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Abstract: Following the current technological development and informational advancement, more
and more physical systems have become interconnected and linked via communication networks. The
objective of this work is the development of a Coalitional Distributed Model Predictive Control (C-
DMPC) strategy suitable for controlling cyber-physical, multi-agent systems. The motivation behind
this endeavour is to design a novel algorithm with a flexible control architecture by combining
the advantages of classical DMPC with Coalitional MPC. The simulation results were achieved
using a test scenario composed of four dynamically coupled sub-systems, connected through an
unidirectional communication topology. The obtained results illustrate that, when the feasibility of
the local optimization problem is lost, forming a coalition between neighbouring agents solves this
shortcoming and maintains the functionality of the entire system. These findings successfully prove
the efficiency and performance of the proposed coalitional DMPC method.

Keywords: coalitional model predictive control; distributed model-predictive control; multi-agent
systems; closed-loop stability

1. Introduction

Presently, manifold systems are modular, interconnected and have a cyber-physical
setup, meaning they can be viewed as coupled physical sub-systems, which are connected
via communication networks [1–5]. For such processes, Distributed Model Predictive
Control (DMPC) is a reliable control solution that uses local controllers that compute
the control action using both (i) the local information derived from specific sensors and
(ii) coupling data received/transmitted using the communication network [6].

As recent studies attest, the DMPC strategy was successfully applied on multi-agent
systems in varying applications, such as formation control of autonomous surface and
aerial vehicles [7], leader–follower platoons [8,9], traffic signal control [10], temperature
regulation systems [11], battery energy storage systems [12] and microgrids [13,14]. In [15],
a DMPC strategy for multi-agent systems based on error upper bounds is provided. This
criterion is used in a min–max optimization of the cost function to minimize the com-
munication between neighbouring agents. An event-triggered synchronous DMPC for
multi-agent systems is introduced in [16]. The method is tailored for dynamically de-
coupled sub-systems, coupled through a cost function. An event-triggered mechanism
designed using the forward difference of the cost function is deployed to activate the
local optimization problem at each sampling time; otherwise the agents use the solutions
computed in the previous sampling period. In [17], a DMPC to reach consensus for time-
varying, multi-agent systems is proposed. The consensus DMPC algorithm is designed for
heterogeneous, time-varying decoupled sub-systems, connected uni-directionally with a
coupled cost function.

In all the research mentioned above, regardless of the application or the methodology
details, one key feature is noticeable, namely that the architecture of both sub-systems and
agents (i.e., local controllers) is fixed. The latter is predefined in the initialization phase of
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the control design, based on the sensors placements and interconnection between the local
sub-systems. Therefore, the configuration of the DMPC neighbourhoods (i.e., groups of
local sub-systems that are interconnected either dynamically or through cost functions or
constraints) is established and predefined [18].

To overcome this shortcoming, a new approach emerged from cooperative game
theory framework named Coalitional Control was introduced, with the following char-
acteristics [19,20]: (i) the topology of the communication links between agents is flexible
(i.e., links can be enabled or disabled when necessary), (ii) the control strategy encourages
the agents to group in cooperative clusters called coalitions (to reduce the communication
burden), and (iii) the communication links between agents that ensure their cooperation
are weighted and introduce supplementary costs in the cost functions when activated.

Using this foundation, a Coalitional Model Predictive Control (C-MPC) strategy was
developed and applied on different applications such as cellular networks in [21,22] or
an eight-coupled tank process [23]. Thus, the agents charged with controlling the local
sub-systems can form coalitions depending on the activation of the communication links
between them. Several topologies can be derived, starting from the default one, which is
the decentralized MPC strategy (i.e., with no communication between agents), to the most
complex one. described as centralized MPC (i.e., in which all the communication links are
active). In between, there are the coalitions between several agents in a neighbourhood,
while the remaining ones work independently. In [24], details regarding the feasible regions
for tube-based MPC controllers are discussed. The coalitions are associated with different
partitions of a large-scale system (i.e., several sub-systems can be joined in a single entity),
and their feasible region is analysed.

The main contribution of this work is the development of a novel perspective of the
DMPC algorithm, called Coalitional DMPC (C-DMPC), which combines both the advan-
tages and features of classical DMPC strategy with the characteristics of Coalitional MPC.
Hence, the envisioned solution is to dynamically reshape the controller network by merging
some of the agents within a neighbourhood into coalitions when needed. The advantages
of this approach are shown when, due to various reasons (e.g., reference changes, unknown
disturbances, etc.), one or more local optimal solutions become infeasible. In this case, to
maintain the feasibility and functionality of the interconnected cyber-physical multi-agent
system, the agents will decide to form a coalition. This means that inside a coalition, the
sub-systems become a single entity and the controllers aggregate and solve a cooperative
optimization problem (i.e., a global cost function is minimized) [25].

