
sensors

Article

Degeneration-Aware Localization with Arbitrary Global-Local
Sensor Fusion

Xiaqing Ding 1,2 , Fuzhang Han 1,2, Tong Yang 1,2, Yue Wang 1,2,* and Rong Xiong 1,2

����������
�������

Citation: Ding, X.; Han, F.; Yang T.;

Wang Y.; Xiong, R. Degeneration-

Aware Localization with Arbitrary

Global-Local Sensor Fusion. Sensors

2021, 21, 4042. https://doi.org/

10.3390/s21124042

Academic Editors: Sisi Zlatanova,

Kourosh Khoshelham and Chris

Rizos

Received: 10 May 2021

Accepted: 8 June 2021

Published: 11 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China;
xqding@zju.edu.cn (X.D.); 21960024@zju.edu.cn (F.H.); tong.yang@zju.edu.cn (T.Y.); rxiong@zju.edu.cn (R.X.)

2 State Key Laboratory of Industrial Control and Technology, Hangzhou 310027, China
* Correspondence: ywang24@zju.edu.cn

Abstract: Global localization is a fundamental ability for mobile robots. Considering the limitation of
single type of sensor, fusing measurements from multiple sensors with complementary properties
is a valuable task for study. In this paper, we propose a decoupled optimization-based framework
for global–local sensor fusion, which fuses the intermittent 3D global positions and high-frequent
6D odometry poses to infer the 6D global localization results in real-time. The fusion process is
formulated as estimating the relative transformation between global and local reference coordinates,
translational extrinsic calibration, and the scale of the local pose estimator. We validate the full
observability of the system under general movements, and further analyze the degenerated move-
ment patterns where some related system state would be unobservable. A degeneration-aware
sensor fusion method is designed which detects the degenerated directions before optimization, and
adds constraints specifically along these directions to relieve the effect of the noise. The proposed
degeneration-aware global–local sensor fusion method is validated in both simulation and real-world
datasets with different sensor configurations, and shows its effectiveness in terms of accuracy and
robustness compared with other decoupled sensor fusion methods for global localization.

Keywords: multi-sensor fusion; global localization; degeneration-aware state estimation

1. Introduction

Precise global localization is of high importance in many applications, such as navi-
gation and mapping. When there is no access to a pre-built environment map, the robot
can only obtain the global positioning information via global-aware sensors like global
positioning system (GPS) and ultra wide band (UWB). Generally these sensors can access
global positional information with bounded error. However, due to the installation lim-
itation of the ground stations and the signal block from obstacles, their measurements
might be intermittent and suffer from large noise. Besides, the 3 degree-of-freedom (3D)
positioning measurements are inadequate for some applications that require 6 degree-of-
freedom (6D) global pose estimation. On the other hand, local sensors that measure the
local environmental or kinematic information can achieve consecutive 6D pose estimation
in real time [1–5]. However, the poses are estimated relative to the origins of the trajectories,
which is unobservable in the global reference frame. The estimation results would drift
along with time and distance.

In this paper, we set to integrate the global and local sensors to achieve 6D global
drift-free localization. To do this, the extrinsic calibration between sensors is required, and
so is the mapping that transforms the local estimations to the global coordinate. Besides,
the scale of the local poses is also required since some local estimators such as monocular
visual odometry can not recover it. Many researches investigate the sensor-fusion problem
on specific sensor configurations, and the methods can be divided into two categories.

One kind of fusing methods tightly couple the measurements from different sensors
under the filtering or optimization based frameworks [6,7]. Generally, the reference frames
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of the local estimators are directly transformed to the global coordinates after initializa-
tion. During localization, the poses of the local estimators are propagated on the global
coordinate. These methods are usually carefully designed for specific sensor configura-
tions, and cannot be generalized to arbitrary configuration. To the best of our knowledge,
none of these methods are compatible with the local estimators that cannot recover the
absolute scale. Another kind of methods utilize the outputs from different pose estimation
systems as observation, and loosely couple them to achieve global localization [2,8,9]. In
this way, the pose estimation systems are decoupled, and the erroneous estimations or
measurements from one system would not affect the others. Besides, the loosely-coupled
methods are applicable to arbitrary sensor configurations due to the independency of the
pose estimation front-ends [8–10].

However, few of these methods have analyzed the observability of the global–local
sensor fusion system. As noted in [6], the sensor fusion systems would still remain globally
unobservable even if the global measurements are given. Besides, the observability of the
system would degenerate when the robot moves along certain motion patterns [11,12].
Many studies analyze the observability to guide the online movements or calibration
design [11,13], but few of them pays attention to avoiding degeneration from worsening
localization performance. One possible solution to address degeneration is to add heuristic
constraints on the system, e.g., priors like constant velocity or planar motion models, which
however would introduce false constraints on observable subspace if the hypothesis is
violated. Some works [14,15] address the degeneration occurred in laser odometry and
calibration, respectively. They first determine the unobservable directions according to
the eigenvalues of systems, and truncate the state update along with these directions.
These methods theoretically prevent noise from deteriorating unobservable states, but the
eigenvalue threshold for observability distinction might change from case to case, and the
optimizer has to be adapted for the truncated update.

