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Abstract: An annotated photoplethysmogram (PPG) is required when evaluating PPG algorithms
that have been developed to detect the onset and systolic peaks of PPG waveforms. However,
few publicly accessible PPG datasets exist in which the onset and systolic peaks of the waveforms
are annotated. Therefore, this study developed a MATLAB toolbox that stitches predetermined
annotated PPGs in a random manner to generate a long, annotated PPG signal. With this toolbox,
any combination of four annotated PPG templates that represent regular, irregular, fast rhythm, and
noisy PPG waveforms can be stitched together to generate a long, annotated PPG. Furthermore, this
toolbox can simulate real-life PPG signals by introducing different noise levels and PPG waveforms.
The toolbox can implement two stitching methods: one based on the systolic peak and the other
on the onset. Additionally, cubic spline interpolation is used to smooth the waveform around the
stitching point, and a skewness index is used as a signal quality index to select the final signal output
based on the stitching method used. The developed toolbox is free and open-source software, and a
graphical user interface is provided. The method of synthesizing by stitching introduced in this paper
is a data augmentation strategy that can help researchers significantly increase the size and diversity
of annotated PPG signals available for training and testing different feature extraction algorithms.

Keywords: PPG synthesis; pleth augmentation; PPG generators; imbalanced PPG; PPG augmenta-
tion; enlarging time-series health data; PPG in low-resource clinical settings; PPG lengthening; PPG
signal extension; upsizing existing PPG databases

1. Introduction

Photoplethysmography is a technology that optically detects changes in the blood
volume of microvascular tissue beds. This technology, which can obtain a wealth of infor-
mation about the cardiovascular system, has received extensive attention from scientists
with different backgrounds, as it is non-invasive and can be continuously monitored. It
is also used in devices like smartphones and wearable devices for health monitoring and
primary health checks [1,2].

Photoplethysmography can be used to evaluate heart rate [3,4], blood oxygen satu-
ration [5], respiration rate [6], hypertension [7,8], the ankle–brachial pressure index [9],
vascular aging [10,11], and other cardiovascular parameters.

When analyzing photoplethysmogram (PPG) signals, researchers usually need to
extract the features in the time domain, such as the locations and amplitudes of the
PPG systolic peaks and the onsets [12]. Therefore, the accuracy of the feature extraction
algorithm will affect the accuracy of the analysis results. To evaluate the performance
of PPG time domain feature extraction algorithms, a large number of PPG signals with
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different sampling frequencies, noise levels, morphologies, and heart rhythms are required.
However, few publicly accessible annotated PPG signals exist. The MIMIC database [13]
contains 64 annotated PPG signal records, the length of which is one hour, and only the
onsets of the PPG waveforms are annotated. Additionally, the IEEE TBME Respiratory
Rate Benchmark dataset has 42 annotated PPG signal records, each eight minutes long [14],
but only the systolic peaks are annotated in these records. Therefore, this study aimed
to develop a toolbox to generate PPGs due to the high interest in research related to PPG
signal analysis and app development.

Some mathematical models have been used to generate PPGs. In [15], a nonlin-
ear model was used to generate reference PPG to clean PPGs before extracting features.
Another method used the two Gaussian functions to model a single pulse to generate
PPGs [16]; this method used the average of two autoregressive moving average models
to approximate the parameters of the pulse model. Similarly, another method using a
single pulse modeled by a log-normal and two Gaussian functions was applied in [17].
The beat-to-beat intervals were extracted from the RR interval in the electrocardiogram
signal, and each PPG pulse was then connected according to the RR interval. Furthermore,
the authors’ previous work utilized a Two Gaussian Functions model based on circular
motions to generate regular and irregular PPGs [18,19]. However, these methods [15–19]
were focused on the morphology of the PPG, and no annotations were provided.

In this study, a MATLAB toolbox called “PPGTempStitch” was developed to stitch
short-time annotated PPG templates together to generate a new long-time PPG signal
for any sampling frequency. Stitching technology has been widely used in image pro-
cessing [20–22]. To our knowledge, this present study is the second attempt to apply the
stitching idea to time-series PPG signals. The first attempt to stitch time-series PPG signals
was discussed in [23]. The “PPGTempStitch” toolbox generated by this study is an open-
source package designed to use existing routines in MATLAB 2020a for reproducibility.

