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Abstract: The omnidirectional camera, having the advantage of broadening the field of view, real-
izes 360◦ imaging in the horizontal direction. Due to light reflection from the mirror surface, the
collinearity relation is altered and the imaged scene has severe nonlinear distortions. This makes it
more difficult to estimate the pose of the omnidirectional camera. To solve this problem, we derive
the mapping from omnidirectional camera to traditional camera and propose an omnidirectional
camera linear imaging model. Based on the linear imaging model, we improve the EPnP algorithm
to calculate the omnidirectional camera pose. To validate the proposed solution, we conducted
simulations and physical experiments. Results show that the algorithm has a good performance in
resisting noise.

Keywords: omnidirectional camera; pose estimation; Perspective-n-Point

1. Introduction

The Perspective-n-Point (PnP) problem is a classic problem in computer vision. The
aim is to calculate the orientation of a camera given its intrinsic parameter and a set of
correspondences between 3D points and their 2D points. It is widely used in computer
vision. In 2008, Xu [1] used an auxiliary point to extend the linear method for the special
case of four coplanar points and find the coarse solutions for the general P3P problem.
In 2012, Li [2] proposed a solution for the PnP problem that can retrieve the optimum by
solving a seventh-order polynomial. In 2018, Wang [3] transferred the problem to solve a
seventh-order and a fourth-order univariate polynomial. In 2020, Zhou [4] constructed the
PnP problem for an uncalibrated camera as a 20th-order polynomial system. In 2021,
Meng [5] mitigated scale bias by multiplying an independent inverse average depth
variable onto the object space error to improve the accuracy of pose estimation.

Recently, omnidirectional vision system has become a hot topic for researchers in some
fields such as robot driving [6,7], augmented reality [8], and video surveillance [9–11]. An
omnidirectional vision system provides a 360-degree panorama in the horizontal direction
and is composed of a common CCD and mirror. It can help reduce the number of cameras
needed and overall costs. For omnidirectional camera pose estimation, the control point
coordinates around the camera improve the accuracy of camera pose estimation. A large
field of view can effectively reduce the loss of tracking caused by matching. So, the
problem of pose estimation based on an omnidirectional vision system is important. In
2001, Daniel G. Aliaga [12], an earlier researcher in this research direction, proposed a pose
estimation algorithm based on coded points. He set up a complete stand-alone system,
but the method is only applicable for parabolic mirror omnidirectional camera. In the
same year, Paulino [13] proposed a method to estimate the pose of a center omnidirectional
camera with an arbitrary mirror surface. Gebken [14] presented a novel perspective pose
estimation for omnidirectional vision that involves a parabolic central catadioptric sensor
by using small data sets, combining geometry and stochastics such that they obtain pose
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from only three image points. Goncalvep [15] proved that any reflection point belongs to
an analytical quadric that intersects the mirror quadric itself and presented a linear method
to estimate the pose for the noncentral omnidirectional system. Ilizirov [16] proposed
deriving the metric between internal reflections; a closed form similar to the principle
of collinearity was obtained and then extended to a linear model. Miraldo [17] derived
parametric equations to estimate pose for vanishing points and vanishing curves by using
the calibration parameters and mirror shape coefficients. Due to the nonlinear imaging of
omnidirectional cameras, a high-order constraint or more complicated formula is needed
to establish the imaging model or camera pose estimate. In this paper, we establish
a relationship between the omnidirectional image and the traditional camera image to
simplify the imaging system.

In 2009, Lepetit [18] proposed the EPnP algorithm, which is widely used to estimate
the pose of the conventional transmission camera. The EPnP algorithm speeds up the
calculation by reducing O(3) to O(1) and introduces four reference control points to reduce
the influence of a single control point error. Since the EPnP algorithm was proposed, it
has received widespread attention, and some researchers have also proposed algorithms
derived from the EPnP algorithm [19–21]. Based on EPnP algorithm, Penatesanchez [19]
proposed a pose estimation algorithm with unknown camera focal length. In the same year,
Deng [20] applied the EPnP algorithm to mosaic images. In 2018, Chen Peng [21] improved
the EPnP algorithm by the Gauss-Newton method to optimize the coordinates of virtual
control points in the camera coordinate system.

