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Abstract: In this paper we present a novel, cost-effective camera-based multi-axis force/torque
sensor concept for integration into metallic load-bearing structures. A two-part pattern consisting of
a directly incident and mirrored light beam is projected onto the imaging sensor surface. This allows
the capturing of 3D displacements, occurring due to structure deformation under load in a single
image. The displacement of defined features in size and position can be accurately analyzed and
determined through digital image correlation (DIC). Validation on a prototype shows good accuracy
of the measurement and a unique identification of all in- and out-of-plane displacement components
under multiaxial load. Measurements show a maximum deviation related to the maximum measured
values between 2.5% and 4.8% for uniaxial loads (Fx, Fy, Fz, Mz) and between 2.5% and 10.43% for
combined bending, torsion and axial load. In the course of the investigations, the measurement
inaccuracy was partly attributed to the joint used between the sensor parts and the structure as well
as to eccentric load.

Keywords: sensor embedded structures; digital image correlation; multi-axis force/torque sensor;
smart structures

1. Introduction

Force and torque measurements are applied in various fields, ranging from medical to
industrial applications and aerospace. As digitization continues, application areas have
continued to expand greatly, increasing the need for low-cost, structure-integrated and
miniaturization-capable transducers. In the state of the art, traditional strain gauge-based
sensors dominate the field of multi-axis force/torque sensors. In such measuring tech-
niques, key sensor properties, such as sensitivity, sensor accuracy, measuring range and
crosstalk between the measuring axes, depend significantly on the deformation behavior of
the spring element and on the sensitive elements [1]. In order to ensure an optimal sensor
performance, many studies introduce different designs for the spring element [2–4] as well
as the application of alternative sensing elements like fiber grating [1,5] or semiconductor
strain gauge [6,7]. Despite a large number of multi-axis force/torque sensors with different
sensory characteristics in the current state of the art, their high cost prevents rapid imple-
mentation in many applications. According to Lee et.al, a tendency appears in the field
of robotics to avoid the use of multi axial force/torque sensors, if their absence does not
lead to a serious degradation of performance [8]. Considering the increasing research on
multifunctional sensory structures, e.g., sensor-integrated metallic load-bearing structures
such as in [9,10], the high cost and space requirements for the whole measuring chain
seems to hinder the research in the integration of multi-axis force/torque sensors into
such structures.

On the one hand, research efforts are being conducted to miniaturize and reduce
the cost of strain gauge-based transducers through new design approaches, e.g., the
three-axis force/torque sensor with only four strain gauges and a switchable quarter-
bridge [11]. On the other hand, new sensors based on alternative measuring concepts,
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such as capacitive [12] or optical transducers, are being investigated primarily with the
aim of providing a cost-effective and miniaturizable alternative to conventional strain
gauge-based transducers. In particular, optical-based non-contact sensors have gained
special attention. They stand out due to low-cost, simple design and encourage structural
integration by eliminating the spring element as well as miniaturization. In the field of
optical force/torque measurement, Tar et al. presented a 3D tactile force sensor in which
light emitted by LEDs is received by deformable hollow mirror rubber hemispheres and
reflected into light-emitting diodes. The magnitude and direction of the grip force is then
determined by the change in intensity at the light diodes. This enables force sensing in
the compliant gripper of a robot with a stable grip [13]. A similar principle of operation is
presented by Noh et al. in the form of a three-axis force/torque sensor for easy installation
in the structure of a manipulator arm [14]. Al-Mai et al. presented firstly a 3-axis, and
then later a 6-axis fiber optic force/torque sensor in which the generated and reflected
light is propagated with high accuracy and low noise through a pair of optical fibers
from the LED to the mirrors and then back to the photodiode (LTV) [15,16]. Xie et al.
adopted the optical measurement concept due to the requirement of application in a
magnetic resonance imaging (MRI) environment where no metallic component could be
used. Unlike the previous measurement concepts, where the change in light intensity
and thus the displacement due to loading was measured by evaluating the proportional
voltage value of the applied photodiodes, here the intensity change was pixel-based and
measured with a camera [17]. Díez et al. presented an optical force sensor based on a
different measurement concept, where the load on the structure causes the displacement
of a built-in converging lens. The light distortion caused during the lens displacement
is measured by a 2 × 2 photo-detector matrix and interpreted as a bending proportional
signal [18].

All these presented measurement concepts are based on the direct evaluation of the
intensity change as a proportional quantity to the load condition. Despite the mainly
economic advantages of the presented optical sensors in terms of more flexible and lighter
designs, a high softness of the structures is still required to produce measurable displace-
ments. Hence, optical sensors have been used for force measurements in more compliant
structures such as plastic and rubber. Their measuring resolution in terms of the required
deformation is quite far behind the achievable performance of conventional strain gauge-
based or piezoelectric sensors. According to Berkovic et al., an optical sensing with higher
resolution, e.g., in the range of 1 µm, requires relatively expensive and complex measuring
technologies, such as interferometry or confocal sensing techniques [19].

In the field of stress analysis in solid mechanics, on the other hand, high-resolution
optical techniques such as holographic interferometry, speckle interferometry and Moiré
interferometry as well as non-interferometric techniques, such as the grating method [20,21]
and digital image correlation (DIC), are well-established [22].