The main difference of our approach with respect to the cited coalitional literature is
that the default topology is a non-cooperative DMPC (i.e., each agent minimizes a local
cost function, using received information from its neighbours) [26]. This means that when
a coalition occurs, the remaining agents outside the coalitions are not independent but
retain their previous status and solve a non-cooperative optimization problem. Thus,
depending on the topology, it is possible that the coalition must exchange information with
its neighbours (if not all the agents inside a neighbourhood are merged into the coalition).
Since all the agents start as non-cooperative players, they use the communication network
to share relevant data, according to their coupling within neighbourhoods, and all pertinent
communication links are activated and not weighted.

Another key difference is our proposed merging procedure, which selects the agents
that will form a coalition. This is done at each agent level, without using a hierarchical
supervisory layer. Moreover, when the local optimization problem becomes unfeasible
(due to the coupling information), the coalition is activated. Furthermore, two simplified
versions of this method with different agent merging procedures were published in [27,28].
In [27], each agent considers that the coupling information received from the neighboring
agents is an uncertainty in the local nominal model. When a predefined threshold value
for the local uncertainty level is crossed, than a coalition between the agents is formed. The
further development of this idea is given in [28], in which the coalition between the agents
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is formed, when the local optimization problems become infeasible due to the received
uncertainty level.

With respect to our previous papers, the method proposed in the current work has
significant improvements, such as the following: (i) the network topology is tailored for
in-chain coupled sub-systems, with unidirectional communication links; (ii) a more realistic
academic example is used for simulation tests, with four heterogeneous sub-systems
dynamically coupled through the inputs; (iii) each sub-system model is augmented with
an additional state defined as the integral of control error to ensure a non-zero reference
tracking; and (iv) multiple coalitions between agents can be simultaneously active at each
sampling time.

The remaining of this paper is structured as follows: Section 2 presents the problem
formulation and details the proposed method, whereas the simulation configuration,
results, and discussions are provided in Section 3. The conclusions of this work and future
work plans are addressed in Section 4.

2. Problem Formulation

A cyber-physical multi-agent system (CP-MAS), as depicted in Figure 1, is composed
of N interconnected cyber-physical sub-systems (CPsS). Each CPsS is defined by the pair
(Si, Ai), ∀i ∈ N , where N denotes the set {1, . . . , N} ⊆ N, with N ∈ N the number of sub-
systems and N the set of natural numbers. The physical part of the CPsS is denoted with Si,
whereas the cyber part of the CPsS is denoted with Ai and represents the corresponding
local controller or agent. All the interconnected sub-systems Si form the physical layer
(depicted with grey colour), while the cyber layer (depicted with blue colour) is composed
of all the agents and the communication networks.

Figure 1. Schematic diagram of a cyber-physical multi-agent system (CP-MAS).

Let each sub-system Si be defined by the following model:

xi
p(k + 1) = Ai,i

p xi
p(k) + Bi,i

p ui
p(k) + wi

p(k)

wi
p(k) = Bi,i−1

p ui−1
p (k) (1)

yi
p(k) = Ci

pxi
p(k), ∀i ∈ N

with the notations for the state xi
p ∈ Rni , input ui

p ∈ Rmi , input uncertainty wi
p ∈ Rpi and

output yi
p ∈ Rqi . Ai,i

p , Bi,i
p , Bi,i−1

p and Ci
p are matrices with adequate dimensions. ni, mi, pi

and qi are the number of states, inputs, input uncertainties and outputs, respectively. R
denotes the set of real numbers. Note that, ui−1

p ∈ Rmi denotes the input signal received
from the predecessor sub-system with index i− 1.

Note that (1) defines a model in which the input-coupling information wi
p is considered

an uncertainty in the nominal model. Moreover, all the sub-systems Si, ∀i ∈ N , are in a
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chain architecture, and for sub-system indexed i, the information is received through an
unidirectional link from its predecessor and neighbour, defined as the sub-system with
index i− 1.

