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Abstract: The tube contours in two-dimensional images are important cues for optical three-
dimensional reconstruction. Aiming at the practical problems encountered in the application of
tube contour detection under complex background, a fully convolutional network (FCN)-based tube
contour detection method is proposed. Multi-exposure (ME) images are captured as the input of
FCN in order to get information of tube contours in different dynamic ranges, and the U-Net type
architecture is adopted by the FCN to achieve pixel-level dense classification. In addition, we propose
a new loss function that can help eliminate the adverse effects caused by the positional deviation and
jagged morphology of tube contour labels. Finally, we introduce a new dataset called multi-exposure
tube contour dataset (METCD) and a new evaluation metric called dilate inaccuracy at optimal
dataset scale (DIA-ODS) to reach an overall evaluation of our proposed method. The experimental
results show that the proposed method can effectively improve the integrity and accuracy of tube
contour detection in complex scenes.

Keywords: fully convolutional network; tube contour detection; multi-exposure images; U-Net;
dilation operation

1. Introduction

Tubes are widely used in the fields of aerospace, automobiles, ships, and other fields
for transporting liquids or gases such as fuel, coolant, and lubricating fluid. These tubes
are generally metallic. The contours of tubes in two-dimensional images usually appear as
edges containing certain shallow features (such as gradient, intensity) and deep features
(such as texture, shape, and spatial relation), as shown in Figure 1a. Accurate detection
of these contours is very important for achieving three-dimensional reconstruction and
measurement of tubes [1–3]. In theoretical research and practical applications, many
scholars have proposed various methods that can be used for the detection of tube contours.

In the field of image processing, many edge detection algorithms have been pro-
posed [4,5], and some of them have been used to perform tube contour detection in some
single tube measurement applications [3,6]. These kinds of methods only require the
gradient information in the image to complete the edge detection work. Therefore, these
methods have the advantage of simple design, easy operation and high efficiency. How-
ever, due to the lack of high-level features, these methods are easily disturbed by messy
backgrounds, uneven lighting and ambient noise.

There are some other researchers [7,8] who adopted the combination of multiple
feature descriptors, such as texture, shape and spatial relation, to realize the tubular object
recognition under general background. To a certain extent, these kinds of methods improve
the robustness and stability of the result. However, these methods need a considerable
amount of expertise for the precise modeling of deep features, which is not only difficult to
design but also limits the scope of applications.

Nowadays, deep learning technology has achieved excellent performance in various
fields. Especially, fully convolutional networks (FCN) can take arbitrarily sized images
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as input and achieve pixel-level dense prediction, so they are widely used for image
segmentation [9,10], edge detection [11] and so on. Existing FCN models, such as U-
Net [12] and HED [13], can also be used for tube contour detection with a little modification.
Since the training process of neural networks enables the automatic learning of feature
hierarchies, these kinds of methods show great potential in the tube contour detection task.
However, the existing FCN models are not designed especially for the task of tube contour
detection, and the detection results commonly have problems such as low positioning
accuracy and low integrity.

In the present study, aiming at the practical problems encountered in the application of
tube contour detection under complex background, an FCN-based tube contour detection
method is proposed. Meanwhile, we introduce a new dataset and a new evaluation metric
to achieve an overall evaluation of our proposed method.

1.1. Related Work

In this paper, the previous works on tube contour detection are divided into three
categories: gradient-based methods, multiple feature-based methods and deep learning-
based methods.

1.1.1. Gradient-Based Methods

In the pipeline multi-camera reconstruction system established by Zhang et al. [6], the
classical Canny algorithm [4] was adopted to realize tube contour detection, while in the
tube axis reconstruction method described by Sun et al. [3], an accurate sub-pixel edge
location algorithm based on partial area effect [5] was used to detect tube contours. These
methods require the tube contours to appear as step edges, and the edge detection processes
depend heavily on the gradient features. Therefore, these methods are easily affected by
messy backgrounds, and backlights are generally required in practical applications to
obtain high-contrast images with clear tube contour edges. Figure 1b shows the edge
detection result of Figure 1a by the Canny algorithm [4].
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Figure 1. Tube contours detected by different methods. (a) Ground truth; (b) Canny [4]; (c) Aubry [8];
(d) U-Net [12]; and (e) HED [13].

1.1.2. Multiple Feature-Based Methods

Thirion et al. [7] proposed to implement tube segmentation in industrial images by
fusing methods from physics-based vision, edge and texture analysis, probabilistic learning
and the use of the graph-cut formalism. Figure 1c shows the tube contour detection result
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of Figure 1a by the method proposed by Aubry et al. [8]. In this method, an intensity profile
is first obtained by manually defining a parallel strip segment primitive (the blue line in
Figure 1c), then the tubular object recognition process will be accomplished by matching of
this intensity profile (the green line in Figure 1c). The tube contour detection task can be
further accomplished based on these methods. Due to the combination of multiple features,
these methods have shown better performance under general background than methods
that use gradient features only.