Digital image correlation refers to a contactless measurement technique that acquires
images of an object, stores them digitally, and conducts image analysis to extract whole-
field shape, deformation, motion measurements, or in combination [23]. With its clear
advantages in comparison to other high resolution measuring techniques, which include
simple experimental setup, easy implementation, high robustness to environmental vibra-
tions and light fluctuations, and wide applicability due to adjustable temporal and spatial
resolutions, the DIC technique has become a powerful and flexible tool for shape, motion
and deformation measurement for different materials and structures, on different temporal
and spatial scales, and in different experimental environments [24]. Applications therefore
range from very large, such as bridges [25], to the nano-meter scale in precision mechanics
instrumentation [26,27]. In addition to typical applications for the computation of strain or
displacement, the DIC technique is also used for force measurement, such as the detection
of cutting forces [28] in a process or for monitoring the clamping forces of screws during
assembly [29].



Sensors 2021, 21, 4104 3 of 21

Fundamentals of DIC

In the classical applications of DIC, the surface of an object of interest is prepared
by applying a random speckle pattern. The pattern serves as an information carrier and
is expected to have unique, non-periodic and stable greyscale features. For this purpose,
different methods like spraying, spin coating and lithography exist [24]. To avoid aliasing,
a speckle size of maximum 3 × 3 pixels is desired [30]. Subsequently, the coordinates of the
subset with a predefined area in the reference image are selected and then sought in the
target image within a predefined area there. The correlation values for the whole search
field are stored in a correlation matrix, and the coordinates of the highest correlation value
are assigned to the new position of the searched subset center. Small subsets increase the
risk of misclassification because the uniqueness decreases. However, for small subsets, the
local strain excesses can be measured with higher resolution [31]. Especially the size of the
subset and the search field have a strong impact on the computation time [32]. Similar to the
correlation methods, different algorithms can be used to increase the resolution by so-called
subpixel registration. Yang et al. achieved measurement resolution as low as 0.01 pixels to
increase the measurement resolution in dynamic testing of microelectromechanical systems
(MEMS) [33]. Applying optical magnification can significantly increase the measurement
resolution. In [34], a shift of the micromechanical device with a measurement accuracy
within the picometer range could be achieved.

Two-dimensional displacements or deformations in the plane are measured with
the simple installation of a single camera DIC [22]. In this case the examined surface is
90◦ with respect to the optical axis of the camera. A three-dimensional acquisition of
the deformations, on the other hand, is carried out with so-called stereo-DIC or 3D-DIC
methods. This is usually achieved by synchronized image acquisition from two cameras,
each rotated by 45◦ to the image plane [35]. Using optical elements such as prisms, mirrors
or diffraction gratings and the fundamental laws of optics, numerous techniques for
single-camera stereo DIC have emerged in research, enabling three-dimensional shape
and deformation measurements [36]. Although DIC is currently one of the most popular
and active methods in the field of experimental mechanics with the lowest requirements
for an operating environment, its measurement accuracy as a non-interferometric method
strongly depends on the illumination conditions during the measurement. Variations in
the illumination conditions and thus in the quality of the acquired images directly affect
the measurement quality [37]. Depending on the desired measurement resolution, very
strong illumination is usually required to obtain high resolution.

So far, the applications of DIC have mostly been limited to fixed measurement systems
and the acquisition of displacement fields. However, in the area of sensor-integrated
metallic load-bearing structures and machine elements, the highly adjustable measurement
resolution, the low costs and robust components of the DIC seem to be very attractive. The
high pixel counts of standard image sensors in the smallest possible space, combined with
a suitable sensor design, are particularly promising for the detection of multi-axial loads. In
addition, the cavities in the structures provided for sensor integration offer laboratory-like
lighting conditions, which increases measurement accuracy.

In this paper we investigate the utilization of a basic optical DIC-based technique as a
structure-integrated multi-axis force/torque sensor. The aim is to achieve a cost-effective
extension of the measuring axes, with regard to the entire conventional measurement
chain, and thus to form integrated force and torque transducers without having to inte-
grate a complex designed spring element. First, the technique is modified for use as a
structurally integrated multi-axis force/torque sensor. The achievable sensory properties,
like measuring accuracy and linearity, will then be investigated using a prototype on a
test bench. Special emphasis is placed on accurate load classification when multiple loads
are applied to the structure. For the achieved measurement accuracy, the robustness of
the measurement concept in particular has to be estimated, and an orientation for the
integrability of optical high-resolution measurement concepts in metallic load-bearing
structures as well as the requirements of the joining process have to be determined. Firstly,
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an overview of the design of sensory structures and machine elements is provided, fol-
lowed by a description of the design of the DIC-based multi-axis force/torque sensor.
Subsequently, experiments based on a prototype and the achieved results are presented.
Finally, a summary of the achieved results discusses the applicability of camera-based
measuring concepts for the production of multi-axis force/torque sensory load-bearing
structures, along with its limitations and special requirements.