To ensure that the reference tracking control problem has a zero error in stationary
regime, the state vector xi

p, ∀i ∈ N , from (1) is extended with an additional state xi
p defined

as integral of the control error, using the following definition [29,30]:

xi
p(k + 1) = xi

p(k)− Ci
pxi

p(k) + ri(k), (2)

obtaining [
xi

p(k + 1)
xi

p(k + 1)

]
︸ ︷︷ ︸

xi(k+1)

=

[
Ai,i

p O
−Ci

p I

]
︸ ︷︷ ︸

Ai,i

[
xi

p(k)
xi

p(k)

]
︸ ︷︷ ︸

xi(k)

+

[
Bi,i

p
O

]
︸ ︷︷ ︸

Bi,i

ui(k)

+

[
Bi,i−1

p
O

]
︸ ︷︷ ︸

Bi,i−1

ui−1(k) +

[
O
I

]
︸ ︷︷ ︸

Rspi

ri(k)

yi(k) =
[

Ci
p O

]
︸ ︷︷ ︸

Ci

[
xi

p(k)
xi

p(k)

]
︸ ︷︷ ︸

xi(k)

(3)

where ri(k) is the imposed reference value at time k. xi(k), ui(k) and yi(k) are the extended
state, input and output vectors, respectively. Note that the input uncertainty wi(k) is
defined based on the input vector received from the predecessor ui−1(k). I and O are the
identity and zero matrix, respectively, each with appropriate dimensions.

Hereafter, each sub-system Si, ∀i ∈ N , will be represented by the compact ex-
tended model:

xi(k + 1) = Ai,ixi(k) + Bi,iui(k) + wi(k) + Rspi
ri(k)

wi(k) = Bi,i−1ui−1(k)

yi(k) = Cixi(k) (4)

where Ai,i, Bi,i, Bi,i−1, Ci and Rspi
are matrices with adequate dimensions.

Consider linear inequality constraints for the outputs, inputs and uncertainties de-
fined with:

yi ∈ Yi, ui ∈ Ui, wi ∈ Wi, ∀i ∈ N (5)

where Yi, Ui andWi are sets defined by linear inequalities.
At every sampling time, each agent Ai, ∀i ∈ N , solves a min–max optimization

problem, which aims to obtain the minimum optimal input with respect to the maximum
level of uncertainty received from its neighbour.
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Ji(x0
i ) = min

u0
i ,...,u

Np−1
i

ûmax
i

max
w0

i ,...,w
Np−1
i

∥∥Rwi û
max
i
∥∥

1 +
Np−1

∑
l=0

∥∥∥rl
i − yl

i

∥∥∥
1
+
∥∥∥Rui u

l
i

∥∥∥
1
+
∥∥∥r

Np
i − y

Np
i

∥∥∥
1

s. t. (4)

yl
i ∈ Yi, l = 1, . . . , Np − 1

y
Np
i ∈ Ωi

ul
i ≤ ûmax

i ≤ umax
i , l = 0, . . . , Np − 1

wl
i ≤ wmax

i

(6)

where yl
i = yi(k + l|k) denotes the output predictions for sub-system Si at time k + l, com-

puted at time step k; this is calculated recursively starting from the initial state x0
i = xi(k)

measured at time k, using the model (4); the input sequence ul
i =

{
u0

i , . . . , u
Np−1
i

}
com-

puted over the prediction horizon Np; and the uncertainty sequence Wi = Bi,i−1Ui−1
received from the neighbour (whereWi is the uncertainty polytope and Ui−1 = {u ∈ Rmi :
Au ≤ b is a H-polytope); rl

i is the value at time k + l for the output reference trajectory;

r
Np
i and y

Np
i are the values for the reference and the output trajectories, at the end of the

prediction horizon k + Np, respectively; umax
i , wmax

i are the maximum limits for the input
and the uncertainty sequences, respectively; ‖.‖1 denotes the 1-norm; Rui ∈ Rmi×mi and
Rwi ∈ Rmi×mi are the weight matrices for the input and self-imposed input limit ûmax

i . The
latter is an additional optimization parameter introduced in the local cost function, and its
value is communicated at each sampling period to the neighbour. This will guarantee that
the uncertainty level received from the neighbour is smaller than this value, without actually
transmitting the entire input sequence. The set Ωi is a robust positive invariant set used to
ensure the closed-loop stability of the algorithm by means of the terminal invariant set.

Remark 1. The uncertainty in each sub-system model refers to the coupling information that must
be received from the neighbouring sub-system. Please note that the local optimization problem (6)
minimizes the control input, for the worst-case scenario related to uncertainty level received from
the predecessor agent. This means that, although unknown, this uncertainty must be bounded to a
known value, which is shared between consecutive sub-system. Moreover, this ensures that each
local sub-system is prepared for the disturbance signal, which is received via the coupling links.

Next, some details regarding the computation of the invariant set Ωi, followed by the
proposed coalitional DMPC method are given.