1.1.3. Deep Learning-Based Methods

Here, we focus on the potential of FCN models in tube contour detection task. The
idea of FCN was first introduced by Long et al. [14] for image segmentation. The biggest
characteristic of this network is that it converts fully connected layers of traditional convo-
lutional neural network to convolutional layers. Later on, Ronneberger et al. [12] proposed
U-Net, which consists of a contracting path to capture context and a symmetric expanding
path that enables precise localization. This network has achieved excellent performance
in segmentation tasks with small dataset sizes. Such as Bardis et al. [15] proposed to use
U-Net to realize organ segmentation with 8~320 samples, and Wang et al. [16] modified
U-Net for ore image semantic segmentation with 76 samples. Subsequent networks such
as SegNet [17], DeepLab series [18–20] and PSPNet [21] are all FCN-based, and they have
shown good performance on segmentation tasks with large-scale datasets. The networks
mentioned above can also be used for tube region segmentation directly, but further post-
processing is needed to obtain tube contours. Figure 1d shows the tube segmentation
result of Figure 1a by the U-Net [12]. Although the tube regions are well segmented (the
green area in Figure 1d), the positioning accuracy of tube contours is poor (the red con-
tours in Figure 1d). This is mainly because the training process of segmentation network
pays more attention to the classification results of tube’s inner regions, which occupy a
large proportion, rather than the classification results of contour points, which occupy a
small proportion.

Other type of FCN-based networks, such as HED [13] and its variants [22], are de-
signed for general edge detection task. The HED network inserts a side-output layer
after the last convolutional layer of each stage in a VGGNet [23], and deep supervision is
imposed at each side-output layer, so that the result is toward the edge detection. Figure 1e
shows the edge detection result of Figure 1a by the HED [13]. Due to the lack of semantic
description of the detected edges, these networks cannot be directly used for tube contour
detection under complex background.

In order to detect the edges of specific objects, Yu et al. [24] defined a category-aware
semantic edge detection task and proposed CASENet to complete the task. The CASENet
adopts a modified ResNet-101 [25] architecture with dilated convolution as the backbone
and uses a multi-label loss function to supervise the training process. In recent years,
some other networks [26,27] have been proposed for the same purpose. Both of these
networks have achieved excellent performance on large standard benchmark datasets such
as SBD [28] and Cityscapes [29]. Nevertheless, tube contour detection under complex
background is still a challenging task in practical applications, mainly due to the following
two aspects:

• Poor tube image quality. For metallic tubes, some areas in the scene may exceed the
dynamic range of camera sensor due to problems such as reflections, shadows and
uneven lighting, which also means over-saturated or under-saturated regions may
appear in tube images. One single low dynamic range (LDR) image cannot provide
complete and absolute tube contour information in the process of detection;

• Low contour label accuracy. It is difficult to accurately label the tube contours by
manual, and the binary labels naturally have jagged morphology instead of ideal
smooth contours. These factors will directly affect the performance of networks.
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1.2. Contributions

In order to improve the accuracy and integrity of tube contour detection under com-
plex background, we present a novel FCN-based tube contour detection method. The main
contributions of this paper are as follows:

• We propose to use high-resolution multi-exposure (ME) images as the input of an
FCN model. These ME images of different dynamic ranges can guarantee the integrity
of tube contour information;

• A new loss function, which is calculated based on dilated contours, is introduced
and used in the training of FCN. Minimizing this loss function will help to eliminate
the adverse effects caused by positional deviation and jagged morphology of tube
contour labels;

• We present a new dataset and a new evaluation metric to verify the effectiveness of
our proposed method in the tube contour detection task.

2. Method

Currently, most of the neural networks used for image segmentation and edge de-
tection have the following three characteristics: (1) FCN architecture is adopted to ensure
that they can be trained end-to-end and provide efficient dense prediction; (2) deconvolu-
tional layers are used to restore the condensed feature maps to full-size at the top of these
networks; (3) skip connections are used for combining semantic information from deep
layers with appearance information from shallow layers to produce accurate pixel-level
classification. As one typical implementation of FCN, the U-Net [12] adopts an encoder-
decoder architecture, which is not only simple in structure but also has been proven to
be an effective model for image segmentation tasks with small datasets [15,16]. The FCN
used for tube contour detection in this study is modified based on the U-Net. What follows
is a detailed description of the network architecture and the loss function adopted in the
training process.