However, in the EPnP algorithm, linear equations are established based on imaging
systems to solve the camera pose. This paper analyzes the imaging model of the omni-
directional camera and presents the linear virtual imaging plane. We derive the linear
imaging equation of the omnidirectional camera and put forward a method that estimates
omnidirectional camera pose by the EPnP algorithm. First of all, the control points of an
omnidirectional image are projected into a linear virtual image plane. Then, the control
point location in the virtual camera coordinate system, solved by the EPnP algorithm,
is converted into the location of the omnidirectional camera coordinate system. Finally,
the omnidirectional camera pose is solved by an absolute orientation method. Section 2
describes the spherical model of an omnidirectional camera. Section 3 describes the specific
algorithm. Sections 4 and 5 respectively describe simulations and real image experiments
and verify the noise immunity and reliability of this method.

2. Omnidirectional Camera Spherical Model

The omnidirectional vision system is composed of a camera and a mirror. Mei pre-
sented an omnidirectional camera spherical model and corresponding calibration tool-
box [22]. They proved the equivalence of the reflection process and spherical mapping.

First, the spatial point Xc with coordinate (Xc, Yc, Zc) is projected onto the unit sphere
to obtain point Xm.

Then, in the new reference frame centered with (0, 0, −ξ) as the origin, Xm is changed
to Xs.

Next, the point Xs is projected onto a normalized plane to obtain the point us.
The last projection is related to a generalized camera projection matrix K. The point

us on the normalized plane is projected onto the image plane by matrix K.
As shown in Figure 1, the relationship between an arbitrary 3D space point Xc and

corresponding image plane point u can be written as:

λui = K·h
(

Xc
i

‖Xc
i‖

)
(1)

with K =

 f1η f1ηα u0
0 f2η v0
0 0 1

, h
(

X
m

i

)
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where ‖Xc
i‖ is norm of Xc

i . The function h represents an expression of a spatial point to a
normalized plane. ξ and η are related to the mirror of the omnidirectional camera. Table 1
shows the values of ξ and η in different mirrors. f 1 and f 2 are the focal lengths of the
camera in the X and Y directions, respectively. α is the correlation coefficient between the
X and Y directions and is usually equal to zero. A generalized camera projection matrix
indicates we are no longer considering the sensor as a separate camera and mirror but as
a global device. f and η cannot be estimated independently. We will note f x = f 1η and
f y = f 2η.
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Figure 1. Unit spherical model.

Table 1. Unified model parameters.

Parameter ξ η

Parabola 1 −2p

Hyperbola d√
d2+4p2

−2p√
d2+4p2

Ellipse d√
d2+4p2

2p√
d2+4p2

Planar 0 −1

The camera calibration process can obtain the projection matrix K and the coeffi-
cients ξ.

3. Pose Estimation Algorithm

The traditional camera pinhole model, camera optical center, image point, and space
control point meet the collinear condition. According to the characteristic, we introduce
virtual imaging that is the process of projecting virtual space point coordinates Xvir onto
the virtual plane uvir. The logic of the approach is shown in Algorithm 1. We respectively
calculate the coordinate transformation from image point to virtual image point and from
space point to virtual space point.
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Algorithm 1. Logic of omnidirectional camera pose estimation algorithms.

1. Data acquisition. Extract corner point u and obtain its coordinate in the world coordinate
system Xw

2. Determine camera. Determine the number and location of virtual cameras
3. Coordinate transformation. Convert corner coordinate to virtual image plane coordinate.
4. Calculate Xvir. Use modified EPNP algorithm to calculate virtual camera coordinate Xvir.
5. Coordinate transformation. Convert virtual camera coordinate to camera coordinate.
6. Calculate pose. Calculate the camera pose according to Xc and Xw

As shown in Figure 2, two virtual cameras are established to substitute the omnidirec-
tional camera. The optical center of the virtual camera is coinciding with the optical center
of the omnidirectional camera, in which optical axes are aligned with the positive and
the negative directions of the Z-axis. In a virtual camera, the conversion from the image
coordinate system to the pixel coordinate system is not important, so we simplify this part.
The virtual image plane is actually the normalized plane in the perforation imaging model,
that is, the Z = 1 or Z = −1 plane.

Sensors 2021, 21, x FOR PEER REVIEW 5 of 14 
 

 

 

Figure 2. Virtual camera coordinate system. 