2.1. Robust Positive Invariant Set Computation

In this sub-section, the details regarding the computation of the robust positive in-
variant set Ωi, ∀i ∈ N , which acts as a constraint region for the terminal state y

Np
i ∈ Ωi

are presented. To this end, the procedure firstly introduced in [28] is briefly summarized
below, tailored for the extended sub-system model.

For each sub-system Si, ∀i ∈ N , with the model defined in (4) and subject to con-
straints (5), only the nominal model (i.e., wi and ri are zero) is considered. Let us compute
a local linear feedback ui = Kixi, which ensures that the closed loop eigenvalues are in the
unit circle. One suggestion to compute the state feedback matrix Ki is to apply classical
state-space feedback control designed for the nominal model using Ackermann’s formula
(i.e., solving a pole allocation problem) [31], or to calculate it through the minimization of a
linear-quadratic cost function, by solving a discrete-time Riccatti Equation [32].
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The set Ωi is robust positive invariant for the nominal model from (4), if the following
assumption holds [28,33]:

xi ∈ Ωi → (Ai,i + Bi,iKi)xi + wi ∈ Ωi,

Kixi ∈ Ui, CiΩi ⊆ Yi, ∀wi ∈ Wi (7)

It is worth mentioning the following observations regarding the use of the invariant
set in the C-DMPC context:

• the default working framework is non-cooperative DMPC, which implies that each
agent Ai, ∀i ∈ N , from the multi-agent application communicates with its neighbour,
in order to compute the local solution;

• each sub-system model Si, ∀i ∈ N , is subject to input uncertainties received from the
sub-system to whom it is connected (in our case its predecessor);

• to provide a simplified algorithm with minimal communication load in the network,
only the self-imposed upper bound for the local input trajectory is broadcast in the
network (i.e., the optimization variable ûmax introduced in (6));

• a table with different predefined robust positive invariant sets Ωi is computed using
the constraints limits from (5), in which each element is a particular combination of
the variable bounds (see Algorithm 1);

• at each sampling period, after the uncertainty upper bound is received from the
neighbour, each agent Ai uses this information to compute the uncertainty polytope.
Next, from the predefined terminal sets table, a set Ωi is searched for, which includes
the received uncertainty polytope (i.e., which will ensure a local feasible solution in
the terminal state framework).

Further on, the pseudo-code algorithm used to compute the invariant set table is
provided (where for simplicity the sub-system indices are omitted):

Thus, each agent Ai, ∀i ∈ N , uses Algorithm 1 in the initialization phase of the
proposed method to compute a table of invariant sets Ωi, for different input and uncertainty
parametrizations (i.e., distinct combinations for the two parameters α and β). Note that the
first set Ωi from the table corresponds to the largest value for the input constraint, denoted
umax, whereas the uncertainty has the smallest value. The latter is gradually increased with
a step size denoted stepβ, until it reaches its maximum admissible value wmax. In doing so,
the size of the invariant set slowly reduces, as the input constraint limit value decreases
with a step size denoted stepα and the uncertainty level rises.

In practice, a good start for umax and wmax bounds are the values for the imposed
constraints (5). The values of the step size stepα, stepβ should be selected such that the
table size remains reasonable, with various invariant sets. Moreover, the limits in the
state constraints are considered fixed, according to the sub-systems dynamics and used to
compute every set Ωi from the table.

Algorithm 1

For α = umax : −stepα : 0.1
For β = 0.1 : stepβ : wmax

1. Compute the inequality constraints:

Auu ≤ αbu; Aww ≤ βbw; Axx ≤ bx

2. Compute the robust positive-invariant set:

Ω(A, B, K, Au, bu, Aw, bw, Ax, bx)

3. Save the information α, β, Ω
end

end
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2.2. Coalitional Distributed Model Predictive Control (C-Dmpc) Methodology

As previously mentioned, what differentiates our proposed coalitional algorithm
from the existing works is the flexible framework set for the cyber-physical multi-agent
system with a chain architecture. Hence, at each step time, the agents architecture starts as
non-cooperative DMPC and will switch to coalitional DMPC (C-DMPC)—when the local
feasibility of the interconnected agents is lost. In the C-DMPC framework, the coalition
procedure is initialized without a hierarchical level by the local agents with infeasible
problems, because due to the coupling links between sub-systems, if not solved, this
problem will propagate among neighbouring sub-systems. Using the communication links,
these agents share their optimization status with their neighbour, and after that, one of
them is randomly selected to start a coalition. Once the coalition procedure is activated,
the agents framework changes.