In this paper, we propose a novel global–local sensor fusion framework that estimates
the translational extrinsic calibration, the scale of the local poses, and the relative transfor-
mation from the reference frame of the local estimator to the global coordinate within a
sliding-window, which are utilized to map the real-time local poses to the global frame
for localization. We prove the full observability of this formulation under general motion
patterns. To avoid the degeneration from deteriorating state estimation, we distinguish
the degenerated subspace before each optimization, and add prior constraints specifically
along with the unobservable directions. We validate the effectiveness of the proposed
method in both simulated and real-world datasets with different sensor configurations.
The experimental results also show that our method can effectively restrain the drift along
degenerated directions and work out robust global localization results. To summarize, the
contributions of the paper are listed as follow

• A novel global-local sensor fusion framework is proposed which is applicable to
arbitrary sensor configurations. The observability and degenerated motion patterns
of the proposed system are detailedly analyzed;

• A degeneration-aware optimization approach is designed to avoid the sensor fusion
framework being deteriorated by the noise on the degenerated directions;

• Both simulated and real-world datasets with multiple sensor configurations are uti-
lized to validate the generalization and effectiveness of the degeneration-aware sensor
fusion framework for global localization.

2. Related Works

The study in this paper is relative to multi-sensor fusion and degeneration-aware
state estimation. Considering the limitation of the single type of sensor, multi-sensor
fusion is a widely researched area in robotics. Generally, the sensors selected for fusion
possess complementary properties. For example, the monocular visual inertial system
fuses external visual information with internal inertial information to estimate 6D pose
with scale. In this paper, we pay attention to the fusion between local-aware sensors
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(e.g., light detection and ranging (LIDAR), camera, inertial measurement unit (IMU)), and
global-aware sensors (e.g., GPS, Motion Capture) for localization. The fusion frameworks
can be divided into filtering and optimization-based methods. Typically, most of the
filtering-based frameworks are developed based on Extended Kalman Filter (EKF) [6,8,16]
and utilize global and local information to update the propagated inertial data. To reduce
the first-order linearization error occurred in the EKF, some systems achieve sensor fusion
taking advantages of the other filtering solutions such Partical Filter [17,18] or Sigma-
point Kalman Filter [19,20]. Lynen et al. [8] propose a general multi-sensor fusion (MSF)
method that can utilize arbitrary global or local measurements to update the propagated
pose, in which the scale of the local estimator and the extrinsic calibration could also be
estimated during the localization. However, the inertial instrument is indispensable and
the observability is not validated in this method. Lee et al.[6] tightly couple the visual,
inertial, and GPS information for global localization, and simultaneously estimates the
extrinsic calibration and time-offset between sensors. Optimization-based methods are
proven to be more accurate than filtering-based methods [21]. During optimization, the
system states are iteratively estimated based on all of the valid measurements, which
however require a large number of computational resources. Many works relieve the
computational burden by only maintaining a sliding-window of states to achieve efficient
optimization [9,22,23]. However, few of these fusion methods address the degeneration
problem during online localization.

Observability is the vital property of dynamic systems which reflects whether the
inner states of the systems can be estimated from the observed measurements [24]. In
the global–local sensor fusion tasks, Lee et al. [6] prove that if directly adding the relative
transformation between the reference frames of the visual inertial odometry (VIO) and
GPS systems into the original VIO state for estimation, there still exists four unobservable
directions even though the global measurements exist. They address this problem by trans-
forming the states of the local VIO system to the global frame to achieve full observability,
which is inherently equivalent to marginalizing out the relative transformation between the
reference frames of VIO and GPS systems after initialization, and directly estimating the
state of the local VIO system in the global frame. This parameterization is also utilized in
some of the other global–local sensor fusion methods [7,10]. Another approach decouples
the local and global estimators and estimates the relative transformation between their
reference frames [25]. In this way the output of the high-frequency local estimator can
be directly transformed to the global frame without latency, and makes the system more
robust as the local and global estimators are decoupled. In this paper, besides the relative
transformation between reference frames, we further add the scale of the local estimator
and the extrinsic calibration between local and global sensors into the state, which makes
the system applicable to arbitrary sensor configurations. We also prove its full observability
under general movements.

Even though the fusion system is proved to be fully observable in general conditions,
the observability would degenerate if the robot moves with insufficiently excited motion.
Ref. [11] proves in detail that there exist several motion patterns that would introduce
unobservable directions even if the global measurement is provided in the inertial navi-
gation system (INS) aided framework. However, few works propose efficient solutions
towards preventing degeneration from deteriorating estimation results. Refs. [14,15] ad-
dress the degeneration problem by projecting the incremental update to the observable
direction, which needs to modify the update step in general optimizers. In this paper,
we automatically detect the degenerated directions before optimization, and specifically
add constraints based on the calculated directions to prevent the unobservable parameters
from being deteriorated by noise, which can be easily plugged in many existing systems
developed with general optimizers.
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3. Method

In this section, first the notations used throughout the paper are presented. Then
we introduce the formulation of the global–local sensor fusion system and its detailed
implementation for batch optimization. As a special discussion, we show that some
commonly-appeared motions in robotics are actually degenerated for sensor fusion. Finally,
we present our degeneration-aware optimization method that is designed to address the
degeneration problem occurred during online localization.

3.1. Notation

The nomenclature used throughout the paper is defined in Table 1. We consider
that the local estimator outputs 6D transformation TO

C from the local sensor frame C to
the reference frame of the odometry O. We assume that the global estimator outputs 3D
positional measurement pW

G of the global sensor frame G on the robot with respect to a
fixed world frame W. To fuse the outputs from the global and local estimators, we estimate
the extrinsic calibration TC

G between sensors, the scale s of the local estimator, and the
relative transformation TW

O during online localization, which constitute the system state
x. T(s) denotes that the transformation T is mapped to the real scale by s. We draw the
relation of the frames in Figure 1.