2. Methods
2.1. Background of Sensor Integrated Load-Bearing Structures

In the context of advancing digitalization, the demand for additional sensory or adap-
tive functions is rising for conventional load-bearing structures and machine elements.
For widespread implementation, their functionality must be cost-effectively expanded
while fully maintaining the mechanical functionality. To meet this requirement, various
approaches are being developed for manufacturing multifunctional structures in which
sensors or actuators are integrated into metallic structures. For example, piezoelectric
transducers have been integrated into metallic structures by die casting [38,39] or through
additive manufacturing [40,41]. In this field, joining by forming has proven to be a particu-
larly suitable and economic technology [42–44]. Here, transducers are pretensioned and
integrated into hollow structures through force- or force- and form-fit joining by means
of forming techniques, like rotary swaging (see Figure 1). Despite the successful manu-
facturing of sensory load-bearing structures and machine elements whilst maintaining
conventional mechanical functionality, their force/torque measuring capability is limited
to one or two measuring axes. With regard to the joining process, presented in [43], the
integration of an electro-mechanical transducer for multi-axis force/torque measuring
requires a new complex process design to ensure an anisotropic deformation behavior
of the transducer. This requires not only the creation of the force/form-fit connections
between the transducer and the structure in all measuring directions, but also the alignment
of a specific stress state on the transducer after joining. However, this would be complex
due to the nature of the forming process used.

Figure 1. Load-bearing structures with integrated strain gauge-based and piezo electric transducers
produced by rotary swaging. (a,b) Sensory hollow shafts [45]. (c) Sensory bolt [46].
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2.2. The DIC-Based Force/Torque Sensor
2.2.1. Sensor Design

The basis of the measurement concept is to determine the three-dimensional displace-
ment of a structure under load by measuring the resulting displacement between two
planes on the structure. Essentially, the sensor design comprises a camera and an object
mounted on two carrier disks. These carrier disks are parallel and fixed in the structure at
two spatial points with distance lm, as shown in Figure 2. Relative displacements occurring
between the two planes are captured by the camera images and measured by means of DIC.

Figure 2. Principle of function for multi-axis force/torque measurement.

While in-plane displacements (x–y) of the two carrier disks (caused by bending or
torsional loads) are simply acquired due to the parallel arrangement of the camera to the
object, out-of-plane displacements (subject to axial load, z-axes) require an appropriate
optical extension of the system. A special set-up with two mirrors translates out-of-plane
displacements into in-plane displacements, meeting the requirements for a very simple
and robust setup in limited space. The design resembles a periscope, with two mirrors
tilted at 45◦, which change their relative positions as the distance between the two carrier
disks changes under axial load, as shown in Figure 2. The area of the image sensor is
divided into two parts. One part captures the direct beam with the information about
in-plane displacements and the other part captures the mirrored beam with information
about displacements in the third dimension. The mirrored object part is placed closer to
the camera in order to keep the light path between both parts of the image as equal as
possible. To uniquely assign the in-plane displacements caused by bending or twisting
loads, the evaluation of the motion of two points (P1 and P2) on the object is required.
Out-of-plane displacements can be traced by displacement evaluation at only one point, P3,
on the mirrored ray, as indicated in Figure 2.

To achieve a high degree of design flexibility with increased DIC matching accuracy
at minimized computational effort, the pattern is realized as a back-illuminated foil pho-
tomask with transparent points, with predefined positions and diameter (as also shown
in [47]). Generally, the smaller the features (speckles) in a pattern, the less computational
effort is required for correlation and the higher the measuring resolution is. The diameter
of the points, however, must cover a maximum of three pixels of the image sensor used to
avoid aliasing [30]. To avoid any mismatch during the correlation and thus to maximize
the measuring sensitivity, the positions of the points can be chosen considering the highest
possible displacements.

2.2.2. Determination of the System Behavior

If the structure is loaded with only one bending load, Fxy, the amplitude and direction

of this resulting deflection
→
δ xy can be determined by the displacements ∆P1 and ∆P2,

which are equal in magnitude and direction. For a torsional load Mt, the angle of twist
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ϕ ∼ Mt is calculated from the unequal displacement as the angle between the two vectors,
connecting P1 and P2 before and after the displacement, as follows:

→
v 1 =

(
P1_x− P2_x
P1_y− P2_y

)
,
→
v 2 =

(
(P1_x + ∆P1_x)− (P2_x + ∆P2_x)
(P1_y + ∆P1_y)− (P2_y + ∆P2_y)

)
(1)

where Pi_x and Pi_y are the x- and y-components of the initial positions of P1 and P2 and
∆Pi_x and ∆Pi_y are the x- and y-components of each displacement, respectively.

The angle of twist ϕ ∼ Mt is then given by the dot and cross product of two vectors
as follows:

ϕ = arccos

 →
v 1 ·

→
v 2∣∣∣→v 1

∣∣∣× ∣∣∣→v 2

∣∣∣
 (2)

Similarly, a mere compression or elongation of the structure due to an axial load Fz
results in a change of the measuring span lm ± ∆lm, which is translated into the radial
displacement ∆P3 in the image plane.