To simplify the design and computational costs, the size of the coalition is increased
gradually, if needed. That is, if a coalition of two agents, coupled with the remaining agents
from the network, still does not provide feasible solutions for all involved actors, then more
work needs to be done. The idea is to first activate all coalitions of two agents, if needed,
then the coalitions of three agents, and so on, until in the end, in the extreme case, all the
agents are involved in a single coalition. Note that this last case is equivalent to solving a
centralized problem for the multi-agent system and will be used in the last resort, if nothing
else solved the infeasibility problems that started the coalitional procedure. The reason for
this is related with the coalition dynamics (i.e., when two or more agents form a coalition,
their respective sub-system models are aggregated and become a single entity). Thus, the
number of the optimization variables in a coalition increases with its size, and the local
non-cooperative optimization problem becomes a cooperative one inside the coalition. The
extreme case of a ‘grand’ coalition between all agents will aggregate all the sub-systems in
a single entity (from the control point of view).

2.2.1. Coalition Dynamics

As described before, our C-DMPC algorithm is tailored specifically for cyber-physical
multi-agent systems, linked in a unidirectional communication topology. Thus, the cou-
pling information, which is treated as an uncertainty in the local nominal model of each
sub-system Si, is received from its predecessor sub-system Si−1. To minimize the commu-
nication burden between consecutive agents, only the self imposed optimization variable
ûmax introduced in (6) is broadcast. This value is firstly used to search for an invariant set
inside the predefined table, and secondly acts as the uncertainty limit constraint in the
local optimization problem. Using this information, the local optimization problem is then
solved, and if the solution is infeasible, then the coalition procedure must be started.

Inside a coalition between different consecutive agents, the aim is to solve a coop-
erative optimization problem; thus the uncertainty variable becomes fully known. Each
agent Ai, ∀i ∈ N , can form a coalition only with its predecessor, i.e., agent Ai−1, due to the
particular dynamical coupling between their corresponding sub-systems (i.e., linked in a
chain). When this occurs, the agents involved will form a compact set denoted generically
C. To simplify the notations, the coalition is described without sub-script indices with the
following model:

xC(k + 1) = ACxC(k) + BCuC(k) + wC(k)

wC(k) = ∑
j∈NC

Bj
Cuj(k) (8)

yC(k) = CCxC(k)

where xC is the state vector of the coalition, uC is the coalition’s input vector, wC is the
uncertainty vector of the coalition and yC is output vector for the coalition. All these vectors
are composed by aggregating the local vectors corresponding to each sub-system involved
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in the coalition (e.g., xC = [xi]i∈C ). Moreover, the matrices AC , BC , Bj
C and CC are computed

according to the aggregation.
The setNC denotes the coalition’s C neighbour, defined as the predecessor sub-system

for the sub-systems inside the coalition (e.g., if Agent 2 and 3 form a coalition, then
NC = {1}, because sub-system 2 is coupled to sub-system 1; thus the coalition in which
Agent 2 is involved must receive relevant information from Agent 1, which is outside
the coalition and solves a non-cooperative DMPC problem). Moreover, following this
reasoning, a coalition involving Agent 1 does not have neighbours (i.e., NC = ∅, because
Agent 1 does not have predecessors).

2.2.2. Coalition Problem Definition

In this section, some details regarding the construction of the constraints sets imposed
for the coalition and the optimization problem solved by the coalition are presented.

Hence, the constraint sets for the coalition C are computed as the union of the con-
straints sets (5) corresponding to each agent Ai, i ∈ C:

yC ∈ YC = ∏
i∈C
Yi, uC ∈ UC = ∏

i∈C
Ui, wC ∈ WC = ∏

i∈C
Wi, (9)

and the min–max optimization problem solved by the coalition is:

JC(x0
C) = min

u0
C ,...,uN−1

C
ûmax
C

max
w0
C ,...,wN−1

C

∥∥RwC ûmax
C
∥∥

1 +
Np−1

∑
l=0

∥∥∥rl
C − yl

C

∥∥∥
1
+
∥∥∥RuCul

C

∥∥∥
1
+
∥∥∥r

Np
C − y

Np
C

∥∥∥
1

s. t. (8) (10)

yl
C ∈ YC , l = 1, . . . , Np − 1

y
Np
C ∈ ΩC
ul
C ≤ ûmax

C ≤ umax
C

wl
C ≤ wmax

C

The weighting matrices RuC and RwC are block diagonal, ΩC is the aggregated ter-
minal set and rl

C and x0
C are aggregated vectors containing the corresponding imposed

references and initial state values, respectively. r
Np
C and y

Np
C are aggregated vectors contain-

ing the corresponding imposed references and output predictions values at time k + Np,
respectively. ul

C , wl
C and yl

C are are aggregated vectors containing the corresponding input,
uncertainty and output sequences, respectively. ûmax

C is an aggregated vector containing the
corresponding self-imposed input limits. umax

C and wmax
C are aggregated vectors containing

the corresponding input and uncertainty limits, respectively.