Table 1. Nomenclature.

Notation Explanation

C The sensor frame of the local estimator;
G The sensor frame of the global estimator;
O The reference frame of the local estimator;

W The reference frame of the global estimator, which also is
the world frame of the localization system;

L The first frame in the sliding-window;

T
The transformation matrix in SE(3), where T A

B represents
the relative transformation from frame B to frame A defi-
ned in frame A;

R The rotation matrix in SO(3), where RA
B represents the

rotation from frame B to frame A;

q Unit quaternion in Hamilton notation, with qA
B correspon-

ding to RA
B ;

p
Translation vector in R3, where pA

B denotes the translation
from frame B to frame A defined in frame A. pA

Bx
, pA

By

and pA
Bz

denote the components of pA
B along x, y, z axises;

x The system state;
s The scale of the local estimator in R+;
t The timestamp of the received message;
n The number of global measurements in the sliding-window;
εa, εb, εr The thresholds used for degeneration detection.

3.2. Global–Local Sensor Fusion System

The proposed sensor fusion system is demonstrated in Figure 2. It receives outputs
from arbitrary local and global estimators, and produces the global localization results
at the highest frequency of the local estimator. We estimate the transformation TW

O to
transform the output of the local estimator to the global frame instead of directly estimating
the current pose in the global frame. To restrict the computational requirement and estimate
the scale accurately, the fusion process is carried out on a sliding-window of recent n global
sensor measurements and the related local sensor frames within the corresponding time
duration, and we denote the first local sensor frame in the sliding-window as L. The length
of the sliding-window in this work is maintained according to the distance, but can be
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modified by any other criterion. Upon the sliding-window based formulation, we change
the estimated relative transformation from TW

O to TW
L and the system state is maintained

accordingly as
x = {RW

L , pW
L , pC

G, s}

Generally, the global sensors possess lower frequency than the local estimators. There-
fore, the system performs the fusion process each time it receives the measurement from the
global estimator. As shown in Figure 2, during each fusion process, we first align the newly
received global measurement with the two closest local frames to obtain the accurate local
pose at the exact timestamp of the global measurement. Then, we detect whether there
exists degenerated subspace according to the information within the sliding-window. If the
degeneration occurs, the corresponding degenerated directions would be calculated, which
further are utilized to construct prior constraints for degeneration-aware optimization.

𝑊

𝑂

𝐿
𝑻𝐶
𝑂(𝑠)

𝐺 𝐶

𝑻𝐶
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𝑊
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𝐬𝐥𝐢𝐝𝐢𝐧𝐠 − 𝐰𝐢𝐧𝐝𝐨𝐰𝐭𝐡𝐞 𝐨𝐫𝐢𝐠𝐢𝐧 𝐨𝐟 𝐭𝐡𝐞
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Figure 1. The demonstration of the frames and timeline utilized throughout the paper.

Degeneration-aware sensor fusion

Output from 6D 

local estimator 

(VO/VINS…)

System state 𝒙

Output from 3D 

global estimator 

(GPS/Vicon…)
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Transformation for global 

localization (Equation (5))

Measurement alignment

(Section 3.2.1)

Degeneration detection

(Algorithm 1)

Batch optimization

(Equation (17))

New global 
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𝑻𝑪
𝑶

𝒑𝑮
𝑾

𝑻𝑪
𝑾

update

Figure 2. The pipeline of the proposed degeneration-aware sensor fusion framework.

3.2.1. Measurement Alignment

We first align the global and local measurements according to the timestamps. The
global measurement pW

Gk
received at timestamp tk is aligned with two closest local mea-
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surements at timestamp tka and tkb as shown in Figure 1. We interpolate the corresponding
local pose TO

Ck
at the timestamp tk according to

λ =
tk − tka
tkb − tka

qO
Ck

=slerp(qO
Cka

, qO
Ckb

, λ)

pO
Ck

=(1− λ)pO
Cka

+ λpO
Ckb

(1)

in which slerp(·) denotes the spherical linear interpolation function [26].

3.2.2. General Batch Optimization for Localization

After aligning the newly received global measurement, the system state x = {RW
L , pW

L , pC
G, s}

is optimized according to the time-aligned measurements within the current sliding-
window. The error function constructed by the measurements at timestamp tk is for-
mulated as

epk = p̄W
Gk
− pW

Gk
(2)

in which p̄W
Gk

is derived by

TL
Ck

=

[
RL

Ck
pL

Ck
01×3 1

]
= (TO

L )−1TO
Ck

TW
Gk

=

[
RW

Gk
pW

Gk
01×3 1

]
= TW

L TL
Ck
(s)TC

G

=

[
RW

L pW
L

01×3 1

][
RL

Ck
spL

Ck
01×3 1

][
RC

G pC
G

01×3 1

]
p̄W

Gk
=RW

L RL
Ck

pC
G + sRW

L pL
Ck

+ pW
L

=RW
L (RL

Ck
pC

G + spL
Ck
) + pW

L

(3)

Summing up all the valid error functions in the sliding-window, the cost function for
the general localization based optimization is defined as

f = ∑
k

ρ(eT
pk

Ωeepk ) (4)

in which Ωe denotes the information matrix that can be derived as the inverse of the
measurement covariance matrix.ρ(·) represents the Huber’s robust kernel function [27]
which can suppress the effect of outliers. In this work, we minimize this non-linear
least-square cost function iteratively for system state optimization based on the Levenberg-
Marquardt algorithm [28,29].