2. Materials and Methods

To evaluate the performance of PPGTempStitch when stitching different PPG types
together, four types of normalized PPG templates were used for testing: regular PPG,
irregular PPG, fast-rhythm PPG, and noisy PPG. Regular PPG occurs when the PPG
rhythm is regular and the mean heart rate is within 59–99 beats per minute. Irregular
PPG occurs when the mean heart rate is within 59–99 and the PPG rhythm is irregular.
Fast-rhythm PPG occurs when the PPG rhythm is irregular but the mean heart rate is higher
than 100. Lastly, noisy PPG occurs when the PPG segments contain noise. Figure 1 shows
the dataset that was used in this study, these PPG templates came from different subjects
in the MIMIC III database. The templates, which have already been normalized, were
recorded at a 125 Hz sampling frequency. Figure 2 shows the flow chart for the steps used
to stitch two PPGs (x1 and x2). These steps were normalization, stitching, interpolation,
and method selection.

2.1. Normalization

PPGs may have different amplitudes. To enable comparison of different PPGs, they
are usually normalized in pre-processing. In the present study, min-max and z-score
normalization were both utilized to scale the two PPG segments before they were stitched
together; this ensured that the amplitudes of the PPGs were consistent.

Min-max normalization was used to scale PPGs in the 0–1 range, as follows:

y = (x−min (x))/(max (x)−min (x)), (1)

where x is an original PPG signal, and y is the normalized PPG signal. The other normal-
ization method, called the z-score, was used to center PPGs with a mean of 0 and scaled
them to have a standard deviation of 1, as follows:

y =
x− µ

σ
, (2)



Sensors 2021, 21, 4007 3 of 15

where x is an original PPG signal; µ and σ are the mean and standard deviation of x,
respectively; and y is the normalized PPG signal. In the current study’s toolbox, the
two normalization methods could not be used at the same time. The normalized PPGs
were named “y1” and “y2”, which correspond to the first PPG (x1) and second PPG
(x2), respectively.

Figure 1. Four types of PPG templates. The regular, irregular, fast-rhythm, and noisy templates are
(a–d), respectively. The “*” and “+” in (a–d) refer to the annotated systolic peak and onset, respectively.

Figure 2. Flowchart for stitching two PPGs together. The “Peak” refers to the systolic peak.

2.2. Stitching

A major challenge for stitching two PPG signals together is choosing the stitching
point, as the amplitude of the end point of the first PPG (y1) is always different from that of
the starting point of the second PPG (y2). In this case, two signals were stitched together
based on the systolic peak or the onset—the main two features of the PPG signal in the
time domain. The difference between these two methods of selecting the stitching point
was as follows:

• Based on the systolic peak. For the first PPG, the stitching point was the last systolic
peak, while the stitching point of the second PPG was its first systolic peak.

• Based on the onset. For the first PPG, the stitching point was the last onset, while the
stitching point of the second PPG was its first onset.

The two PPGs were then aligned in time based on the stitching point. The segment
after the last onset of the first PPG and the segment before the first onset of the second
PPG were discarded. Figure 3 compares stitching based on the systolic peak with stitching
based on the onset.
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Figure 3. Comparison of stitching two PPG signals together based on the systolic peak or based on the onset. (a) First and
second PPGs aligned based on the systolic peak. (b) First and second PPGs aligned based on the onset. The red dotted lines
in (a,b) are the aligned lines of the first and second PPGs.

2.3. Interpolation

The value of the stitching point in the first PPG (y1) may be different from that in the
second PPG (y2). Therefore, to smooth the stitching point, cubic spline data interpolation
was used [24]. Cubic spline interpolation involves a spline in which each piece is a third-
degree polynomial specified by its values and first derivatives at the end points of the
corresponding domain interval.

The interpolation involved a total of 20 samples: the stitching point, nine samples
before the stitching point, and 10 samples after the stitching point. To express these more
clearly, the PPG segments involved in the interpolation were named “yt” and those that
were used after the interpolation were named “z”.