2.2.3. C-Dmpc Algorithm

To summarize the C-DMPC methodology, the following pseudo-code is provided:
With regard to Algorithm 2, the following observations are in order:

• the default uncertainty value used in Step 1 is selected to ensure that optimization
problems from Step 3 are feasible, thus ensuring that the proposed methodology is
recursively stable (i.e., the terminal set for the coalition is obtained by aggregating the
terminal sets of the involved individual agents).

• if the condition from Step 6 is satisfied, then at that sampling period, the working
framework is non-cooperative DMPC; otherwise the framework changes to coalitional
DMPC (since at least one coalition is activated).
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• the priority value, which is used as a condition term to initialize a coalition, is defined
by each agent as a random sub-unitary number. In this manner, there is no use of a
hierarchical control level to assign these priorities.

• in the extreme, all the agents can be combined in a coalition (C = N ), which corre-
sponds to a centralized MPC working framework.

• one or more coalitions can be active simultaneously and are dissolved at the end of
each sampling period.

Remark 2 ([28]). In Algorithm 2, the coalitional control problem is feasible (i.e., Step 6. (c). ii.),
because WC ⊆ ∏i∈CWi, UC = ∏i∈C Ui and ΩC = ∏i∈C Ωi. The stability of the coalition is
ensured by the terminal constraint set of the coalition, which is calculated as the Minkowski sum
of the terminal sets polytopes defined for each individual agent from the coalition. The coalitional
algorithm is recursive-feasible, contingent on Step 3, for which all the optimization problems are
feasible, i.e., for which systems can work in a decentralized fashion.

Next, the C-DMPC methodology is validated in simulation, and the results are pro-
vided in Section 3.

3. Illustrative Example

In this section, the simulation results and discussion for the C-DMPC method are
presented. The proposed simulation scenario for the cyber-physical multi-agent system
described in Section 2, Figure 1, has the following characteristics:

• Four heterogeneous discrete-time sub-systems Si, ∀i ∈ {1, . . . , 4}, coupled in a chain
architecture were defined using (1), with the following numerical matrices:

S1 : A1,1
p =

[
0.7913 0.2020
0.1010 0.8417

]
B1,1

p =

[
0.0271
0.2291

]

B1,0
p =

[
0
0

]
C1

p =
[

0 1
]

(11)

S2 : A2,2
p =

[
0.7936 0.1996
0.1198 0.8236

]
B2,2

p =

[
0.0269
0.2265

]

B2,1
p =

[
0.0004
0.0034

]
C2

p =
[

0 1
]

(12)

S3 : A3,3
p =

[
0.7888 0.2043
0.0817 0.8604

]
B3,3

p =

[
0.0273
0.2316

]

B3,2
p =

[
0.0004
0.0034

]
C3

p =
[

0 1
]

(13)

S4 : A4,4
p =

[
0.7912 0.1994
0.0997 0.8211

]
B4,4

p =

[
0.0269
0.2263

]

B4,3
p =

[
0.0004
0.0034

]
C4

p =
[

0 1
]

(14)
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• The limit constraints for the inputs, disturbances and outputs are the following:{
umin

i = −5
umax

i = 5

{
wmin

i = −1
wmax

i = 1

{
ymin

i = −8
ymax

i = 8
∀i ∈ {1, . . . , 4} (15)

• For all sub-systems Si, ∀i ∈ {1, . . . , 4}, the following optimization parameters are
used: the prediction horizon Np = 5, the input weights Rui = 0.1 and Rwi = 0.01.

Remark 3. The optimization parameters were carefully selected after a thorough analysis from
the point of view of achieved performances. Several tests were performed, with different values
for the weights and the prediction horizon. The chosen values ensured the best performances.

• The feedback laws were computed using classical state-feedback control based on the
Ackermann’s formula [31], applied for the extended model (4), obtaining:

K1 = [0.5494 − 2.6061 0.7488],
K2 = [0.3473 − 2.5199 0.7047],
K3 = [0.6249 − 2.6565 0.7401],
K4 = [0.4355 − 2.5107 0.7051].

(16)

Remark 4. The Ackermann’s formula [31] was used to achieve specific closed-loop transient
performances, chosen as an overshoot value of 5% and settling time of 5 time units, for sub-
systems S1 and S3, and an overshoot value of 4%, and the same settling time, corresponding
to sub-systems S2 and S4. These performance values, were accordingly selected based on each
sub-system dynamics.