2.1. Network Architecture

The architecture of the FCN is shown in Figure 2. In this figure, the rectangular blocks
represent the feature maps. The height of each rectangular block reflects the size of the
feature map, and the width of each rectangular block represents the number of channels in
the feature map. In addition, the arrows between the feature maps (except for the orange
arrows) represent the layer operations. Different colored arrows indicate different kinds of
layers. The detailed correspondence is illustrated at the bottom of the figure. The orange
arrows in the figure indicate copying of feature maps.

The FCN takes ME images of a static scene instead of one single image as input. Each
group includes under-exposure, normal-exposure, and over-exposure images, to ensure
that the network can obtain the information of tube contours in different dynamic ranges.
Here, we take 9 images with resolution of 1024 × 1248 pixels as an example to illustrate
the architecture of the customized FCN model based on the U-Net.

The input ME images are first passed through a contracting path containing 5 encode
blocks (EB1 ∼ EB5) to extract multi-dimensional feature maps under 5 different spatial
scales (S1 ∼ S5). Each encode block contains two 3 × 3 convolutional layers with 1 pixel
zero padding, and each convolutional layer followed by a batch normalization layer and
a rectified linear unit (ReLU). The adjacent encode blocks are connected by max pooling
layers for down-sampling. The number of feature channels in EB1 is 32, and it is doubled
at each down-sampling step.

Subsequently, the FCN also contains an expansive path, which is composed of 5 decode
blocks (DB5 ∼ DB1, where DB5 is EB5). This path is used for up-sampling the feature
maps of different spatial scales, and eventually outputting a feature map, which has the
same size as the input images. The internal structure of decode blocks is the same as
encode blocks, but the adjacent decode blocks are connected by deconvolutional layers
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for up-sampling the feature maps. The number of feature channels is halved at each
up-sampling step.
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In addition, there are three points to note: (1) All the input feature maps of DBi
( i = 1 ∼ 4 ) are composed of two parts: half of the channels are from the output of EBi
on the same spatial scale Si, and the other half are from the output of DBi+1 followed
by a deconvolutional operation. This strategy integrates the semantic information from
deep layers with appearance information from shallow layers to produce accurate and
detailed tube contour detection results; (2) The max pooling layer between EB1 and EB2,
and the deconvolutional layer between DB2 and DB1 are with kernel size 4 × 4 and stride
4, while the rest max pooling and deconvolutional layers are with kernel size 2 × 2 and
stride 2. This design aims to increase the contraction and expansion rate of the FCN, so as
to reduce the memory space occupied by high-resolution feature maps and increase the
receptive field size. Compared to the original U-Net [12], this modification can reduce the
memory usage of training by approximately 36%; (3) The output of DB1 is followed by a
convolutional layer with kernel size 1 × 1 for converting the 32-channels feature map to a
single-channel output.

Based on the above descriptions, the detailed layer configuration of the designed FCN
is shown in Figure 3. In this figure, rectangles with different colors indicate different kinds
of layers. In summary, the proposed network contains a total of 19 convolutional layers,
4 max pooling layers and 4 deconvolutional layers, among which the first 18 convolutional
layers adopt kernel size 3 × 3, with each followed by a batch normalization layer and
a ReLU layer, while the kernel size of the last convolutional layer is 1 × 1. Besides, the
first max pooling layer in the contracting path and the last deconvolutional layer in the
expansive path are both with kernel size 4 × 4 and stride 4, while the rest max pooling
layers and deconvolutional layers are both with kernel size 2 × 2 and stride 2. In addition,
the dimensions of the input and output feature maps of each block in the designed FCN
are shown in Table 1.
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Table 1. The dimensions of feature maps in different spatial scales.

Spatial Scale
Contracting Path Expansive Path

Block Input Output Block Input Output

S1 EB1 1028 × 1280 × 9 1028 × 1280 × 32 DB1 1028 × 1280 × 64 1028 × 1280 × 32
S2 EB2 256 × 320 × 32 256 × 320 × 64 DB2 256 × 320 × 128 256 × 320 × 64
S3 EB3 128 × 160 × 64 128 × 160 × 128 DB3 128 × 160 × 256 128 × 160 × 128
S4 EB4 64 × 80 × 128 64 × 80 × 256 DB4 64 × 80 × 512 64 × 80 × 256

S5
Block Input Output

EB5(DB5) 32 × 40 × 256 32 × 40 × 512

2.2. Loss Function

The FCN converts the tube contour detection task to a single-label binary classification
problem. Hence, the well-known binary cross-entropy (BCE) can be used as the loss
function here. Let the input ME images be {I1, . . . , IH} with the same size of M× N. O
denotes the single-channel output of the FCN, and T denotes the ground truth contour
label corresponding to the input data, where the essence of T is a binary image of the real
contour (0 indicates non-contour, and 1 indicates contour). The output O first needs to be
converted to the tube contour’s probability map P by sigmoid function, and then the BCE
loss can be expressed as