After determining the number of virtual cameras and the position of the virtual 

image plane, the next step is to calculate the coordinates of the virtual points. First, the 

image point u is projected onto the unit sphere. Through algebraic operations, we can 

obtain an equation from the image point to the corresponding unit sphere. 

1( )h− −=m 1
X K u  (2) 

( )

( )( )

( )( )

( )( )

2 2 2

i

2 2

i

2 2 2

i1

2 2

i

2 2 2

i

2 2

i

+ 1+ 1+

1

+ 1+ 1+
=

1

+ 1+ 1+

1

s s

i s

is s

i

s s

i s

is s

i

s s

i

s s

i

u v
u

u v

u v
h v

u v

u v

u v

 

 

 


−

 +
 
 + +
 
 +
 

+ + 
 

+ 
− 

+ + 
 

s
u

 

(3) 
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Figure 2. Virtual camera coordinate system.

After determining the number of virtual cameras and the position of the virtual image
plane, the next step is to calculate the coordinates of the virtual points. First, the image
point u is projected onto the unit sphere. Through algebraic operations, we can obtain an
equation from the image point to the corresponding unit sphere.

Xm = h−1(K−1u) (2)

h−1(us) =


ξ+
√

1+(1+ξ2)(us2
i +vs2

i )
us2

i +vs2
i +1

·us
i

ξ+
√

1+(1+ξ2)(us2
i +vs2

i )
us2

i +vs2
i +1

·vs
i

ξ+
√

1+(1+ξ2)(us2
i +vs2

i )
us2

i +vs2
i +1

− ξ

 (3)

where (us, vs) are the coordinates of us′. h−1 is essentially the inverse of h in Equation (1).
The coordinate of Xm satisfies the equation Xm2 + Ym2 + Zm2 = 1.
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Then, we normalize the Zm coordinate to obtain the virtual image plane coordinates. ui
vir

vi
vir

1

 =
1

Zi
m

 Xi
m

Yi
m

Zi
m

or

 ui
vir

vi
vir

−1

 =
1
−Zi

m

 Xi
m

Yi
m

Zi
m

 (4)

While the virtual image Z is equal to 1, the virtual camera coordinate system will
coincide with the omnidirectional camera system. If the virtual image Z is equal to −1,
there is a corresponding relationship between the virtual camera coordinate system and
the omnidirectional camera coordinate system: Zvir = −Zc, Yvir = −Xc, and Xvir = −Yc. The
virtual camera imaging equation can be written as:

λvir

 uvir
i

vvir
i
1

=KvirXvir
i = IXvir

i (5)

where the λvir is scalar depth parameters. Kvir is the internal calibration matrix of the
virtual camera. For the distance from the optical center to the image plane, f vir = 1, and
for the principal point of the virtual camera, (u0, v0) = (0, 0). So, the virtual camera internal
calibration matrix Kvir is equivalent to I.

In the next step, the virtual image points and imaging equations are brought into
the EPNP algorithm to calculate the point coordinates in the virtual camera coordinate
system. Suppose the control points in the world coordinate system are {Xw

1 Xw
2 Xw

3 Xw
4 . . .

Xw
n }. Xw

i (i = 1 . . . n) can be written by four reference points (Cw
1 , Cw

2 , Cw
3 , Cw

4 ) in the world
coordinate system.

Xw
i =

4

∑
j=1

αijCw
j (6)

Because of the nature of Euclidean space, the same relationship holds in the virtual
camera coordinate system. We define the reference points in the virtual coordinate system
as Cvir

1 , Cvir
2 , Cvir

3 , Cvir
4 . The following equation can be written:

Xvir
i =

4

∑
j=1

αijCvir
j (7)

We expand Equation (5) by Equation (7) and 3D coordinates of each reference point.

λ

 uvir
i

vvir
i
1

 =

 1 0 0
0 1 0
0 0 1

· 4

∑
j=1

αij

 xvir
j

yvir
j

zvir
j

 (8)

Substituting in the first and two rows, two linear equations can be obtained:
4
∑

j=1
αijxvir

j − αijuvir
i zvir

j = 0

4
∑

j=1
αijyvir

j − αijvvir
i zvir

j = 0
(9)

The unknown parameters of the expression are only related to reference point coordi-
nates. Rewrite Equation (10) to matrix form:

Mx = 0 (10)
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where M is a 2n × 12 matrix, and x =
[

Cvir
1

T Cvir
2

T Cvir
3

T Cvir
4

T
]T

is a vector. Vector x
belongs to the right null space of M matrix. x is solved by singular value decomposition.

x=
N

∑
k=1

βkvk (11)

vk is an eigenvector with zero eigenvalues of M, with scalar coefficients. If N is
determined, reference point coordinates can be calculated by Equation (11). We can obtain
Xvir in different virtual camera coordinates system by Equation (7). Then, we reproject Xvir

to the omnidirectional camera system to obtain the location Xc
i .