Given the latest optimized state x, we can transform the continuous output of the
local estimator TL

Ct
to the world frame for real-time 6D global localization. The 6D global

localization at timestamp t can be calculated as

TW
Ct

=

[
RW

L RL
Ct

sRW
L pL

Ct
+ pW

L
01×3 1

]
(5)

3.3. Observability Analysis

For the optimization formulated in Equation (4), we first analyze its observability
in the general occasion. We linearize Equation (2) at the current estimate to compute
the Jacobian

Hk =
∂epk

∂x
=
[
Ξk I3×3 RW

L RL
Ck

RW
L pL

Ck

]
3×10

(6)
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in which Ξk corresponds to the Jacobian of RW
L on Manifold

Ξk = −RW
L [(RL

Ck
pC

G + spL
Ck
)×] (7)

We denote [a×] as the 3× 3 skew-symmetric for vector a = [ax, ay, az]T , which is formu-
lated as

[a×] =

 0 −az ay
az 0 −ax
−ay ax 0

 (8)

As the system state x changes slowly across time, the corresponding state transition
matrix Φ(t0, tk) between timestamps t0 and tk is identity. The observability matrix M can
be constructed following [30]

M =


...

HkΦ(t0, tk)
...

 =


...

Hk
...

 (9)

As in general cases the columns in Hk are linear independent. Thus based on Equation (9)
it can be noticed that in general cases the rank of M achieves 10 when n ≥ 4. Therefore,
when there are more than 4 global measurements in the sliding-window, the system
is observable.

3.4. Degeneration Analysis

In this subsection, we summarize the common degenerated motion patterns in the
robotics area and derive their corresponding unobservable directions.

3.4.1. Pure Translation along One Axis

This is a common motion pattern in autonomous driving. When the robot moves
along a straight line, RL

Ci
is invariant for any i ∈ [m, m + n− 1], in which m is utilized to

denote the beginning of the sliding-window. The translational measurement of the local
estimator can be derived as

pL
Ci

= αi p̄L
m0

(10)

in which p̄L
m0

is the unit vector of the translational direction and αi is a scalar variable that
can be derived as αi = ‖pL

Ci
‖/‖p̄L

m0
‖. Thus, in Hi the third block is constant, and the first

two blocks are also linear dependent. The right null-space matrix N of the observability
matrix M can be derived as

N =


03×3 p̄L

m0
−RW

L RL
Ci

RW
L [RL

Ci
pC

G×]p̄L
m0

I3×3 03×1
0 0


10×4

(11)

MN = 0 can be verified as Hi N = 0. Therefore, in this occasion, there is a four-dimensional
unobservable subspace which is constructed as span(N). The formation of N shows that
the first three column vectors are related to the translational components {pW

L , pC
G}, while

the last column vector is related to one direction of RW
L which is parallel to the translational

direction p̄L
m0

.
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3.4.2. Random 3D Translation

This would occur when the robot performs pure translation in 2D/3D space without
rotating. In this case, Equation (10) is violated while RL

Ci
keeps invariant, which decreases

the dimension of N to 3

N =


03×3
−RW

L RL
Ci

I3×3
0


10×3

(12)

We can find that RW
L is observable now, and there remain three unobservable directions

that are related to the translational components {pW
L , pC

G}.

3.4.3. One-Axis Rotation

When the robot turns along a fixed rotation axis ω ∈ R3 with non-zero translational
velocity, only the translational components along ω remain unobservable. In this case, RL

Ci
can be derived according to the Rodrigues’ rotation formula

RL
Ci

= RL
Cm

(I3×3 + sin(θi)[ω×] + (1− cos(θi))[ω×]2) (13)

in which θi denotes the rotation angle of RCm
Ci

. As [ω×]ω = 03×1, we can derive that
multiplying the third block of Hi by ω leads to

RW
L RL

Ci
ω = RW

L RL
Cm

(I3×3 + sin(θi)[ω×] + (1− cos(θi))[ω×]2)ω = RW
L RL

Cm
ω (14)

The result is constant for any i ∈ [m, m + n− 1]. Thus, the null-space matrix that satisfies
MN = 0 can be derived as

N =
[
01×3 −(RW

L RL
Cm

ω)T ωT 0
]T

10×1
(15)

It should be noticed that when the robot performs uniform motion, more dimensions
maybe unobservable. One case is that, when both the angular velocity and the translational
velocity are constant, the dimension of the unobservable subspace is expanded to 2 as one
direction of RW

L that is along with the rotational axis would be undistinguishable. Another
example is that, when the directions of the constant angular and translational velocity are
perpendicular, the scale of the local estimator would be unobservable. These are likely to
happen when the robot performs planar rotational movement, such as a car turns with
constant velocity in autonomous driving. Detailed proof of the two claims are derived in
the Appendix A.

3.5. Degeneration-Aware Batch Optimization

When there exists an unobservable subspace in the system, the related states are un-
constrained and susceptible to measurement noise. To address this problem, we first detect
the degenerated directions before the optimization process, then add prior constraints
specifically along these directions.