LBCE = −
M

∑
i=0

N

∑
j=0

wTij

[
Tij log(Pij) +

(
1− Tij

)
log(1− Pij)

]
(1)

where Pij = 1/
(

1 + exp−Oij
)

, and i and j represent the row number and column number
respectively. Besides, considering that there are fewer pixels on the tube contours, we
also introduce the weight coefficient wTij into the loss function to balance the positive and
negative samples. The implicit premise of using BCE loss is that the contour labels are
absolutely accurate. Otherwise, the FCN will be forced to learn inaccurate contours, which
is directly manifested as overfitting. However, there are inevitably positional deviations
between the manually labeled tube contours and the real tube contours. Meanwhile, the
binary labels naturally have jagged morphology. These two factors are not conducive to
the training of FCN. Therefore, we propose a new loss function, called dilated contour (DC)
loss, for the FCN training. The specific calculation process of DC loss is shown in Figure 4.
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Similar to BCE loss, the calculation process of DC loss also depends on the tube
contour’s label T and probability map P, as shown in Figure 4a,d. The blue boxes in
Figure 4a indicate pixels labeled as tube contour, the red boxes in Figure 4d indicate pixels
predicted as tube contour and the green curve indicates the real position of tube contour.
First, we perform a morphological dilation operation on T and P, respectively, so as to
expand the contour width. This process is the same as max pooling, which slides a window
of fixed size (3 × 3) over the input and takes the max value in the window. Then, we get
the dilated contours as shown in Figure 4b,e. The process of dilation can be expressed
as follows: 

ˆ
Pij = max

i′ ,j′∈{−1,0,1}
P(i + i′, j + j′)

ˆ
Tij = max

i′ ,j′∈{−1,0,1}
T(i + i′, j + j′)

(2)

Then, we subtract
ˆ
P from T and

ˆ
T from P. This process can be expressed as follows:

Mij = sat
(0,1)

(
Tij −

ˆ
Pij

)
Rij = sat

(0,1)

(
Pij −

ˆ
Tij

) (3)

where sat denotes saturation arithmetic that limits the result to a fixed range, which is
0~1. The subtraction results M and R represent the missing and redundant contours of P,
respectively, as shown in Figure 4c,f. Finally, the DC loss can be calculated by M, R and T,
as follows:

LDC =

M
∑

i=0

N
∑

j=0

(
Mij + Rij

)
M
∑

i=0

N
∑

j=0
Tij

(4)

The DC loss mainly reflects the missing contours and redundant contours due to the
introduction of dilation operation. Therefore, the use of DC loss can effectively eliminate
the adverse effects caused by positional deviation and jagged morphology of tube contour
labels. However, the basic premise of using DC loss is that the FCN can output approximate
binary probability maps, which is difficult to meet in the early stage of training. Therefore,
its necessary to comprehensively use BCE loss and DC loss in the whole training process.
The effectiveness of this training strategy will be verified in Section 4.2.2.
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3. Multi-Exposure Tube Contour Dataset

Considering that there is no appropriate public dataset available for the overall evalu-
ation of our proposed method, we introduce and share a new dataset called multi-exposure
tube contour dataset (METCD). Each sample of this dataset contains ME images of a static
scene constructed with tubes, the corresponding high dynamic range (HDR) image and
tube contour labels with different widths.

3.1. Multi-Exposure Image Acquisition

We constructed a ME images acquisition system, which consisted of an industrial
camera (MER-504-10GM-P) from Daheng, an industrial lens (M1214-MP2) from Computar
and a LED ring light source. The lens aperture was set to f/5.6. The acquisition objects
were 7 metallic tubes; 4 of them were used to acquire train set, while the other 3 were
used to acquire validation set. Besides, all these tubes were used to acquire test set. For
each scene, we randomly placed 1~3 tubes and some distraction objects (such as bolts,
nuts, and washers) in the camera’s field of view, and then photographed with 9 different
exposure times (2048, 4096, 8192, 16,384, 32,768, 65,536, 131,072, 262,144 and 524,288 µs).
The acquired ME images were resize to 1024 × 1280 pixels at last. A sequence of captured
tube ME images is shown in Figure 5.
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As we can see from Figure 5, the parameter settings described above can ensure that
each group of ME images includes under-exposure, normal-exposure and over-exposure
images. By comparison, it can be found that the blue areas in Figure 5d,e tend to reflect
light, so the tube contours can be better represented in the images with shorter exposure
times. While the green areas in Figure 5g,h are on the dark side, the tube contours can be
better represented in the images with longer exposure times. This proves that the use of
ME images can effectively guarantee the information integrity of the tube contours. The
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METCD contains ME images of 72 different scenes, 30 of them are used for FCN training
(train set), 10 of them are used for evaluation (validation set) and the rest are used for
additional testing (test set).