In this study, the first five and last five samples of yt were used to fit the interpolation
function, and the values of the 10 other samples in the middle of yt were replaced by the
values of the samples in z.

2.4. Stitching Beat Selection

As skewness is the optimal signal quality index (SQI) of PPGs [23], the skewness of
the previous, stitched, and next beats were calculated. One PPG beat began with the onset
of a beat and ended with the onset of the following beat. For the stitching method based
on the systolic peak, the stitching beat was the beat where the stitching point was located.
For the stitching method based on the onset, the stitching beat was the beat following the
stitching point. The previous beat was the beat before the stitching beat, while the next
beat was the beat following the stitching beat. To examine a PPG beat, the skewness was
applied as follows:

k =
1
N

N

∑
i=1

[(z(i)− µ)/σ]3, (3)

where µ and σ are the mean and standard deviation of the beat, respectively; z(i) is the
value of the samples; and N is the number of samples in the beat. The skewness index was
calculated as follows:
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s = kprevious + kstitching + knext, (4)

where kprevious, kstitching, and knext are the skewness of the previous, stitched, and next beats,
respectively. In this study, “s1” was the skewness index of the stitching method based
on the systolic peak, and “s2” was the skewness index of the stitching method based on
the onset.

The skewness index was used to evaluate the quality of stitching, and the stitching
method with a higher skewness index was considered better than that with a lower skew-
ness index. To improve the signal quality, the result of the stitching method with a higher
skewness index was chosen as the final output in this study.

Table 1 shows the skewness of the aforementioned three beats and the skewness index
in different combinations. Figure 4 provides three examples of stitching results. Figure 4a,b
are the results of stitching a regular PPG with another regular PPG based on the systolic
peak and the onset, respectively; Figure 4c,d are the results of stitching a regular PPG with
an irregular PPG based on the systolic peak and the onset, respectively; and Figure 4e,f
are the results of stitching a fast-rhythm PPG with a noisy PPG based on the systolic peak
and the onset, respectively. The skewness indices in Figure 4a,c,f are greater than those
in Figure 4b,d,e, respectively. The differences in the signal quality of the PPG waveforms
between Figure 4a,b and between Figure 4c,d are not very obvious, but the signal quality
of the PPG waveform in Figure 4f is obviously better than that in Figure 4e. The length of
the stitched PPG was less than the sum of the lengths of two PPGs.

Table 1. Signal quality indices of the stitching results (“stitching beat” refers to a beat that has been stitched, “previous beat”
to the beat prior to the stitching beat, and “next beat” to the beat after the stitching beat. The “signal quality index” refers to
skewness of the beat).

First PPG Second PPG
Based on Systolic Peak Based on Onset

Previous Beat Stitching Beat Next Beat S1 Previous Beat Stitching Beat Next Beat S2

Regular

Regular 0.64 0.66 0.67 1.97 0.64 0.66 0.67 1.97
Irregular 0.64 0.97 0.96 2.57 0.62 0.97 0.54 2.12

Fast Rhythm 0.64 0.46 0.69 1.80 0.59 0.47 0.69 1.76
Noisy 0.64 −0.19 0.00 0.45 0.59 0.10 1.03 1.72

Irregular

Regular 1.08 0.66 0.67 2.41 1.08 0.66 0.67 2.41
Irregular 1.08 0.92 0.96 2.97 1.07 0.98 0.54 2.59

Fast Rhythm 1.08 0.49 0.69 2.27 1.02 0.53 0.69 2.25
Noisy 1.08 −0.61 0.00 0.46 1.02 0.10 1.03 2.15

Fast Rhythm

Regular 0.58 0.72 0.67 1.96 0.71 0.64 0.67 2.01
Irregular 0.58 0.99 0.96 2.53 0.72 0.96 0.54 2.22

Fast Rhythm 0.58 0.78 0.69 2.05 0.65 0.81 0.69 2.15
Noisy 0.58 0.35 0.00 0.93 0.62 0.07 1.03 1.72

Noisy

Regular 0.88 0.36 0.67 1.91 −1.37 0.62 0.67 -0.08
Irregular 0.88 0.24 0.96 2.09 −0.98 0.95 0.54 0.50