Similarly to [14], we calculate the eigenvalues {λl} and the corresponding eigen-
vectors {vl} by performing SVD decomposition on the Hessian matrix HT H, in which
H = [HT

m · · ·HT
m+n−1]

T is linearized at the latest estimated state before each optimization
and l = 0 · · · 9. We assume that {λl} is sorted and λ9 corresponds to the smallest eigen-
value. Theoretically the eigenvalues corresponding to the unobservable dimensions are
precisely zero, while in practice they are not because of the system noise. It is apparent
that a constant threshold ε is not sufficient to distinguish zero eigenvalues for all kinds
of systems, calling for more flexible construction of the threshold. We also quantitatively
analyze the influence of noise on eigenvalues in Section 4.1.

We propose a heuristic method to detect the unobservable subspace as shown in
Algorithm 1. The absolute thresholds εa and εb define the coarse but valid upper and lower
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bounds distinguishing the unobservable and observable subspaces. For the eigenvalue that
distributes between the two bounds, it is difficult to directly categorize it by a threshold
due to the unrestricted range of noise. We compute its ratio with the adjacent eigenvalues
to indicate whether they have the same type of observability. If the ratio is larger than
threshold εr, we assume that the adjacent eigenvalues have the same type of observability.
As the method traverses from the smallest eigenvalue, the eigenvalue is categorized as
relating to the unobservable subspace if it shares the same type of observability with its
previous one.

Algorithm 1: Detecting unobservable directions.
Data: εa, εb, εr, {ei} (i = m, · · · , m + n− 1, The set of error functions in the

sliding-window)
Result: Vu (The set of unobservable directions)

1 Linearize {ek} to get H;
2 {λl , vl} ← SVD(HTH), l = 0 · · · 9;
3 l = 9, Vu = {};
4 while l > 0 do
5 if λl > εa then
6 break;

7 if λl < εb then
8 Vu ← {Vu, vl}; l −−; continue;

9 αpost = λl/λl−1;
10 if l==9 then
11 if αpost < εr then
12 Vu ← {Vu, vl}
13 break

14 αpre = λl+1/λl ;
15 if αpre > εr then
16 Vu ← {Vu, vl}; l −−;
17 else
18 if αpre < εr and αpost < εr then
19 Vu ← {Vu, vl};
20 break;

After detecting out the degenerated subspace with dimension r, we collect the cor-
responding eigenvectors Vu = {v0, · · · , vr−1} which denote the degenerated directions.
Instead of projecting the incremental update to the observable directions during optimiza-
tion, we restrict the update in unobservable directions by adding constraints

eRj = log((R̂W
L )T RW

L )vj(0:3)

epW
Lj
= (R̂W

L )T(pW
L − p̂W

L )vj(3:6)

eej = (p̂C
G − pC

G)vj(6:9)

esj = (ŝ− s)vj(9)

(16)

in which j ∈ [0, r− 1]. eRj , epW
Lj

, eej and esj denote the constraints applied on RW
L , pW

L , pC
G

and s, respectively. (·̂) denotes the related state estimation before optimization. vj(a:b)
represents the vector that is compromised with the ath to bth elements of vj. These error
terms can be considered as priors to prevent the states from drifting in the unobservable
subspace, and are only added for optimization when ‖vj(a:b)‖ > 0.1, which means that
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the prior constraint on this state is activated. Finally the cost function in the proposed
degeneration-aware batch optimization is

f =
m+n−1

∑
i=m

ρ(eT
pi

Ωeepi ) + ∑
j∈SR

eT
Rj

ΩpeRj + ∑
j∈SpW

L

eT
pW

Lj
ΩpepW

Lj

+ ∑
j∈Se

eT
ej

Ωpeej + ∑
j∈Ss

esj Ωpsesj

(17)

in which SR, SpW
L

, Se and Ss denote the sets of activated prior constraints on the system
states, respectively. Ωp and Ωps are the information matrices of the prior constraints.

4. Experimental Results

We validate the effectiveness of our degeneration-aware sensor fusion method through
both simulated and real-world datasets. In simulation experiments, we first show the
sensitivity of the eigenvalues with respect to the measurement noise. Then we create four
sequences of simulated trajectories that correspond to the common degenerated motion
patterns analyzed in Section 3.4, and utilize them to demonstrate the effect of degeneration
on state estimation and the effectiveness of our proposed method in terms of preventing
the state from drifting along the degenerated directions. In real-world experiments, we
show the localization performance on indoor EuRoC [31] and outdoor KAIST [32] datasets.
EuRoC is a visual-inertial dataset collected by a micro aerial vehicle that performs 6D
movements. We utilize the 3D Leica MS50 laser tracker as the 3D global estimator and only
utilize the left images to perform monocular visual odometry, which serves as the local
pose estimator with no access to the absolute scale. KAIST dataset is collected in outdoor
urban environment on a car and we utilize the GPS as global estimator and stereo-IMU
information to perform local visual-inertial odometry. During the experiments, we set the
length of the sliding-window as 10 m for indoor dataset and 50 m for outdoor datasets.
All the experiments are executed on a laptop with a 2.70 GHz Intel Core i7-7500U CPU.
The codes are implemented in C++ and the optimization process is implemented with
Levenberg-Marquardt algorithms in g2o [33].