In case of multi-axis loads, the translational (deflection,
→
δ xy) and rotatory (angle of

twist, ϕ) components of in-plane displacements at “direct” image segments are clearly
determined by a known angle of twist ϕ and center of rotation

→
c CR_d as follows:

→
δ xy,i =

→
c i + ∆

→
P i −

→
c CR_d −

(
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)(→
c i −

→
c CR_d

)
, i = 1, 2 (3)

where ∆
→
P i is the displacement detected by DIC and

→
c i is the corresponding initial position

of the evaluation point Pi. The deflections
→
δ xy,1 and

→
δ xy,2 are subsequently averaged to

→
δ xy and then separated into δx and δy. Alternatively, the translational displacement of
the center of rotation can be achieved by applying the barycentric coordinates. For this
purpose, three evaluation points are required, to create a triangle enclosing the center of
rotation.

Due to the comparatively small compression or elongation of load-bearing structures,
the effect on in-plane displacement due to change in feature size ( ∆A

A ≈
∆lm
lm

), is negligible.
A critical disappearance of the feature upon elongation of the structure can be considered
when designing the feature size. In contrast, all in-plane displacements cause crosstalk on
out-of-plane displacements appearing at the “mirrored” image segment. In this case, the
displacement between pattern 1 to mirror 1 and the displacement between the mirrors to
each other determine the resulting displacement point ∆P3 on the mirrored image segment.
Figure 3 shows the displacements induced in both direct and mirrored image segments
under load with axial force Fz, torque Mz and bending force Fy, which is perpendicular to
the theoretical “boundary line” between the direct and mirrored rays.

While compression or elongation of the structure causes a displacement between
the mirrors, resulting only in displacements ∆P3 = ∆y on the mirrored image segment
(Figure 3a), the angle of twist ϕ appears doubled in the mirrored image because of the dis-
placements between pattern 1 and mirror 1 and between mirror 1 and mirror 2 (Figure 3b).
These two displacement types (between pattern 1 and mirror 1 and between the two mir-
rors) cause, in case of structure deflection under bending force Fxy, doubled displacements
on the mirrored image segment (∆P3 = 2∆P1,2), if the induced deflection is perpendicular
to the boundary line (Figure 3c). They cause a simple displacement if the induced deflection
is along the boundary line. The illustrated displacement at the mirrored image segment 2δy
caused by Fy in Figure 3c is considered as an ideal scenario, by having the boundary line,
whose orientation on the image sensor’s surface is defined by the rotation of the mirrors
around the z-axis, is perfectly parallel to the x-axis of the image sensor. However, this
cannot be ensured due to the deviations to be expected during sensor installation. For
this reason, it will be further considered that the boundary line is rotated at an angle ∅ to
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the x-axis of the image sensor. Therefore, the “boundary line coordinate system” x̂− ŷ is
used, which is rotated at an angle ∅ to the image sensor coordinate system x− y. In this
way, the perpendicular and parallel displacement components to the boundary line can be
determined as a function of the angle ∅, as illustrated in Figure 4.

Figure 3. Visualization of the crosstalk behavior in the mirrored image segment by in-plane displace-
ments. (a) compression (b) torsion (c) deflection.

Figure 4. Crosstalk behavior in both in- and out-of-plane displacement and the possibility of deter-
mining the causing loads.
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After calculating both in-plane translational and rotatory displacements, the strain of

the structure caused by axial load ∆
→
lm can be determined with a known center of rotation

of the mirrored image segment
→
c CR_m as follows:

∆
→
lm = R(∅)·

(
→
c 3 + ∆

→
P3 −

→
c CR_m −

(
cos(2ϕ) − sin(2ϕ)
sin(2ϕ) cos(2ϕ)

)
·
(→

c 3 −
→
c CR_m

))
−( 1 2 )·R(∅)·

→
δ xy

(4)

with

R(∅) =

(
cos(∅) sin(∅)
− sin(∅) cos(∅)

)
(5)

where ∆
→
P3 is the displacement detected by DIC and

→
c 3 is the initial position of the

evaluation point P3 on the mirrored image segment.
The effect of the rotatory crosstalk with the angle 2ϕ is first eliminated from the

displacement ∆
→
P3 by coordinate transformation with 2ϕ. Furthermore, a second coordinate

transformation is performed into the boundary line coordinate system with the angle ∅
of the intermediate result together with the translational in-plane displacements

→
δ xy,

doubling the ŷ-component. The angle ∅ can be determined by means of a strictly uniaxial
bending load (Fx or Fy), which leads to a one-dimensional displacement at the direct
image segment (∆P1 and ∆P2) and a two-dimensional displacement on the mirrored image
segment (∆P3). The angle ∅ can then be calculated as:

∅ = arctan
(

∆P3_y
∆P3_x

)
(6)

where ∆P3_x and ∆P3_y are the x- and y-components of the calculated displacement ∆P3.
Figure 4 illustrates the driven correlation in Equations (3) and (4). The correlations

to compensate the crosstalk of in-plane displacements (
→
δ xy and ϕ) from the out-of-plane

displacement ∆P3 assume, however, a parallel alignment of the mirrors to each other. In
practice, some inaccuracy, depending on the accuracy of the assembly process, is to be
expected. Furthermore, inaccurate deformation behavior of the structure, due to various
sources of uncertainty in manufacturing and assembling [48], is another possible source of
inaccurate crosstalk compensation. Consequently, an investigation of the crosstalk behavior
is essential as part of a calibration process.