3.2. Labeling Process

As shown in Figure 5, due to problems such as reflections, shadows and uneven
lighting, one single LDR image cannot guarantee that the tube contours all appear as
obvious step edges, while an HDR image can represent a greater range of luminance
levels [30], which will help to realize the precise labeling of tube contours. Therefore, first
we fused the ME images into HDR images using the method proposed by Debevec [31], then
we used tonemapper with bilateral filtering and set 2.2 as the value for gamma correction
to make the HDR images displayable and finally the tube contours were labeled based
on these displayable HDR images. However, it is inevitable that there will be positional
deviations (about 1~2 pixels) between the manually labeled tube contours and the real tube
contours. We provided four labels with different tube contour widths (1, 2, 4 and 8 pixels)
for each sample of METCD. The influence of contour width on the performance of the
proposed FCN will be discussed in Section 4.2.3. The tone mapped HDR image of Figure 5
and the corresponding tube contour labels with different widths are shown in Figure 6.
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3.3. Evaluation Metrics

Tube contour detection is essentially binary classification for each pixel. Therefore, the
classical metrics average precision (AP) and maximum F-measure at optimal dataset scale
(MF-ODS) are employed to evaluate the performance of different methods on METCD.
Here, the optimal dataset scale (ODS) refers to the best result at the optimal threshold across
the entire validation set. We also notice that the number of contour pixels is significantly
smaller than the number of non-contour pixels. In consequence, the maximum Matthews
correlation coefficient at optimal dataset scale (MCC-ODS), which is less influenced by
imbalanced data [32], is adopted as another evaluation metric.

In addition, for the same reason as using DC loss, we propose a new evaluation metric
called dilate inaccuracy at optimal dataset scale (DIA-ODS) to evaluate the performance of
FCN in the tube contour detection task. Figure 7 shows the calculation process of dilate
inaccuracy (DIA) for a single sample. In this figure, each small square represents a pixel
(black indicates non-contour pixels and white indicates contour pixels). As can be seen
from this figure, the calculation process of DIA is quite similar to that of the DC loss shown
in Figure 4. The main difference between these two processes is that the calculation of DIA



Sensors 2021, 21, 4095 10 of 20

requires a threshold t ∈ [0, 1] to perform binarization processing on the probability map P.
This process can be expressed as follows:

˜
Pij =

{
1
0

Pij > t
otherwise

(5)
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Then, we substituted the binarized probability map
˜
P and the ground truth label T

into Equation (2) (dilate operation) and Equation (3) (subtract operation), to obtain the
missing contour M and redundant contour R. Finally, the ratio of the sum number of
white pixels in M and R to the total number of the white pixels in T is the DIA of the
sample under the current threshold t. Let us take the situation shown in Figure 7 as an
example, there are 20 white pixels in T, and there are 4 and 6 white pixels in M and R
respectively. Therefore, the DIA of this sample calculated under the current threshold is
(4 + 6)/20 = 0.5.

The above DIA calculation process is completed for a single sample. Suppose there are
K samples in the validation set, then there will be probability maps {P1, . . . , PK} and ground
truth labels {T1, . . . , TK}. We choose a fixed threshold t to perform binarization processing

on all the {P1, . . . , PK} and get the binarized probability maps
{

˜
P1, . . . ,

˜
PK

}
. Then, the

calculation of the missing contours {M1, . . . , MK} and redundant contours {R1, . . . , RK}
for all samples are completed based on the method described in Figure 7. Finally, the DIA
calculated on the validation set can be expressed as:

DIA =

K
∑

k=1

M
∑

i=0

N
∑

j=0

(
Mijk + Rijk

)
K
∑

k=1

M
∑

i=0

N
∑

j=0
Tijk

(6)

It is not difficult to find from the above description that different threshold values will
yield different DIA results. We select the minimum DIA across the entire validation set by
varying threshold t, then we get DIA-ODS. Obviously, the lower DIA-ODS indicates the
better performance.