Fast Rhythm 0.88 0.63 0.69 2.21 0.89 0.71 0.69 2.30
Noisy 0.88 −0.29 0.00 0.59 0.79 0.04 1.03 1.86

PPG templates were augmented to generate new PPG signals (see Figure 4), which
can be helpful when the training PPG sample size is small (e.g., 10 PPG recordings of
subjects with a specific disease). The introduced strategy stitched templates in a random
fashion, similar to combining different images using the data augmentation strategies
that are utilized by 2D image processing to generate new images [25]. The math behind
data augmentation transformations in 2D signal processing is usually simple (e.g., scaling,
translating). The present study opened this area of augmentation for 1D signal processing
using PPG signals, and the results were impressive. To the authors’ knowledge, this was
the first study of 1D signal analysis to discuss stitching as an augmentation step to generate
annotated time-series health data, such as PPGs.
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Figure 4. Three examples of stitching results. (a,b) are the results of stitching two regular PPGs together based on the
systolic peak and the onset, respectively. (c,d) are the results of stitching a regular PPG with an irregular PPG based on the
systolic peak and the onset, respectively. (e,f) are the results of stitching a noisy PPG with an irregular PPG based on the
systolic peak and the onset, respectively. The stitching points are denoted as “*” in (a,c,e) and as “+” in (b,d,f). The cyan,
red, and magenta parts are the previous, stitching, and next beats, respectively. The numbers above the curve represent the
skewness of the beat. The “s1” and “s2” refer to the skewness index in the stitching methods based on the systolic peak and
the onset, respectively.

2.5. Annotations

Annotations are the labeled PPG waveform, such as a systolic peak, a diastolic peak,
an onset, and a dicrotic notch in the time domain [26,27]. For the toolbox developed in this
study, the onset and systolic peak were supported. Additionally, the annotations could be
merged after the PPGs were stitched together. For the first PPG, the annotations before the
stitching point were reserved, while those after the stitching point were discarded. For the
second PPG, the annotations before the stitching point were discarded, while those after
the stitching point were merged with the reserved annotations in the first PPG according
to their positions relative to the stitching point.

Since the interpolation step changed the values of the stitching point, the previous
four samples, and the following five samples, the annotation at the stitching point needed
to be corrected. For the stitching method based on the systolic peak, the systolic peak at the
stitching point was corrected to the maximum value of the 10 samples after interpolation.
For the stitching method based on the onset, the onset at the stitching point was corrected
to the minimum value of the 10 samples after the interpolation.
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2.6. Onset and Systolic Peak Detection Algorithms

To obtain the optimal onset and systolic peak extraction algorithm, three pulse wave
extraction algorithms were compared, as follows:

• Method I [28] used signal derivative, Hilbert transform, amplitude thresholding, and
slope-reversal based approaches. The steps were as follows:

– PPGs were filtered using a sixth-order Butterworth low-pass filter with a cutoff
frequency of 15 Hz.

– The Hilbert transform was applied to the second derivative of the PPG signal.
– In the Hilbert transform data, the region greater than 50% amplitude was se-

lected. The slope reversal points within these areas were determined as the
maximum peaks.

– According to the maximum peak position, the Hilbert transform PPG data’s left
and right neighborhood samples were tested to determine the primary and next
zero-crossing point.

– Based on each zero-crossing point, 30 samples of the actual PPG data were used
to create a search zone.

– Onset detection: According to the left zero-crossing point, samples with slope
reversal characteristics were identified as the pulse’s onset.

– Systolic peak detection: At the right zero-crossing point, only those samples
with the slope reversal characteristics were identified as the systolic peak.

• Method II [29] first extracted the initial peaks, and classified them as true and false
peaks. For each false peak, an algorithm was used to relocate the true peak. The steps
were as follows:

– Systolic peak detection:

* The missing data points or data points with values greater than 20 times the
PPG’s median waveform height were defined as outliers. The outlier data
points that lasted for less than 0.2 s were linearly interpolated, and the result
was denoted as w0.