Once the calibration values have been determined, the applied forces and torques can
be given as follows: (

Fx Fy Fz Mz
)T

=
→
kv×

(
δx δy ∆lm ϕ

)
(7)

where
→
kv represents the determined calibration values.

Assuming that the bending forces Fx and Fy act only outside the measuring zone and
there is a homogenous structural deflection, the bending moments can be calculated by:

Mx = Fxlm and My = Fylm

3. Evaluation and Results
3.1. Design of the Prototype

To evaluate the measurement concept, a prototype was designed, in which the dis-
placement occurring during the loading of a hollow tube is measured in two parallel planes.
The prototype must ensure parallel fixing of the two sensor parts to the structure. Further-
more, it is essential to exclude any deformations in the joining area between the sensor
parts and the structure, which can lead to a falsification of the determined displacement.
Therefore, in the designed prototype, the pattern and the camera are attached to two rigid
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flanges (carrier flange) with one screw. The two flanges are then bolted to both ends of a
tubular structure (steel, length = 75 mm, diameter = 23.5 mm and thickness = 2 mm), as
shown in Figure 5.

Figure 5. Design of the prototype used to evaluate the functional principal.

The loads are then applied to the left side of the structure, causing deformation of
the tubular structure. The applied loads are measured on both the DIC-based sensor and
the multi-axis force/torque reference sensor (HBM: K-MCS10-025). To minimize optical
aberrations and to sufficiently focus the points P1−3 at the maximum expected elongation
or compression of the structure (±0.0258 mm at Fz = ±10 kN), the camera was designed to
provide an optical magnification of m = −1 by using a dual-lens system. Simple optical
verification in WinLins 3D Basic shows good imaging quality, with a depth of field of
±0.05 mm. The patterns are therefore imaged 1:1 by an active area on an image sensor
(Omnivision OV5647) of 3673.6 µm × 2738.4 µm with a pixel size of 1.4 µm × 1.4 µm.
Image acquisition was performed using a Raspberry Pi device. The used photomask is
produced by JD PHOTO DATA and has a point diameter of 5 µm, see Figure 6a. Both the
camera, the patterns and the mirrors were mounted in the tube with an external thread for
distance adjustability using 3D printed parts, see Figure 6b.

To determine the center of rotation in the mirrored image segment
→
c CR_m, another

temporary evaluation point P4 was placed in the photomask of pattern 1 outside the ex-
pected displacement field of the evaluation point P3 (at a distance of 500 µm from P3). The
centers of rotation

→
c CR_d and

→
c CR_m are be determined by calculating the intersection

points of two linear functions, which are described by the two points of each pattern
before and after a rotation caused by a mere torsional load. The calculation of the dis-
placement due to the DIC was performed in Matlab, where integer displacement (whole
pixel displacement) was calculated using zero-normalized cross correlation after Giachetti
et al. [49]. For sub-pixel displacement, we applied the cores-fine search method with linear
interpolation, as described in Simončič et al. [50]. The center coordinates for the evaluation
points P1−3 were first determined by their high grayscale values. For DIC computing, a
subset size of 10 pixels and a pixel shift of 100 pixels was specified, as shown in Figure 6.
The displacements are computed with a sub-pixel registration of 0.125 pixels ≈ 0.09 µm.
Following this, uniaxial loads (Fx, Fy, Fz, Mz) were manually applied within the defined
loading range of the structure (Fx and Fy between ±250 N, Mz between ±65 Nm and Fz
between ±3 kN). To evaluate the sensor performance independently from the stiffness of
the host structure, the measured displacement components (ϕ, δx, δy and ∆lm) were then
compared with the reference components resulting from the measured loads on the refer-
ence sensor and the theoretically resulting displacement in the tube structure. After that,
the centers of rotation

→
c CR_d and

→
c CR_m were determined by uniaxial torsional loading.

Furthermore, the crosstalk behavior between in-plane and out-of-plane displacements and
the angle of boundary line ∅ were investigated. After complete characterization of the
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sensor behavior, multiaxial loads (Fx + Fy + Mz) and then three-dimensional multiaxial
loads (Fx + Fy + Fz + Mz) were applied and the resulting displacements in their compo-
nents are calculated (ϕ, δx, δy, ∆lm) according to Equations (1)–(6). All load components
are increasing and decreasing together along the load ranges, respectively. The loads were
applied in about 10 steps.

Figure 6. (a) Design features of the photomask for the direct image segment and adjusted DIC
algorithm parameters, (b) carrier flanges with both senor parts.

3.2. Results

Firstly, the results of uniaxial loads are shown. Afterwards, the crosstalk behavior
between in-plane and out-of-plane displacement is investigated, the driven correlations
in Figure 3 and Equation (4) are experimentally evaluated and both centers of rotation
→
c CR_d and

→
c CR_m are determined. Finally, the structure is loaded with in-plane displace-

ment causing multiaxial loads (Fx + Fy + Mz) and then with the whole load components
(Fx + Fy + Fz + Mz) and the results are shown. At the end of this subsection, the obtained
regression models for each displacement component (δx, δy, ϕ, ∆lm) and the achieved
accuracy in each loading case are determined and compared, see Table 2. This is followed
by a discussion of possible causes of the measurement deviation.