4. Experiments

In order to verify the effectiveness of the proposed method, we conducted several
experiments on the METCD. First the hyper-parameters and training strategies adopted
in this paper will be detailed in Section 4.1, and then comparative experiments from
four aspects are given in Section 4.2. The source code and METCD are available in the
GitHub repository: https://github.com/chexqi/Tube_Contour_Detection, accessed on
24 April 2021.

https://github.com/chexqi/Tube_Contour_Detection


Sensors 2021, 21, 4095 11 of 20

4.1. Experimental Framework

• Data Augmentation: Due to the small number of training samples in the METCD, data
augmentation was performed to improve the generalization ability of the network
and avoid overfitting. We augmented the training data with the following ways: (1)
random horizontal and vertical flipping with probability 0.5; (2) random rotation
between (−45◦, +45◦); (3) random horizontal and vertical translation in the scale of
(−0.2, +0.2); and (4) random scaling in the range of (1, 1.2).

• Optimization: The Adam optimizer was used as the optimization algorithm. The size
of mini-batches was set to 3. The learning rate was initialized to 0.01 and decayed
by a factor of 0.9 every 70 epochs. We ran all experiments for 700 epochs. The joint
loss function adopted in the training process was combined by BCE loss and DC loss,
as follows:

L = wBCELBCE + wDCLDC (7)

where wBCE, wDC ∈ {0, 1}, and they are indicate whether LBCE and LDC were used in
the calculation process of L, respectively. In addition, in order to solve the problem of
imbalance between positive and negative samples, the weight coefficient in Equation (1)
was assigned as

wTij =

{
1 i f Tij = 0
2 i f Tij = 1

(8)

• Implementation: All experiments were conducted on a machine equipped with an
Intel Core i9-9900X CPU, 32GB RAM and a NVIDIA GTX 2080Ti GPU.

4.2. Experimental Results

First, we conducted experiments from two aspects, data input and loss function,
to validate the effectiveness of using ME images and DC loss. Then, we evaluated the
influence of contour width on the performance of the FCN model. Finally, our proposed
method was compared with other neural network-based methods. We evaluated each
model using the metrics illustrated in Section 3.3 (AP, MF-ODS, MCC-ODS and DIA-ODS),
and all these metrics are shown by % in this paper.

4.2.1. Data Input

In order to prove the validity of using ME images as input, we compared the per-
formance of our proposed FCN with three different inputs: one with a single normally
exposed LDR image (LDR-FCN), one with a single fused HDR image (HDR-FCN) and
one with a sequence of ME images (ME-FCN). In this experiment, the contour labels with
2 pixels width were adopted for training, and the network was optimized only by min-
imizing the traditional BCE loss (wBCE = 1 , wDC = 0 ). The other parameters followed
the settings described in Section 4.1. In addition, considering the uncertainty caused by
random initialization and data augmentation, we ran each test 10 times and averaged the
results. The performances of FCN models with different inputs on the validation set are
presented in Figure 8 using the box diagram method, while the mean values of evaluation
metrics are reported in Table 2.
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Table 2. The mean values of evaluation metrics computed from FCN models with different inputs.

Models AP (%) MF-ODS (%) MCC-ODS (%) DIA-ODS (%)

LDR-FCN 84.3 77.5 78.7 4.2
HDR-FCN 86.2 79.6 81.1 3.9
ME-FCN 86.4 79.7 81.2 3.7

It can be clearly observed that the HDR-FCN models and the ME-FCN models achieve
higher AP, MF-ODS and MCC-ODS and lower DIA-ODS than the LDR-FCN models.
Furthermore, the ME-FCN models give the best performance in term of AP (86.4%), MF-
ODS (79.7%), MCC-ODS (81.2%) and DIA-ODS (3.7%), and avoid using the HDR image
fusion operation. Figure 9 shows some comparative tube contour detection results between
an LDR-FCN model and an ME-FCN model.
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4.2.2. Loss Function

On the basis of verifying the effectiveness of taking ME images as input, experiment
about loss function was conducted. The FCN models in this experiment were trained with
two different losses: one with BCE loss only (BCE-FCN, wBCE = 1 , wDC = 0 ), and the
other with both BCE loss and DC loss (BCE-DC-FCN, wBCE = 1 , wDC = 0 in the first
420 epochs and wBCE = 1 , wDC = 1 in the following 280 epochs). The contour labels with
2 pixels width were also adopted here for training. Figure 10 shows the BCE loss and DC
loss of the training processes for different FCN models.
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Figure 10. The BCE loss and DC loss of the training processes for FCN models trained with differ-
ent losses.

The blue curves and the red curves indicate the losses of BCE-FCN model and BCE-
DC-FCN model, respectively, while the dashed curves and solid curves refer to the values
of BCE loss and DC loss, respectively. As can be seen from Figure 10, compared with
FCN trained with only BCE loss, although the training process of BCE-DC-FCN achieves
higher BCE loss, it can also effectively reduce DC loss. Then, we ran each test 10 times.
The performances of FCN models trained with different loss functions are presented in
Figure 11, while the mean values of evaluation metrics are reported in Table 3.