• The reference tracking scenario was constructed for 12 time samples, using a sampling
period Ts = 0.25s, with the following imposed references:

r1 = [0.2 0.2 0.2 0.2 0.2 0.2 0.5 0.5 0.5 0.5 0.5 0.5],
r2 = [0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2],
r3 = [0.2 0.2 0.2 0.2 0.5 0.5 0.5 0.5 0.2 0.2 0.2 0.2],
r4 = [0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2].

(17)

Since our proposed scenario has four sub-systems in a chain architecture with unidi-
rectional communication links between the agents, there are eight possible frameworks
including coalitions of two, three or four agents defined as follows:

1. default case—no coalitions between A1, A2, A3, A4;
2. coalition C12 between A1 and A2, while A3, A4 remain outside the coalition but

interconnected;
3. coalition C123 between A1, A2, and A3, while A4 remains outside the coalition but

interconnected;
4. twosimultaneous active coalitions C12 and C34 between A1 and A2 and A3 and A4,

respectively, which are interconnected;
5. coalition C23 between A2 and A3, while A1, A4 remain outside the coalition but

interconnected;
6. coalition C234 between A2, A3 and A4, while A1 remains outside the coalition but

interconnected;
7. coalition C34 between A3 and A4, while A1, A2 remain outside the coalition but

interconnected;
8. extreme case: coalition C1234 between all agents A1, A2, A3, A4.
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Algorithm 2

Initialization: For each agent Ai, ∀i ∈ N , compute a table Ti, with potential terminal sets Ωi.
At each sampling time k, each agent Ai, ∀i ∈ N , receives the local state value and performs the following steps:
1. Computes the uncertainty polytope using default limit values for the constraints:

Wi = Bi,i−1U 0
i−1

Ui−1 = [umax,0
i−1 ;−umax,0

i−1 ].

2. Searches in the predefined table Ti for a terminal set Ω0
i that includes the default uncertaintyWi ⊆ Ω0

i .
3. Solves the local optimization problem (6) and obtains the optimal values U∗,0i , ûmax,0

i using the default values
Ωi = Ω0

i for the terminal set and the uncertainty constraint limit (wmax
i = umax,0

i−1 ).
4. Broadcasts to its successor the local optimal value ûmax,0

i and receives the corresponding value ûmax,0
i−1 from its

predecessor.
5. Repeats Steps 1–3 using the uncertainty constraint value received in Step 4.
6. Checks the feasibility of the local optimization problem:
If the optimization problem from Step 5 is feasible:
then: Coalitions between agents are not necessary.Each local agent Ai sends to its sub-system Si, the first value from

the optimal trajectory U∗i ;
else: Coalitions between agents are necessary. In this case, in order to be included in a coalition, each agent Ai,
∀i ∈ N , performs the following steps:

a. Receives, from its predecessor, a coalitional report containing the following information: the feasibility
status (for the local optimization problem solved at Step 5) and priority value relating to all the predecessor
agents from the chain architecture.

b. Sends to its successor, the updated coalitional report (i.e., all the relevant information received, together
with its own local feasibility and priority data).

c. Initializes a coalition only if its local priority is the highest from the report. Within a coalition between two
agents, the following steps are performed:

i. the coalition model is defined as (8);
ii. the optimization problem (10) subject to (9) is solved.
iii. the relevant information is broadcast to the coalition’s neighbour.
iv. a feasibility check for all the optimization problems is done.

If the all the optimization problems are feasible:
then: The existing coalition was successful and can be dissolved after every sub-system Si receives

the first value from the optimal trajectory U∗i ;
else: The existing coalition was not successful. Another agent must be included in the existing

coalition (if the coalition’s status is infeasible), or another coalition can be activated (if more
agents outside the existing coalition have infeasible problems). At this stage, Step (c) is repeated
as necessary.

7. End algorithm.

Remark 5. Please note that our proposed Coalitional DMPC algorithm is tailored specifically for
cyber-physical multi-agent systems. The key feature is its capability to switch between control
architectures, whenever the feasibility of the multi-agent system is lost, due to uncertainties in the
local sub-systems. One example of such multi-agent system is a vehicle platoon. In this case, it
is clear that classical centralized MPC is not suitable for controlling this application. Moreover,
decentralized MPC, in which the couplings between sub-systems are ignored, can render instability
within the platoon. One compromise solution is distributed MPC, in which the interactions are
taken into account when computing the local solutions. However, if the distributed MPC (i.e.,
in non-cooperative framework) fails at this task, then our proposed coalitional DMPC provides
a backup plan, namely to merge different sub-systems into coalitions. Inside a coalition, all the
information is known; thus, only the coupling signals with sub-systems outside the coalition must
be accounted for.