In the simulation experiments, different motion patterns are controlled by setting
different translational and rotational velocities for the local sensor. The minimum sampling
interval is 0.1 s, and the ground truth of the trajectories can be integrated based on the
velocities. The trajectories of the global sensor can be calculated based on the ground
truth of the system state using Equation (3). The global measurements are simulated
by corrupted the ground truth of the trajectories with Gaussian noise. To simulate the
drift of the local estimator, we add Gaussian noise on the relative pose in each sampling
interval, and integrate the corrupted relative pose to formulate the local measurements.
As the ground truth of the system state can be accessed in the simulation experiments, the
performances of different methods are evaluated by comparing the state estimation errors.

In real-world experiments, we evaluate the performances of different methods by the
absolute trajectory error (ATE) and rotational error [34]. For each global pose TW

Ct
estimated

at timestamp t, we find its corresponding ground truth pose TW∗
Ct

provided by the datasets
according to the timestamp. The localization error is derived as

Et = (TW∗
Ct

)−1TW
Ct

(18)

The ATE error relates to the norm of the translational component in Et, and the
rotational error relates to the rotational component in Et.

4.1. Sensitivity of the Eigenvalues

To quantitatively demonstrate the influence of the noise on the eigenvalues, we create
simulated trajectories that are related to two types of the degenerated motion patterns
shown on the first row of Figure 3. We add Gaussian noise on the simulated measurement
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and show the changing of the related eigenvalues. As the derivation of eigenvalues relates
to the measurements of the local estimator, we, respectively, add Gaussian noises with
standard deviations from 0 to 10 cm on the translational parts of the local measurements,
and add Gaussian noises with standard deviations from 0 to 6 deg on the rotational parts. To
avoid the influence of randomness, for each standard deviation we generate 200 trajectories
for eigenvalue evaluation. Figure 3a shows the trajectory generated when the robot moves
along a straight line and the eigenvalues drawn in Figure 3c,e are influenced by translational
and rotational noises on the local estimators with different standard deviations, respectively.
To keep the scale of the axis for better demonstration, we do not draw the value of the
5th eigenvalue influenced by the rotational noise in Figure 3e, which are around the same
values as shown in the results that influenced by the translational noise. The right column
includes the results tested when the robot moves with random one-axis rotation. The
trajectory is shown in Figure 3b. The eigenvalues drawn in Figure 3d,f are influenced
by the translational and rotational Gaussian noises, respectively. The curves in each
figures denote the means of the eigenvalues and the colored region surrounding the curve
represents the statistic of 200 trials. Some colored regions are hard to be distinguished as
they are too close to the curve in the related axis scale.

Figure 3. Eigenvalues of the system calculated on two degenerated trajectories with different
measurement noises. The curves in each figures denote the means of the eigenvalues and the colored
region surrounding the curve represents the statistic of 200 trials.

Based on our analysis in Section 3.4, when the robot moves along a straight line, there
should be four unobservable directions, which means that the smallest four eigenvalues
should be close to zero. When the robot moves with non-constant one-axis rotation,
there should be only one unobservable direction. We, respectively, draw the smallest
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five and three system eigenvalues tested on the two trajectories in the two columns of
Figure 3. The results show that when the noise is small, the eigenvalues corresponding
to the unobservable subspace are close to zeros (i.e., the 6–9th eigenvalues on the first
column and the 9th eigenvalue on the second column), and become larger when the noise
grows. Although the eigenvalues corresponding to the observable subspace are generally
large. Thus we could set the coarse upper bound εa and lower bound εb to distinguish
eigenvalues. However, we can notice that the 6th eigenvalue on the left column is close to
the 7th and 8th eigenvalues on the right column. If we utilize one constant threshold, it is
difficult to distinguish the unobservable and observable subspaces in this situation. In our
proposed detection method, the difference between the adjacent eigenvalues is taken into
consideration, which contributes to handle this problem. Based on the analysis of these
results, we set εa = 5, εb = 10−2, εr = 0.1 throughout the left of the experiments.

4.2. Simulation Results

In this subsection, we utilize simulated data collected under degenerated movement
patterns to perform ablation study on the effectiveness of the proposed degeneration-
aware sensor fusion. Specifically, we evaluate the accuracy of the estimated system state
optimized with general optimization formulated in Equation (4) and the optimization with
the degeneration-aware constraints (DC) in Equation (17), respectively. The simulated data
includes four types of trajectories in which the robot moves (a) along a straight line, (b)
with random 3D translation, (c) with perpendicular constant rotational and translational
velocity, and (d) with random one-axis rotation. The motion patterns are controlled by
the translational and rotational velocities. We set the sampling time as 0.1 s and the
trajectories are integrated based on the velocity. We add zero-mean Gaussian noise on the
relative pose within each sampling time to simulate the measurement noise of the local
estimator and integrate the relative poses to simulate the local measurements. The 3D
global measurements are collected every 1 s along the ground truth of each trajectory and
are also corrupted by the noise. The standard deviations of the rotational and translational
noises for the local estimator are 0.05 rad and 0.05 m. The standard deviation of the
translational noise for the global estimator is 0.5 m.