Sensors 2021, 21, x FOR PEER REVIEW 14 of 21 
 

 

The blue curves and the red curves indicate the losses of BCE-FCN model and BCE-
DC-FCN model, respectively, while the dashed curves and solid curves refer to the values 
of BCE loss and DC loss, respectively. As can be seen from Figure 10, compared with FCN 
trained with only BCE loss, although the training process of BCE-DC-FCN achieves higher 
BCE loss, it can also effectively reduce DC loss. Then, we ran each test 10 times. The per-
formances of FCN models trained with different loss functions are presented in Figure 11, 
while the mean values of evaluation metrics are reported in Table 3. 

 
Figure 11. The performances of FCN models trained with different losses. 

Table 3. The mean values of evaluation metrics computed from FCN models trained with differ-
ent losses. 

Models AP (%) MF-ODS (%) MCC-ODS (%) DIA-ODS (%) 
BCE-FCN 86.4 79.7 81.2 3.7 

BCE-DC-FCN 85.7 80.1 81.6 2.8 

As can be seen from Figure 11 and Table 3, the BCE-DC-FCN models almost achieve 
the same performance in terms of AP (86.4% to 85.7%), MF-ODS (79.7% to 80.1%) and 
MCC-ODS (81.2% to 81.6%) as the BCE-FCN models, but they significantly reduce the 
DIA-ODS (3.7% to 2.8%). This indicates that the tube contours detected by BCE-DC-FCN 
models are completer and more correct (fewer missing contours and redundant contours). 
Figure 12 shows some comparative tube contour detection results between a BCE-FCN 
model and a BCE-DC-FCN model. 

Figure 11. The performances of FCN models trained with different losses.

Table 3. The mean values of evaluation metrics computed from FCN models trained with differ-
ent losses.

Models AP (%) MF-ODS (%) MCC-ODS (%) DIA-ODS (%)
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As can be seen from Figure 11 and Table 3, the BCE-DC-FCN models almost achieve
the same performance in terms of AP (86.4% to 85.7%), MF-ODS (79.7% to 80.1%) and
MCC-ODS (81.2% to 81.6%) as the BCE-FCN models, but they significantly reduce the
DIA-ODS (3.7% to 2.8%). This indicates that the tube contours detected by BCE-DC-FCN
models are completer and more correct (fewer missing contours and redundant contours).
Figure 12 shows some comparative tube contour detection results between a BCE-FCN
model and a BCE-DC-FCN model.
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Figure 12. Tube contour detection results on several samples. The images in the left column were
produced by an FCN model that was trained with BCE loss, and in the right column were produced
by an FCN model that was trained with BCE-DC loss.

4.2.3. Contour Width

Due to the positional deviation and jagged morphology of contour labels, its impossi-
ble to achieve absolutely accurate labeling of tube contours. When labels with different
contour widths are used for the FCN training and evaluation, the proportion and effect of
mislabeled pixels will be different. Therefore, on the basis of confirming the effectiveness of
using ME images and BCE-DC loss, we tested the influence of labels with different contour
widths on the performance of FCN. The FCN models in this experiment were divided into
four groups. They were trained on labels with 1-pixel (Width1-FCN), 2-pixel (Width2-FCN),
4-pixel (Width4-FCN) and 8-pixel (Width8-FCN) contour width, respectively. The other
parameters followed the settings described in Section 4.1. The box diagrams and mean
values of obtained AP, MF-ODS, MCC-ODS and DIA-ODS are shown in Figure 13 and
Table 4, respectively, which depict results after 10 evaluations.
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Table 4. The mean values of evaluation metrics computed from FCN models trained on labels with
different contour widths.

Models AP (%) MF-ODS (%) MCC-ODS (%) DIA-ODS (%)

Width1-FCN 58.6 62.7 66.3 4.9
Width2-FCN 85.7 80.1 81.6 2.8
Width4-FCN 94.8 87.7 87.8 2.5
Width8-FCN 98.0 92.2 91.5 2.6

The experimental results show that the AP, MF-ODS and MCC-ODS increase signifi-
cantly with the increase of contour width. This is mainly due to the decreasing proportion
of mislabeled pixels in tube contour labels. However, it should be noted that the DIA-ODS
is not effectively reduced when contour width is larger than 2 pixels, which means the
missing and redundant contours are not effectively reduced, while the width of the pre-
dicted tube contours will be wider as the contour width of ground truth labels increases.
This phenomenon is unfavorable for three-dimensional reconstruction and measurement
of tubes.