* w0 was linearly detrended, and its power spectrum density was computed
using a fast Fourier transform. The maximum power spectrum in the 0.8–
3.0 Hz range was the heartbeats’ frequency, while the average beat-to-beat
interval was its reciprocal value.

* The waveform w0 was smoothed using a center median filter with a window
size set to one-fifth of the estimated beat-to-beat interval, followed by a
center moving-average filter with the same window size to generate w1.

* w2 was generated by the smoothed w1 passed through a third-order, low-
pass Butterworth filter with a cutoff frequency of one-and-a-half times the
estimated heartbeat frequency.

* The baseline b of the PPG waveform was generated by applying a center
moving-average filter to waveform w2, with a window size set to 1.5 of the
estimated beat-to-beat interval.

* To extract the systolic peaks, an initial set of peaks on w0 was used to find a
local maximum in each time interval where the filtered waveform w2 was
above the baseline b.

* All peaks on w0 were sorted by amplitude in increasing order and selected
the amplitude value at the 2/3 length position. Each initial peak needed
to satisfy two conditions: it needed to be greater than half of the selected
amplitude value, and each peak-to-peak interval could not deviate from the
median interval by more than two times, referred to as MAD. MAD was
calculated as MAD = median[|t−median(t)|], where t is the peak-to-peak
intervals. The PPG peaks that did not satisfy these two conditions were
identified as potential false peaks, while the remaining were identified as
true peaks.
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* An attempt was made to relocate the putative false peaks and identify the
locations of true ones. Specifically, starting from each interval’s left-boundary
position, median(t) seconds were added, and this point was considered as
the expected position of the next peak. Next, the area around the expected
position was searched to identify a local maximum on the smoothed wave-
form w1 within a window size of a length set to MAD. If the local maximum
was located at either end of the window, the window size increased by MAD
seconds, and the process was repeated. Then, the equivalent maximum was
on w0 and labeled as the next peak. Starting from this newly discovered
peak position, the procedure above was repeated until the end of the interval
was reached and multiple consecutive missed peaks were recovered.

– Onset detection: The onset corresponding to each true peak was detected in
three steps, as follows:

* Ranges were located where w0 was below both the filtered waveform w2
and the baseline b.

* If multiple ranges were identified, they were ranked based on their lengths.
Then, the top two ranges’ rightmost one was selected.

* The minimum position on the waveform w0 in the selected range was con-
sidered the onset.

• Method III extracted the systolic peaks based on a block-based method [30], and the
local minimum between two successive peaks was defined as the onset.

– Systolic peak detection:

* A second-order Butterworth 0.5–8 Hz bandpass filter was applied, and then
the filter’s output was clipped by keeping the signal above 0 to produce the
x[n] signal.

* The filtered signal was squared to emphasize the large difference between
the systolic wave and diastolic wave in x[n]. This squaring step produced
the y[n] signal.

* Blocks of interest were generated based on two event-related moving aver-
ages and an offset threshold, as follows:

MApeak[n] = 1
W1

(y[n− (W1 − 1)/2] + ... + y[n] + ... + y[n + (W1 − 1)/2])

MAbeat[n] = 1
W2

(y[n− (W2 − 1)/2] + ... + y[n] + ... + y[n + (W2 − 1)/2])

THR1 = MAbeat[n] + βȳ
THR2 = W1

(5)

where MApeak is the first moving average used to emphasize the systolic
peak area, MAbeat is the second moving average used to emphasize the beat
area to be used as a threshold for the first moving average, ȳ is the mean of
the squaring result, and W1, W2, and β are parameters. The blocks of interest
were generated by comparing the MApeak signal with THR1, and the blocks
wider than or equal to THR2 were classified as the systolic peak area. The
optimized parameters (W1, W2, β = 111 ms, 667 ms, 2) were used.

* The maximum value in each block was considered the systolic peak.

– Onset detection: This study did not discuss the onset detection algorithm.

2.7. Performance Evaluation

Algorithms were evaluated using two statistical measures:

Sensitivity (SE) =
TP

TP + FN
× 100%, (6)

Positive predictivity (PP) =
TP

TP + FP
× 100%, (7)
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where true positive (TP) is the number of features detected as features, false negative (FN)
is the number of features that were not detected, and false positive (FP) is the number of
non-features that were detected as features. In this study, each feature (systolic peak and
onset) obtained by the algorithms was defined as a true positive if it deviated from the
corresponding annotation within ±10 ms [31].