The invariant sets obtained for sub-system S1 using Algorithm 1 presented in Section 2.1
are depicted in Figure 2. For the computation, the following numerical values were used:
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umax = 5, wmax = 5, stepα = stepβ = 0.5. As expected, the larger invariant set (depicted
with red colour) was obtained for α = umax = 5 and β = 0.1. Moreover, as the constraint
limits become smaller, the set Ωi decreases in dimension and is included in the larger red
set (Figure 3—the sets plotted with green, blue, magenta and black colours, respectively).
Since, the state variable for the extended model (4) has three values, the computed invariant
sets are three dimensional and can be plotted as convex hulls (ref. Figures 2 and 3). This
graphical representation of the invariant sets, which are predefined options for the terminal set
constraint (6), are also useful when defining the reference target for the multi-agent system. Thus,
one must take into account that the imposed trajectory for each sub-system Si, ∀i ∈ {1, . . . , 4}
should be placed in the interior of the invariant set.

Figure 2. Depiction of the predefined invariant sets corresponding to sub-system S1, computed for uncertainty constraint
limit value β = 0.1.

Figure 3. Detail regarding the depiction of the predefined invariant sets corresponding to sub-system S1, computed for
uncertainty constraint limit value β = 0.1.
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Remark 6. It is worth mentioning that the step values stepα = stepβ = 0.5 were selected taking
into account the numerical values of the input and uncertainty constraints to ensure a sufficient
number of invariant sets computed. If a smaller value, e.g., stepα = stepβ = 0.1 is chosen, the
result would be an increased size for the table containing the invariant sets. However, as depicted in
Figure 2, these values also parametrize the dimensions of the invariant set polytopes. Thus, although
we would have more available sets, their dimensions would be too similar, to justify the involved
computational costs.

The reference tracking results and the formation of the coalitions during the simulation
are presented in Figure 4.

As depicted in Figure 4, lower subplot, during the first seven time steps, the simula-
tion runs in the default scenario, in which all the agents solve a non-cooperative DMPC
algorithm without being involved in a coalition. This is marked with blue circles, at each
time step, for each agent Ai, ∀i ∈ {1, . . . , 4}. At time step 8, due to the setpoint change of
0.3 units in r3 for sub-system S3 and the corresponding increase in the control effort u3,
the local feasibility for sub-system S4 is lost. Hence, the coalition C34 is activated, which
is plotted with a red star marker for A3 and A4. At the next time step, coalition C234 be-
tween agents A2, A3 and A4 is active and is coupled with the remaining agent A1, because
sub-system S2 is dynamically coupled through the input with S1 and their corresponding
agents share information. At time step 10, coalition C34 is activated, and for the remaining
two time steps of the simulation, coalition C234 is active. Moreover, the reference tracking
results show that all the imposed set-points are successfully reached in one sampling time,
with zero offset error. This occurs for the first seven time steps, in which all the agents work
outside a coalition, and also for the remaining simulation time, when coalitions of two or
three agents are necessary to maintain the feasibility of the CP-MAS. The results clearly
prove the efficiency of our proposed C-DMPC method in a reference tracking scenario.
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Figure 4. Reference tracking results (subplots 1–4), control efforts (subplots 5–8) and the corresponding coalitions formation
(subplot 9) for a cyber-physical multi-agent system composed of 4 interconnected sub-systems.
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4. Conclusions

In this work, a coalitional distributed model predictive (C-DMPC) methodology
suitable for input coupled cyber-physical multi-agent systems was proposed. The algorithm
was tailored for an in-chain system architecture with unidirectional communication links
(i.e., the coupling information viewed as an uncertainty in the local nominal model was
broadcast from a predecessor sub-system to a successor). The methodology was validated
in simulation, using an academic cyber-physical multi-agent system as a proof of concept
for the proposed algorithm. The simulation results show that if the uncertainty level
received by the local agent is manageable, a non-cooperative DMPC algorithm could
be locally solved. However, when the local feasibility of the optimization problem was
lost, then forming coalitions between agents showed satisfactory performance and the
usefulness of the C-DMPC algorithm was proven.

Future work will test the efficiency of the proposed algorithm on a vehicle platoon-
ing application.

5. Materials and Methods

The simulations from this work were performed using MATLAB R2020b on Windows
10, 64-bit Operating System with a laptop Intel Core i7-9850H CPU @ 2.60 GHz and
16 GB RAM.

The optimizations were implemented using the YALMIP toolbox [34].
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