3.2.1. Results of Uniaxial Loading

Figure 7 presents the achieved results for uniaxial loads (Fx, Fy, Fz, Mz).
As shown in Figure 7, the deflections δx and δy, the twist angle ϕ and the strain ∆lm

determined by DIC show very good and linear agreement with the reference values. The
regression models shown here are used in the following tests.
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3.2.2. Determining the Crosstalk Behavior

The angle ∅, by which the mirrored beam is twisted to the image sensor coordinate
system, and the crosstalk between in-plane displacement components δx and δy and the out-
of-plane displacement ∆lm are determined by uniaxial loading of the structure with Fx and
Fy, respectively; see Figure 8a. Thus, the angle ∅ can be calculated according to Equation (6).
Afterwards, biaxial bending loads Fxy are applied, the resulting displacement of ∆P3 at the
mirrored image segment is transformed into the boundary line coordinate system (x̂− ŷ)
and the correlations between the resulting in-plane displacement components (δx and δy)
and the displacement components ∆P3_x̂ and ∆P3_ŷ at the mirrored image segment after
transformation the coordinate system with ∅ are determined; see Figure 8b,c. In case of a
torsion load, the crosstalk was investigated by determining the resulting angle of twist of
both image segments. Figure 8d shows the resulting correlation between the twist angle ϕ
and the corresponding rotation of the mirrored image segment.

Figure 7. Measurement accuracy achieved for uniaxial in comparison with reference values.
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Figure 8. Characterization of sensor behavior, (a) determined angle of boundary line ∅, (b) determined crosstalk between
δx and P3_x̂ for uniaxial (Fx) and biaxial (Fxy) loading, (c) determined crosstalk between δy and P3_ŷ for uniaxial (Fy) and
biaxial (Fxy) loading, (d) crosstalk of the twist angle ϕ on mirrored image segment.

As shown in Figure 8b–d, the slopes of the determined regression models are only
slightly different from the theoretical values in Figure 3. Equation (4) is therefore modified
with the new slopes to:

∆
→
lm = R(∅)·

(
→
c 3 + ∆

→
P3 −

→
c CR_m −

(
cos(2ϕ) − sin(2ϕ)
sin(2ϕ) cos(2ϕ)

)
·
(→

c 3 −
→
c CR_m

))
−( 1.135 2.081 )·R(∅)·

→
δ xy

(8)

The inaccurate application of the displacement δx and δy as shown in Figure 8a is
caused by the inaccurate manual load adjustment in the designed test bench. The calculated
angle ∅, however, seems to be very accurate, as can be seen in the good correlation of the
displacement ∆P3 along the x̂- and ŷ-axis to the deflections δx and δy, respectively, for both
uniaxial und biaxial loading.
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3.2.3. Determining of Centers of Rotation

As described in Section 3.1, the centers of rotation
→
c CR_d and

→
c CR_m can be determined

by calculating the intersection points of two linear functions, which are described by the
two points of each pattern before and after a rotation caused by a mere torsional load. As
can be seen in Table 1, the initial positions (

→
c i) of points P1−4 are given. After loading

the structure with Mz = 40 Nm, an image is acquired and the resulting displacements

at each point (∆
→
P i) are determined by means of the DIC algorithm. This results in the

new positions (
→
c i + ∆

→
P i). The intersection points of two linear functions connecting two

points P1,2 and P3,4 before and after the displacement, result in the corresponding centers
of rotation for each image segment (

→
c CR_d,

→
c CR_m). See Table 1 and Figure 9.

Table 1. Determination of the centers of rotation in both image segments.

Direct Image Segment Mirrored Image Segment

P1 P2 P3 P4

x y x y x y x y

initial positions
→
c i

552 1530 1847 1433 804 489 1025 1145

linear equations y = −0.0749 x + 1571.3 y = 2.9683 x − 1897.5

calculated
displacement ∆

→
P i

0.32 −2.12 −1.8 2.2 −1.66 0.55 −5.9 1.97

new position
→
c i + ∆

→
P i

554.22 1533.47 1432.59 1852.91 802.34 488.45 1019.1 1146.97

linear equations y = −0.0716 x + 1567.4 y = 3.0331 x − 1944.1

intersection
points

→
c CR_d = (1181.818, 1482.782)

→
c CR_m = (718.03, 233.8)

Figure 9. Positions of points P1−4 before and after the torsional load and positions of the centers of
rotation (a) for the direct image segment and (b) for the mirrored image segment.

As visualized in Figure 9, the determined center of rotation for the direct image
segment lies nearly in the middle of the image sensor surface and matches the position of
the direct pattern to the image sensor in Figure 2. For the mirrored image segment, the
center of rotation lies in the lower part of the image sensor, due to the offset in the height
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and the double mirroring of the mirrored pattern, see Figures 2 and 3. The observed shift
to the left side of the image sensor had to be caused by the rotation of the mirrors to the
image to the image sensor by the determined angle ∅.

3.2.4. Results of Multiaxial Loads (Fx + Fy + Mz)

With the known center of rotation for the direct image segment
→
c CR_d, in-plane dis-

placement causing the load combination Fx + Fy + Mz can be applied. The measured dis-
placements ∆P1 and ∆P2 are then calculated to δx, δy and ϕ according to Equations (1)–(3).
First, an exemplary calculation is performed to demonstrate, how to identify the trans-
lational (δx and δy) and rotational (ϕ) displacement components from the resulting dis-
placement of points P1 and P2 in a combined bending and torsion load (Fx = −154.4 N,
Fy = −158.2 N and Mz = 40 Nm).