3. Results
3.1. The Graphical User Interface

Figure 5 shows the main dialogue of the graphical user interface (GUI). Four types of
PPG templates were supported in the GUI. These templates were extracted from different
subjects in MIMIC III database. To synthesize an annotated PPG, users could complete
all their work in the main menu. First, the signal length and sampling frequency of the
synthetic PPG were modified. The PPG signal needed be longer than five seconds, the
length of all the PPG templates, and so the stitched PPG was resampled to the required
sampling rate when the needed sampling frequency was not 125 Hz.

Figure 5. The graphical interface of PPGTempStitch.

The second step was modifying the percentages of the different PPG types. The sum
of all the percentages should be 100. When the percentage of a certain PPG multiplied by
the signal length is less than 5 s, this signal type may not appear in the final synthesized
PPG. The third step was selecting the normalization method. The toolbox provided two
commonly used normalization methods: Min-Max and z-score normalization. When
the “Generator” button was pressed, the GUI attempted to generate the synthetic PPG
and showed it at the bottom of the dialogue. The toolbox generated PPGs using the
following steps:

1. Determine the proportion of beat types. The synthesized signal’s length (ns) was
divided by the template’s length 5 s to obtain the number of templates nat. Then, nat
was multiplied by the percentage of each template to get the results natp. The integer
part of natp was used as the number of each template. The four templates represented
four beat types: regular, irregular, fast rhythm, and noisy.

2. Randomly arrange the determined number of templates. Then, the method pro-
posed in this study was used to stitch the determined templates in sequence one by
one. When stitching was based on the systolic peak, the stitching point of the first



Sensors 2021, 21, 4007 10 of 15

PPG was the last annotated systolic peak, and the stitching point of the second PPG
was the first annotated systolic peak. When stitching was based on the onset, the
stitching point of the first PPG was the last annotated onset, and the stitching point of
the second PPG was the first annotated onset.

3. Adjust the signal length. If the length of the synthesized PPG obtained by Step 2
was less than the required length n, the difference between the lengths was defined as
the new ns. Then, Steps 1 and 2 were repeated until the synthesized PPG was longer
than n, at which point the first n seconds of the signal were considered as the signal
output sp.

4. Re-sample the signal. If the desired sampling frequency was not 125 Hz, sp was
resampled to the desired frequency to generate the final output send. The annotations
were mapped to send according to the ratio of the required sampling rate to 125. Each
annotated systolic peak was corrected to the maximum position in the 0.01 s window
centered on the peak. Likewise, the onset was corrected to the minimum position in
the 0.01 s window centered on the onset.

After the signals are synthesized, users of the toolbox can press the “Save” button to
save the synthetic PPG to a comma-separated values file (.csv), a text file (.txt), a generic
data file (.dat), or an Excel spreadsheet file (.xls, .xlsm, or .xlsx). If more noise levels and
waveform types are required, users can also add new PPG templates with annotations to
the “Manage Templates” tab.

To maintain data consistency, users can only add five-second PPG templates, and the
added templates will be resampled at 125 Hz when saving. When the signal length is short,
the percentage of each template in the synthesized PPG obtained by this toolbox is not
exactly the same as that set by the user.

3.2. Performance Evaluation Results

To evaluate a feature extraction algorithm, data containing different conditions are
required. Typically, a large number of annotated PPGs are used to evaluate the algorithm’s
performance under different conditions. However, this toolbox could generate PPG sig-
nals under different conditions, thereby providing a solution to the current shortage of
annotated PPGs.