The estimation errors for the system state x are drawn in Figure 4 and we represent
the rotational error of RW

L in Euler Angle parameterization denoting as “yaw”, “pitch”, and
“roll” in the first three rows of the figure. Based on Equation (11), when the robot moves
along a straight line, the dimension of the unobservable subspace is four, which relates to
one rotational axis of RW

L along the moving direction and 3D translational directions that
are coupled in pW

L and pC
G. These can be reflected from the results in the first column of

Figure 4 indicated by dashed lines which do not converge in the related dimensions. On
the other hand, the results optimized with the proposed degeneration-aware constraints,
though could not converge to the ground truth in the unobservable directions as no valid
information is provided, do not diverge during the whole process. The results in the second
to fourth columns also validate our analysis in Section 3.4. Additionally, it is interesting
to notice that, as one direction of the unobservable space might be related to several state
variables, r dimensions of unobservable directions would cause the divergence of more
than r state variables.
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Figure 4. The evaluated state estimation errors tested on the simulation dataset. From top to the bottom the figures in each
row present the estimation errors on each element of the system state x. The x-axis denotes the time line with the unit
of second.

4.3. Real World Experiments

We evaluate the global localization performance of our proposed method on sequences
MH01–MH05 in EuRoC datasets and sequence Urban 38 in KAIST dataset.We implement
the monocular visual odometry based on ORB-SLAM [1] and the stereo visual inertial
odometry based on Openvins [3]. We utilize the absolute trajectory error (ATE) [34] to
evaluate the global localization performance and compare our results with the open-
sourced multi-sensor fusion methods MSF [8] and VINS-Fusion [10].

4.3.1. EuRoC Dataset

In EuRoC dataset we utilize monocular vision to perform local pose estimation. The
output of the monocular visual odometry does not include the absolute scale, which can
not be utilized for global localization in many other global–local fusion methods [7,9,10].
Thus, to test the performance of VINS-Fusion [10], we change its local estimator into VINS-
MONO [2], which is the classical monocular VIO provided by the VINS-Fusion system.

We draw ATE errors evaluated by different methods in Figure 5, and list the rotational
errors in Table 2. The results of VINS-MONO is evaluated by aligning the trajectories to
the ground truth. The results show that our method could successfully fuse 3D global
positions and 6D scaleless local poses for global localization, and outperform the compared
methods in terms of both translational and rotational localization accuracy. We can notice
that in many sequences VINS-MONO also performances well as the trajectories are not
long, but the fusion results in VINS-Fusion show larger errors as the extrinsic parameter
is not estimated in VINS-Fusion. Besides, compared with MSF and VINS-Fusion, our
method does not require IMU data to support sensor fusion, which further demonstrates
its efficiency and versatility for sensor fusion based global localization.
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Figure 5. The average trajectory errors of different localizers tested on EuRoC dataset.

We also perform ablation study to evaluate the effectiveness of the degeneration-aware
optimization. We first evaluate the localization performance tested on the general batch
optimization formulated in Equation (4). The results are denoted as “no prior” in Figure 5.
Besides, to validate the benefit of adding prior constraints specifically on the degenerated
directions, we also test the localization performance by adding the full prior constraints for
the whole system state. The results are denoted as “full priors” in Figure 5. From the results
we can infer that, the degeneration constraints can successfully improve the localization
accuracy as the influence from the noise in degenerated directions is restrained. Besides,
adding constraints especially on degenerated directions can also improve the localization
accuracy as the observable elements in the system state could be optimized directly without
influenced by heuristic constraints which might be inaccurate.

Table 2. Median rotational errors (deg) tested on EuRoC datasets.

MH01 MH02 MH03 MH04 MH05

ours 1.05 0.63 1.23 1.57 0.91
full priors 1.51 1.01 1.52 4.98 3.26
no prior 1.80 0.75 2.70 2.12 1.96

VINS-Fusion 1.42 1.13 2.35 2.56 2.52
MSF 1.40 1.63 3.15 3.29 3.73

4.3.2. KAIST Dataset

In KAIST dataset, we utilize the GPS as the global estimator, which is prone to drift
when the car stops at the crossroads. Additionally, the GPS signal is inaccurate when the
covariance is large. Therefore, during online localization, we drop the GPS messages with
large covariance (the threshold is set as 60) and the drifted messages indicating that the car
is moving while the local estimator denoting that the car does not move.

We list the localization performance of GPS and the stereo-IMU version of Openvins [3]
in Table 3 as baseline, and also compare our results with MSF [8], VINS-Fusion[10], and
full priors aided results. The translational and heading errors are listed in Tables 3 and 4.
The corresponding trajectories are drawn in Figure 6. The dropped GPS signals are also
marked in the trajectory.

Table 3. ATE error (m) tested on KAIST dataset.

GPS Openvins MSF VINS-Fusion Full Priors No Prior Ours

mean 5.98 14.43 21.14 9.64 9.20 / 5.58
rmse 7.15 16.46 22.09 11.11 12.21 / 6.71
std 3.91 7.91 14.47 5.52 6.40 / 3.73
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Table 4. Median heading errors (deg) tested on KAIST dataset.

MSF Full Priors VINS-Fusion Ours

12.8 1.48 1.56 1.43

Figure 6. The localization trajectories of different localizers tested on Urban 38 of the KAIST dataset.

Compared with EuRoC datasets, the robot performs planar movements in Kaist
dataset, in which the degeneration would likely occur. Thus, the results of “no prior” are
largely influenced by the degeneration and fail to perform the whole localization. The
results also show that our method achieves better performance than the compared methods
and could provide drift-free global localization results.