In Figure 10a, the initial positions of points 1 and 2, the calculated displacements by
the DIC algorithm, the new positions and the center of rotation, needed for compensation,
are shown. In Figure 10b,c, the two images (before and after the load) were composed
with each other in Matlab by using the imfuse function to show the real displacements ∆P1
and ∆P2.

Figure 10. Initial and new positions of points 1 and 2 after multiaxial loading of the structure with (Fx + Fy + Mz) and the
calculated displacements (a–c) real displacements of P1 and P2 in composite images.

With these parameters, the angle of twist ϕ and the deflections
→
δ xy,1 and

→
δ xy,2 can

be determined from the calculated displacements ∆P1 and ∆P2. First the angle of twist
is calculated. For that purpose, the two vectors

→
v 1 and

→
v 2 are determined according the

Equation (1):

→
v 1 =

(
P2_x− P1_x
P2_y− P1_y

)
=

(
1295
−97

)
,
→
v 2 =

(
(P2_x + ∆P2_x)− (P1_x + ∆P1_x)
(P2_y + ∆P2_y)− (P1_y + ∆P1_y)

)
=

(
1295.33
−92.72

)
Subsequently, the angle between these vectors (angle of twist ϕ) is calculated according

to Equation (2):

ϕ = arccos

 →
v 1·
→
v 2∣∣∣→v 1

∣∣∣× ∣∣∣→v 2

∣∣∣
 = arccos

(
1295× 1295.33 + (−97×−92.72)√

12952 +−972 ×
√

1295.332 +−92.722

)
= 0.1894◦

Finally, both deflections
→
δ xy,1 and

→
δ xy,2 are determined by mean of Equation (3):

→
δ xy,1 =

(
546.88
1510.36

)
−
(

1181.82
1482.78

)
−
(

cos(0.1894) − sin(0.1894)
sin(0.1894) cos(0.1894)

)((
552

1530

)
−
(

1181.82
1482.78

))
=

(
−634.94

27.58

)
−
(

cos(0.1894) − sin(0.1894)
sin(0.1894) cos(0.1894)

)(
−629.82

47.22

)
=

(
−4.967
−17.667

)
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→
δ xy,2 =

(
1842.21
1417.64

)
−
(

1181.82
1482.78

)
−
(

cos(0.1894) − sin(0.1894)
sin(0.1894) cos(0.1894)

)((
1847
1433

)
−
(

1181.82
1482.78

))
=

(
660.39
−65.14

)
−
(

cos(0.1894) − sin(0.1894)
sin(0.1894) cos(0.1894)

)(
665.18
−49.78

)
=

(
−4.967
−17.559

)
As can be seen in the table, the displacements (∆P1 and ∆P2) of both points were

different due to the combined torsional load and the different position of their center of
rotation. After determining the angle of twist and compensating for its effect, the two dis-

placements (
→
δ xy,1 and

→
δ xy,2) became almost identical. Furthermore, the two displacements

are averaged and transformed to the coordinate system of the reference sensor, which in
our test bench is rotated by 29 degrees to the coordinate system of the image sensor. As the
final result we get δx = −12.79 pixel and δx = −13.09 pixel.

In the same way, the displacement components are determined in the case of combined
load Fx + Fy + Mz. Figure 11 presents the achieved results for this case.

Figure 11. Calculated displacement components (δx, δy, ϕ) when multiaxial loading the structure with (Fx + Fy + Mz).

The calculated deflections δx, δy and the twist angle ϕ also show good and linear
agreement with the reference values. Compared to uniaxial loads in Figure 7, a small
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deviation for deflection from the reference model can be observed. One possible reason
for this deterioration is the screw joints used in the prototype, which are suspected of
exhibiting settling behavior under multiaxial loading of the structure.

3.2.5. Results of Multiaxial Loads (Fx + Fy + Fz + Mz)

In order to avoid any settling behavior in the bolts, the load ranges were reduced
in comparison to previous tests as follows: Fx and Fy from ±250 to ±100 N, Fz from
±3 to ±1 kN and Mz from ±65 to ±50 Nm. After applying the whole load combination
(Fx + Fy + Fz + Mz), the measured displacements ∆P1−3 are calculated to (δx, δy, ϕ and ∆lm)
according to Equations (1)–(3) and (8). Figure 12 shows the results for this loading case.

Figure 12. Calculated displacement components (δx, δy, ϕ, ∆lm) when multiaxial loading the structure with (Fx + Fy + Fz + Mz).

The calculated deflections δx, δy and strains ∆lm in Figure 12 show good accuracy
and linearity to the reference values despite reduction of the loading range and thus the
measuring range. However, the twist angle ϕ seems to have a higher deviation compared
to the previous uniaxial Mz und multiaxial (Fx + Fy + Mz) load. Despite the relatively
high deviation, the displacement components calculated by DIC and the derived equations
show very good results. The accuracies achieved in the three loading cases with respect
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to the used regression models are shown in Table 2. The deviations are specified as the
maximum relative error related to the maximum measured value for each displacement
component (δx, δy, ϕ, ∆lm).

