air gap = 1 mm. The output signal shows
clear high and low resistance states corresponding to the N and S poles, respectively. To
further evaluate the ABS sensor performance, the commercial Hall sensor is also used to
measure the same range but with air gap = 0.1 mm, as shown in Figure 7b. The measured
profile of our sensor highly matches the Hall sensor. Figure 7c shows the corresponding
polarity. The digital signal is converted from the measured analog signals. The results
show that the TMR sensor does match the Halls sensor, capable for the ABS sensing, but
with a higher gap tolerance. Figure 7d show the INC measurements of one of the TMR
Wheatstone bridges with sensor at gap = 1.0 mm. The bridge exhibits a sinusoidal output
with high sensitivity. To make a comparison, we also benchmarked the commercial INC
sensor based on AMR effect (Figure 7e). The applied voltage for the AMR sensor is 1V.
Obviously, our TMR sensor provides a six times higher signal at gap = 1.0 mm compared
with the AMR sensor at 0.1 mm. We also simulated the accuracy of the INC sensor based
on the dual bridge output to evaluate the performance of the sensor. The ideal position
sensors reveal quadrature sinusoidal output signals while passing across the scale. From
the viewpoint of positioning, the output signals of the INC sensor can be transferred by
interpolation technique into position. The error between ideal and measured position is
known as accuracy. The accuracy simulation is obtained as follows. First of all, the ideal
sinusoidal fitting curves (VA.ideal and VB.ideal) are obtained from the signals measured by
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the dual bridge (VA.measured and VB.measured). By comparing the difference between arctan
(VA.ideal/VB.ideal) and arctan (VA.measured/VB.measured), we can obtain the deviation from
the ideal position [25]. The results of simulated accuracy are shown in Figure 7f. The
accuracy error of TMR sensor at gap = 1 mm is within the range of ±6.5 µm, which is
comparable to the AMR sensor at 0.1 mm. Although the accuracy needs to be further
improved, the working distance can be much higher in our TMR sensor. The high working
distance not only simplified the installation, but provided the tolerance of the vibration and
impurity in the factory. The results prove that both ABS and INC lines can be detected by
using the identical layer stack with sensing planes parallel to the scale plane, which makes
all the sensors able to be fabricated on a single substrate. In our proposed scheme, the
sensor position is well-defined and the alignment error between sensors in the integrated
system is totally excluded.
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sensors. Only single bridge outputs for INC are shown here.

Finally, we would like to discuss the possible solution for further improving the
accuracy of our proposed system compared with the AMR sensor for the INC line. As
illustrated previously in Figure 5b, the varied Hx biasing field keeps changing the sensitivity
of the sensing layer, resulting in an imperfect linear transfer curve, which lowers the
accuracy. In our setup, only the x-direction bias field needs to be considered, and the Hy
from the scale can be neglected according to Figure 4a. Therefore, to suppress the changed
tilting caused by a varying Hx bias field with the position, we may provide an additional
stabilizing field along the y direction to stabilize the SL magnetization on the x–y plane.
Methods such as shape anisotropy or exchange bias along the y-axis can be expected to
further improve the accuracy of the INC line.

5. Conclusions

In summary, we demonstrate the integrated positioning module on a single substrate
to simultaneously sense the ABS and INC line. Through the crossed-anisotropy built by
the PMA reference layer and in-plane sensing layer, we are able to make all the sensors
in the positioning system parallel to the magnetic scale surface, allowing the sensors
to be integrated on the same substrate. Since the relative position has been defined in
the lithography stage, alignment error between sensors during the installation is totally
excluded. In addition, we also reveal the critical requirements for the PMA of the reference
layer and anisotropy field for the sensing layer. By properly tuning the magnetic properties
of TMR sensors, we demonstrate a substantially increased output for the INC scale with
the pole pitch of 1 mm and the air gap of 1 mm, compared to a conventional AMR sensor
with the air gap of 0.1 mm. Furthermore, the output profile of a TMR sensor for the ABS
line is similar to the conventional Hall sensors, but with enhanced amplitude and height
tolerance. Our design may pave a new avenue for the positioning system based on the MR
detection scheme.
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