4.2.4. Comparison with Other Methods

In the following, we compared our method with other neural network-based methods
that can be used for tube contour detection. The experiment was divided into three groups.
In the first group, the CASENet [24] was employed for tube contour detection. This network
has been proved to be effective for large-scale semantic edge detection tasks. In the second
group, the original U-Net [12] was used for tube contour detection. This network has
achieved good results in various image segmentation tasks with small datasets. Our FCN
was adopted for tube contour detection in the third group. All the three groups in the
experiment were trained and tested on the METCD. Considering that if the high-resolution
images (1024× 1280 pixels) were directly used as the input of CASENet and original U-Net,
the memory used in training with a mini-batch of 3 would reach up to 24.3 GB and 33.9 GB
respectively. This was beyond the hardware limit of the experimental platform. So, we
first resized the tube images and the 4 pixel-width labels to 512 × 640 pixels and then
carried out experiments with these low-resolution samples. The data enhancement method
described in Section 4.1 was adopted by all networks. In addition, the training process of
CASENet adopted the multi-label loss described in [24], while the training process of the
original U-Net adopted the dice loss introduced in [33]. Figure 14 shows the precision-recall
curves and the F-measure curves of different methods. The box diagrams and mean values
of obtained AP, MF-ODS, MCC-ODS and DIA-ODS are shown in Figure 15 and Table 5,
respectively, which depict results after 10 evaluations.
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Table 5. The mean values of evaluation metrics computed from different methods.

Models AP (%) MF-ODS (%) MCC-ODS (%) DIA-ODS (%)

CASENet 71.7 70.0 68.3 13.9
U-Net 94.9 87.8 86.3 5.1
FCN 94.7 88.9 89.1 1.9

As can be seen from Figure 14, Figure 15 and Table 5, the CASENet models achieve
the worst performance in terms of AP (71.7%), MF-ODS (70.0%), MCC-ODS (68.3%) and
DIA-ODS (13.9%). This indicates that the CASENet is not applicable to the tube contour
detection task with small dataset. The original U-Net models and our FCN models almost
achieve the same performance in terms of AP (94.9% and 94.7%), MF-ODS (87.8% and
88.9%) and MCC-ODS (86.3% and 89.1%), but our FCN models achieve lower DIA-ODS
(1.9%). Figure 16 shows some comparative tube contour detection results between the
three kinds of methods.
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Figure 16. Tube contour detection results of comparing methods on the METCD. The images in the left column were
produced by the CASENet model, in the middle column were produced by the original U-Net model and in the right
column were produced by our FCN model.

As can be seen from the above experimental results, although our FCN architecture
accelerates the contraction and expansion rate of feature maps and enables high-resolution
images to be used as input, this does not reduce the performance of tube contour detection.
In addition, benefits from the using of ME images and BCE-DC loss are that the tube
contours detected by our FCN model are completer and more correct.

Its important to note that the METCD presented in this paper is a small dataset with
only 30 samples for training. Therefore, the FCN model trained on the METCD is not
applicable to other new scenarios. Figure 17 shows the detection effect of tube contours
under a new scenario. Among them, Figure 17a presents the result obtained by an FCN
model trained on the METCD and Figure 17b presents the result obtained by an FCN
model retrained on the new labeled dataset. It can be seen that under the new scenario, it
is necessary to label a new dataset and retrain the model to get the best performance.
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Figure 17. The detection effect of tube contours under a new scenario. (a) Using an FCN model
trained on the METCD; (b) using an FCN model retrained on the new labeled dataset.

To the best of our knowledge, this is the first paper in which deep learning method is
employed in the tube contour detection task under complex background. The experiments
in this section also proved that the proposed method is more suitable for the task of tube
contour detection than the other existing neural networks that can be used for the same
task. Moreover, the METCD introduced and shared in this paper also provides a useful
benchmark for the community of tube contour detection methods. We believe that such a
finely labeled dataset is very important for the training and evaluation of new developed
tube contour detection methods.

5. Conclusions

Aiming at the practical problems encountered in the application of tube contour
detection under complex background, we propose a new FCN-based tube contour detec-
tion method. Our FCN architecture is modified based on the U-Net. We accelerate the
contraction and expansion rate of feature maps, so as to enable the FCN model to take
high-resolution images as input and produce a thin tube contour detection result. In order
to solve the problem of poor tube image quality, ME images of a static scene are used as
the input of the FCN model. In addition, we propose a new loss function, namely, DC loss,
to solve the problem of low contour label accuracy. We also present a new dataset called
METCD and a new evaluation metric called DIA-ODS to evaluate the performance of the
proposed method. The experimental results show that the proposed method can effectively
improve the integrity and accuracy of tube contour detection in complex scenes.
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