Table 2. Used models and achieved accuracy of the results in Figures 7, 11 and 12.

Displacement
Component Load Type Model Max. Measured Value in µm

Max. Deviation/Max.
Measured Value

in%

δx

Fx
y = 1.014 x 20.65

2.58

Fx + Fy + Mz 9.75

Fx + Fy + Fz + Mz 2.50

δy

Fy
y = 1.011 x 20.33

4.22

Fx + Fy + Mz 9.77

Fx + Fy + Fz + Mz 4.71

ϕ
Mz

y = 0.996 x 0.242
2.45

Fx + Fy + Mz 5.53

Fx + Fy + Fz + Mz 10.43

∆lm
Fz y = 1.0215 x 8.22

2.66

Fx + Fy + Fz + Mz 3.18

As can be seen in Table 2, the obtained models have a slight deviation from the
theoretical value “1” at uniaxial loads indicating a good robustness of the system in
spite of simple manual assembly of the prototype. However, the calculated deviation
varies between 2.5% and 10.43%. The displacements (δx,δy ∆lm) under uniaxial and whole
multiaxial load show the best accuracy and almost the same deviation. The twist angle, on
the other hand, shows a higher deviation with multiaxial loading.

3.2.6. Sources of the Measurement Errors

The results shown in Figure 12 were only obtained by tightening the screws and si-
multaneously reducing the load range. Nevertheless, a deterioration in accuracy, especially
compared to the results of uniaxial loading case in Figure 7, remains visible. There was
no critical observation regarding the image quality, e.g., disappearance of features under
tensile load. Due to the uniqueness of the features in their surroundings, no miscorrelation
was suspected by the DIC algorithm. In this particular experiment, the structure length,
respectively, the distance between the camera and the object, changed by only ±9 µm,
which is within the depth of field for the used imaging system.

However, a major suspicion relates to eccentric axial loading of the structure. Such
loading will lead to non-uniform circumferential deformation of the structure and hence tilt-
ing of the carrier flanges, which can result in a falsification of the pattern displacement. In
this case, the angle of twist would be strongly affected since the pattern displacements un-
der torque loading of the structure are relatively very small compared to the displacements
under bending or tensile loading.

A look at the bending force and bending moment curves at loading cases (Fx + Fy + Mz)
and (Fx + Fy + Fz + Mz) made it clear that in a multiaxial loading combined with axial load,
no linear relationship can be found between the bending forces and the bending moments
(see Figure 13). This means, that the system behaves differently at each load step.
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Figure 13. Correlation of bending moments to bending forces in both load cases (a) for Fx + Fy +Mz and (b) for Fx + Fy + Fz +Mz.

The clear linearity in load case (Fx + Fy + Mz) indicates a homogeneous deformation
of the structure during the whole test, this does not seem to be the case in load case
(Fx + Fy + Fz + Mz) and a non-uniform deformation of the structure over the circumference
due to eccentric axial loads is assumed.

4. Conclusion and Outlook

In the present study we investigated the principal applicability of a camera-based
sensor as a structurally integrated multi-axis force/torque sensor within the framework
of a prototype. It has been demonstrated that all possible displacements can be detected
by the low-cost setup of a camera-based sensor. The use of photomasks with a defined
feature position and feature size allows for high-contrast imaging with simple light sources,
increasing measurement accuracy and sensitivity with greatly reduced computational
effort compared to the conventional application of DIC.

Through simple geometric relationships, both structure deflection and twist angle
were clearly observable in the case of multiaxial load, provided the center of rotation was
known. For the identification of the center of rotation, a single, preferably torsional, load is
required, that results in a pattern rotation around the searched point.

The linear and reproducible curves in all load combinations prove the functionality
and simplicity of the presented measurement concept. Despite the achieved high mea-
surement sensitivity of the DIC, resulting from the small and high-contrast features in the
designed photomask, deviations of up to 10% were observed. These deviations are partly
attributed to eccentric axial loads that cause the structure to deform unevenly around
its circumference. This deformation condition causes the carrier plates (flanges) to tilt.
Since the introduced sensor concept cannot measure this tilting and take into account its
behavior, this load case indicates a key issue for such sensor concepts and must be avoided.
In comparison, strain gauge based 6-axes force/torque sensors are usually equipped with
separate strain gauges to measure bending moments in addition to bending forces, and
therefore do not suffer from this problem in the same way.

In conclusion, however, the presented sensor concept shows several advantages for
the field of sensor integrated load-bearing structures and proves to be very attractive
for further investigations. The substitution of conventional transducers by contactless
measurement enables a multi-axis deformation measurement with higher sensitivity at
significantly lower cost. Optical digital measurements have a tremendous advantage
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in terms of zero-point stability because these structures are usually installed once and
referenced with initial installation.

In the future, a suitable process design for sensor integration will be addressed and
measurement accuracies will be investigated with respect to the achievable accuracy in the
assembly. Once the sensor component has been successfully integrated into the structure
without failure-prone screw connections, a comprehensive error analysis of the sensor will
be carried out.

5. Patents
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