At last, the absolute orientation algorithm [23] is used to directly calculate the rotation
matrix R and translation vector T of the omnidirectional camera coordinate system relative
to the object space coordinate system, that is, the pose of the omnidirectional camera.

Xw
i =RXc

i + T (12)

with A=
n
∑

i=1
Xwo

i (Xco
i )T.

The relationship between Xwo
i and Xw

i is shown as Equation (13), and the relationship
between Xco

i and Xc
i is shown in Equation (14).

Xwo
i = Xw

i −
1
n

n

∑
i=1

Xw
i (13)

Xco
i = Xc

i −
1
n

n

∑
i=1

Xc
i (14)

4. Results
4.1. Simulation

We produced synthetic 3D–2D correspondence by a virtual calibrated camera, the
intrinsic parameters of which are shown in Table 2. Calibration parameters were selected
empirically. Rotation matrix and translation vector were randomly generated. The transla-
tion vector norm was distributed into [100, 200]. In the experiment, we generated 10 sets
for the input data and kept the number of control points for each setting unchanged.

Table 2. Internal parameters of the camera in the simulation experiment.

Parameter f x f y u0 v0 ξ

Value 260.1 259.6 517.1 385.8 0.97

4.1.1. Synthetic Experiments of Accuracy about Noise

In the first experiment, we assessed the effect of the coordinate error on the accuracy
of pose estimation. The Gaussian noise, having zero mean and standard deviation from 0
to 10, was added to the corresponding 2D point coordinates. For each level of standard
deviation, we performed 100 experiments. The results of the experiment are shown in
Figure 3a,b.
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We computed the relative error of the estimated rotation by Equations (15) and (16),
where q and qture are the normalized quaternion corresponding to the rotation matrix.

Erot(%) = ‖qture − q‖ (15)

Etrans(%) =
‖tture − t‖
‖t‖ (16)

In Figure 3a,b, in addition to the rotation error, we also plotted the translation error.
The line in the box is the average error. The rectangle represents 50% error distribution.
The smaller it is, the more concentrated the error distribution, indicating that the method is
more stable. It can be observed that the error of our method grows linearly with the level
of noise and remains much lower than all the others. When the noise level is small, the
accuracy of the algorithms of [14,15] is similar to that of the algorithm in this paper. When
the noise level is large, the error of these two algorithms is large. When the variance of
Gaussian noise is 10, the maximum error of the rotation angle is below 10%, the average
error of the rotation angle is 3%, and the average error of the translation vector is 12%,
which indicates that it has good antinoise performance.

4.1.2. Synthetic Experiments of Accuracy about the Number of Control Points

Simulation experiments were conducted to explore the influence of the number of
control points on the pose estimation accuracy. The number of control points on a single
surface was varied from 5 to 20, keeping the average noise value at 0 and the standard
deviation at 2. The rotation matrix and translation vector were randomly generated,
where the norm of the translation vector was [100, 200]. One hundred experiments were
performed, and the results are shown in Figure 4a,b.
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Figure 4. Pose estimation errors for different numbers of control points. (a) Rotation matrix error
(b) Translation vector error.
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The error decreases as the number of control points increases. Figure 4 shows that
the error of the pose estimation is related to the number of control points projected on the
virtual planes (plane Z = −1 and plane Z = 1). When the number of control points is greater
than 12, the accuracy approaches stability. When the number of points is less than 6, the
pose estimation error increases. For the case where the number of control points is between
6 and 12, the error is uncertain. If the number of control points on each virtual plane does
not exceed 6, the error is large. If there are more than 6 control points on a virtual plane, the
accuracy is better. The 4 spatial 3D control points have 12 unknown parameters. As shown
in Equation (10), two equations are obtained for each control point. Therefore, when the
number of control points is greater than or equal to 6, the system has a definite solution.