4.4. Computational Cost Evaluation

To validate the ability of achieving real-time localization, we evaluate the computa-
tional time cost on the multi-sensor fusion process. The computational time is defined as
the duration between the time at which a new global measurement is received and the
time the system state is updated by the optimization results, which is independent with
the processes in the front-ends. We collect the computational time tested on the KAIST
dataset and draw the results in Figure 7, in which we specifically color the the time cost
on “measurement alignment” and “degeneration detection” as red. As the fusion process
is taken place within a sliding-window, the computational time would not increase with
time. The average processing time is 18.4 ms, which satisfies the requirement of achieving
real-time global–local sensor fusion. Besides, the average time of “before optimization”
is 0.45 ms, which demonstrates that our solution for the degeneration motion would not
introduce large computational burden towards the fusion process.

Figure 7. Computational time of the fusion process tested on KAIST dataset. The red component
denotes the time cost on “measurement alignment” and “degeneration detection”. Although the blue
component denotes the time cost on degeneration-aware batch optimization.
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5. Conclusions

To achieve drift-free 6D global localization, in this paper we propose a general
optimization-based framework that fuses the 3D intermittent global positioning infor-
mation and 6D local odometry for real-time global pose estimation. The system state
is specifically formulated to be fully observable under general motions. To address the
impact from generated motion patterns, we propose a degeneration-aware solution to
robustly detect the degenerated directions that are further utilized as indicators to add
prior constraints. Though extra time is cost for degeneration detection, the whole pro-
cessing time could satisfy the requirement of real-time sensor fusion. The effectiveness
of our proposed method is validated on both simulated and real-world dataset. In the
future work, we set to extend the configuration of our framework from 3D–6D global–local
combination to multiple types of pose estimators with general degree of freedom, and
utilize the multi-sensor information to further detect the failure in the local pose estimators
for outlier rejection.
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3/6D 3/6 Degree-of-Freedom
DC Degeneration Constraint
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GPS Global Positioning System
IMU Inertial Measurement Unit
INS Inertial Navigation System
LIDAR Light Detection and Ranging
MSF Mult-Sensor Fusion
UWB Ultra Wide Band
VIO Visual Inertial Odometry

Appendix A. Derivation of the Degeneration Analysis on One-Axis Rotation with
Constant Velocity

As the rotational velocity ω and translational velocity v are constant in this motion
pattern, the robot can be considered as moving along a spiral curve or a circle. In the
following, we denote that for a 3D vector a, it can be decomposed as a = aω× + aω, in
which aω× represents the component that is perpendicular to ω and aω represents the
component that is parallel to a. As [a×]ω = [aω××]ω, we can derive Ξkω as

Ξkω= −RW
L [(RL

Ck
pC

G + spL
Ck
)×]ω

= −RW
L

[
(RL

Ck
pC

Gω× + spL
Ckω×)×

]
ω

= −RW
L [pL

Gkω××]ω

(A1)
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in which we set pL
Gkω× = RL

Ck
pC

Gω× + spL
Ckω×. We draw the projected trajectory in Figure A1b,

which should be a circle with the radius ρ. As the following derivation only focus on the
variables on the projected trajectory, we reuse the notations of L, C, G to represent their
projected variables. For the sake of the derivation, we define a new reference frame R. The
position of R is defined as the center of the projected circle, and we set its orientation the
same as the reference frame L. As ‖pR

RCk
‖ = ‖pR

RL‖, we can transform pR
RCk

to RL
Ck

pR
RL.

pL
Gk× can be decomposed as

pL
Gkω× = RL

R(pR
LR + pR

RCk
+ pR

CkG)

= RL
R(pR

LR + RL
Ck

pR
RL) + RL

Ck
pC

G

(A2)

in which pA
BD denotes the vector from frame B to frame D representing in the coordinate of

A. As RL
R = I3×3, Equation (A2) equals to

pL
Gkω× = pR

LR + RL
Ck
(pR

RL + pC
G) (A3)

Thus, Equation (A1) can be derived as

Ξkω = −RW
L ([pR

LR×]ω + [RL
Ck
(pR

RL + pC
G)×]ω) (A4)

As RL
Ck

rotates along ω, we can achieve that (RL
Ck
)Tω = ω, which leads to

[RL
Ck
(pR

RL + pC
G)×]ω = RL

Ck
[pR

RL + pC
G×](RL

Ck
)Tω

= RL
Ck
[pR

RL + pC
G×]ω

(A5)

Thus besides Equation (15), the other vector that compromises the null-space matrix is

N = [ωT (RW
L [pR

LR×]ω)T ([pR
RL + pC

G×]ω)T 0]T10×1 (A6)

which demonstrates that besides Equation (15), there exists one dimension of state RW
L

which is along with the rotational axis ω becoming unobservable.
If the rotational and translational velocity is perpendicular, the trajectory is equal to a

circle which we also demonstrate in Figure A1b. We can decompose pL
Ck

into

pL
Ck

= pL
LR + pL

RCk
= pL

LR + pR
RCk

= pL
LR + RL

Ck
pR

RL
(A7)

Thus, under this circumstance, the null-space matrix is further expanded with

N = [01×3 (−RW
L pL

LR)
T −(pR

RL)
T 1]T10×1 (A8)

which means the scale is degenerated to be unobservable.
This completes the proof.
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Figure A1. This figure demonstrates (a) the 3D trajectory of one-axis rotation movement with constant
angular and translational velocity and (b) its projected trajectory viewed along the rotational axis.
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