4.2. Real Images
4.2.1. Calculating Rotation Angle

In the first experiment with real images, we applied the rotating platform to survey
the motion matrix of the detection target. The object in the picture was a checkerboard
pattern of 10 cm × 10 cm × 20 cm carved with 30 mm × 30 mm. The experimental layout
is shown in Figure 5. Assuming that φ is the rotation angles on the axes of rotation, the
rotation matrix R can be easily obtained by the Rodriguez formula.
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Figure 5. Experimental layout.

We randomly changed the angles φ and then captured images. We ignored the dif-
ference between the center of the turntable and the origin of the world coordinate system.
The coordinates of the checkerboard corners were obtained with the implementation of key
point recognition by the method of [24]. This is a gradient-based subpixel intersection de-
tection algorithm. The internal parameter was obtained by running the camera calibration
toolbox [22]. The calibration results are shown in Table 3. Then, the pose was estimated by
the proposed method and the methods in [14,15].

Table 3. Calibration result.

Parameter f x f y u0 v0 ξ

Value 370.647 370.018 807.551 597.126 1.027

The pose of the calibration target from camera coordinate system to world coordinate
system was calculated before and after exercise, expressed by R1, R2 and T1, T2, respectively.
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The conversion from the world coordinate system before movement to the world coordinate
system after movement is as follows:

Xw1 = R1
−1R2Xw2 −R1

−1[T2 − T1]
= Rw1−w2Xw2+Tw1−w2

(17)

The measured rotation matrix was converted into a form of quaternions and then
compared with the measured result. Figure 6 shows calculated the rotation errors and
translation errors when the camera position was fixed at 30 mm of the caliper and the
rotation angle of the turntable was varied.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 13 
 

 

We randomly changed the angles   and then captured images. We ignored the dif-

ference between the center of the turntable and the origin of the world coordinate system. 

The coordinates of the checkerboard corners were obtained with the implementation of 

key point recognition by the method of [24]. This is a gradient-based subpixel intersection 

detection algorithm. The internal parameter was obtained by running the camera calibra-

tion toolbox [22]. The calibration results are shown in Table 3. Then, the pose was esti-

mated by the proposed method and the methods in [14] and [15]. 

Table 3. Calibration result. 

Parameter fx fy u0 v0   

Value 370.647 370.018 807.551 597.126 1.027 

The pose of the calibration target from camera coordinate system to world coordinate 
system was calculated before and after exercise, expressed by R1, R2 and T1, T2, respec-

tively. The conversion from the world coordinate system before movement to the world 

coordinate system after movement is as follows: 

      









 1 1

w1 1 2 w2 1 2 1

w1 w2 w2 w1 w2

X  = R R X R [T T ]

= R X + T
 (17) 

The measured rotation matrix was converted into a form of quaternions and then 

compared with the measured result. Figure 6 shows calculated the rotation errors and 

translation errors when the camera position was fixed at 30 mm of the caliper and the 

rotation angle of the turntable was varied. 

 

Figure 6. Comparing the accuracy of our approach method, the method of [14], and the method of 

[15]. 

In the result of the algorithm of [15], the error distribution is relatively scattered. The 

line segment representing the average value is in the lower middle position, indicating 

that most of the most data have small errors and a small part of data have large errors. In 

the result of the algorithm of [14], there are some large discrete values above the box. This 

Figure 6. Comparing the accuracy of our approach method, the method of [14], and the method
of [15].

In the result of the algorithm of [15], the error distribution is relatively scattered. The
line segment representing the average value is in the lower middle position, indicating that
most of the most data have small errors and a small part of data have large errors. In the
result of the algorithm of [14], there are some large discrete values above the box. This is
the fault tolerance of pose calculation due to the plane incline. The results of the proposed
algorithm are relatively concentrated. The line segment representing the average value
is in the middle of the whole box, which indicates that the distribution of error values is
relatively average and the algorithm has good stability. The average value rotation error
is about 2.5% and the average value translation error is about 3.0%. Compared with the
results of the simulation experiment, both the rotation error and the translation error of the
real image experiment become larger. The reason is that the measurement error of camera
calibration is more complicated than the simulation error. Rotation angle is calculated from
two pictures before and after, which requires higher stability of the algorithm. The error of
any picture will affect the calculation of rotation angle.

4.2.2. Reconstruction

In the second experiment, we reconstructed the 3D metric of the object by using two
omnidirectional images. In order to study the accuracy of the reconstruction, the object
consisted of three orthogonal checkerboard patterns with the size of each square measuring
30 mm × 30 mm, as shown in Figure 7.
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Figure 7. The sample trihedron used for the 3D reconstruction experiment.

We used the omnidirectional camera to take images (see Figure 8) at two different
locations. The corner points were manually selected and matched. The pose of the object
was estimated by the method proposed in this paper. Then, the relative rotation matrices
and translation vectors between the two images were derived. The reconstruction results
are shown in Figure 9. In order to compare the reconstructed value with the real value,
the least square was used to fit the plane. The angles between the planes were 89.27◦,
89.44◦, and 89.64◦. Finally, we calculated the dimensions of the reconstructed checkerboard.
The average error relative to the ideal was 1.85 mm. We also used the methods proposed
in [14,15] to conduct experiments. The plane included angles were 95.6◦, 85.7◦, and 84.5◦

for the method of [14] and the average error of the corner coordinates was 3.17 mm. The
plane included angles were 93.2◦, 84.6◦, and 83.5◦ for the method of [15], and the average
error of the corner coordinates was 2.65 mm.

The inclination of the plane where the space point is located has a great influence
on the pose estimation. When the points are lying on a plane on an ideal plane facing
the camera, there is almost nonexistent pose ambiguity, and all the methods have similar
accuracy, with almost nonexistent outliers for all the methods. The pose ambiguity problem
appears for inclined planes. The reprojection error of the camera pose estimated by the
algorithms in [14,15] on plane 1 was small, while the reprojection error on planes 2 and 3
was large.
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perspectives.

4.3. Discussion

In this paper, by adding a virtual image plane, the nonlinear imaging process of the
omnidirectional camera is transformed into an equivalent linear imaging process. The
EPnP algorithm is then applied to the omnidirectional imaging system. The control point
coordinates around the camera improve the accuracy of camera pose estimation. A large
field of view can effectively reduce the loss of tracking caused by matching. The EPnP
algorithm converts the control points into four virtual coordinates to reduce the influence
of a single control point on pose estimation, and it has good antinoise performance. In
addition, the control point modification of this method only contains the basic mapping
relation, and the calculation cost is low. Specifically, the execution time of the coordinate
map is about 20 milliseconds per frame, and the execution time of pose estimation is about
10 milliseconds. We think there is room for improvement if the code can be executed
on the GPU. However, this method has some limitations in the number of virtual image
faces to choose. When more virtual image planes are selected, more control points are
needed, and fewer image planes are selected, which leads to larger errors caused by camera
approximation. Our plan is to remove these limitations in the future through the adoption
of deep learning technologies.

5. Conclusions

In this work, we propose the linear equivalent model for omnidirectional cameras. The
omnidirectional camera is equivalent to the combination of two or more virtual cameras.
After solving the nonlinear imaging problem of the omnidirectional camera, the EPnP
algorithm was extended to the omnidirectional camera. The method can be suitable for
all kinds of mirror omnidirectional systems. In the simulation part, we first studied the
influence of image point error on pose estimation. Results show that the proposed solutions
work well when noise occurs. Then, we investigated the influence of the number of control
points on the accuracy of pose estimation, and the accuracy was found to increase with
the increase in the number of control points. The four virtual control points in the EPnP
algorithm effectively reduce the influence of a single spatial control point on the overall
pose estimation. The better antinoise performance of the method was substantiated by
simulation and real image experiments. At the same time, space points around the camera
can effectively improve the positioning accuracy, which is an advantage brought by the
large field of view. In the second experiment of the real image, we put the pose estimation
results into the reconstruction algorithm. Three checkerboard calibration plates were
reconstructed. We calculated the included angle of the checkerboard calibration plate to
evaluate the reconstruction accuracy. In future research, we will extend the EPnP algorithm
to the scene reconstruction of the panoramic camera.
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In addition, the virtual image plane can solve the problem of large image distortion
by retaining the large field of view. The imaging process of the virtual camera is linear.
This can speed up the popularization of omnidirectional cameras in a wide range of video
surveillance, robot navigation, and other applications in computer vision.

This work has been focused on omnidirectional camera pose estimation. Future work
will also be dedicated to location and reconstruction with a large field of view of the
system. The powerful tools of deep learning (DL) will also be taken into account for camera
positioning by directly processing large field images.
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