To compare the three feature extraction algorithms, 10 PPG records were synthesized
using this toolbox. These records contain different conditions. These records contained
different conditions: records 1–5 were used to compare these methods’ accuracy in different
signal compositions at the same sampling rate and length, records 5–8 were used to
compare these accuracies with different sampling rates and lengths under the same signal
composition (e.g., the same proportion of beat types), and records 1, 7, and 10 compared
these methods under unique conditions. Table 2 compares the application of the three
feature extraction algorithms on different synthetic PPGs. Since Method III did not discuss
the onset detection algorithm, its onset accuracy was not discussed. Record 1 was stitched
only by the regular template. In this case, all three methods got SE = 100% and PP = 100%
in systolic peak detection, and no assessment about which algorithm was best could be
made. For onset detection, Method I got SE = 100% and PP = 100%. However, Method II
got SE = 61.1% and PP = 61.1%. Figure 6a shows a segment of Record 1. Method II failed
to detect the second and fifth onsets, and the deviation between the result of Method II and
the annotation was greater than 10 ms. When the signal quality decreased, the accuracy of
Methods I and II decreased, while Method III still achieved high accuracy.

Comparisons of the three algorithms’ average accuracy revealed that Record 6 had
the lowest accuracy. Figure 6b shows a segment of Record 6. Both Methods I and II missed
the second systolic peak. Method 1 only selected the region greater than 50% amplitude
for Hilbert transform data. This may have been due to the fact that the amplitude of the
systolic peak may become lower than the threshold when noisy or irregular events occur.
Method II judged the second peak as a false peak that was caused by the peak-to-peak
interval threshold.
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For the sixth systolic peak, the offset between the detection result of Method I and
the annotation was greater than 10 ms. The results of Method III were not exactly the
annotation location, but the offset was less than 10 ms. After comparing the average
accuracy of 10 records, Method III was found to be the optimal method for detecting the
systolic peak. Likewise, the accuracy of Method I was better than Method II for onset
detection. Furthermore, by comparing the accuracy of these 10 records, the changes in
sampling frequency were found to have no great influence on the three methods’ accuracy.

Figure 6. Comparison of the three methods’ results. (a) Four-second segment of Record 1. (b) Four-second segment of
Record 6. The black ‘*’ and ‘+’ refers to the annotated systolic peaks and onsets, respectively. The blue, magenta and
dark-green ‘*’ are the true-positive systolic peaks of Methods I, II, and III, respectively. The blue and magenta ‘+’ are the
true-positive onsets of Methods I and II, respectively. ‘FP’ and ‘FN’ are the false-positive and false-negative, respectively.
The ‘◦’ is used to show the location of the false-positive.



Sensors 2021, 21, 4007 12 of 15

Table 2. Comparison of the accuracy of the feature extraction algorithms on different synthetic PPGs. ‘SE’ refers to the sensitivity of the algorithm, while ‘PP’ refers to the positive predictivity.

Method I [28] Method II [29] Method III [30]

Sampling Length PPG Templates Ratio (%) PPG Onsets PPG Systolic Peaks PPG Onsets PPG Systolic Peaks PPG Systolic PeaksFrequency (s)

Regular Irregular Fast Noise SE PP SE PP SE PP SE PP SE PP Average
Rhythm (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Record 1 125 60 100 0 0 0 100 100 100 100 61.1 61.1 100 100 100 100 92.22
Record 2 125 60 90 10 0 0 98.6 100 98.6 100 63.5 64.4 98.6 100 100 100 92.37
Record 3 125 60 80 10 10 0 93.8 98.7 96.2 100 61.3 68.1 91.1 100 100 100 90.92
Record 4 125 60 70 10 10 10 88.8 97.3 91.3 98.6 65 71.2 91.3 100 97.5 98.7 89.97
Record 5 125 60 50 20 20 10 85.4 95 89.9 98.8 59.6 74.6 80 100 100 100 88.33
Record 6 125 300 50 20 20 10 83.4 96.1 86.6 98.2 60 74.2 80.7 99.7 98.4 98.6 87.59
Record 7 200 300 50 20 20 10 85.9 97.4 87.1 98.5 67.7 83.7 80.3 99.4 98.9 99.1 89.8
Record 8 400 600 50 20 20 10 78.4 98 87.9 100 68.4 84.6 79.1 97.8 99 99.1 89.23
Record 9 125 600 70 10 10 10 87.5 96.2 90.9 98.1 62.2 69.5 89.5 100 98.8 98.8 89.15
Record 10 400 600 70 10 10 10 84.8 98 90.8 100 72.8 81.3 89.5 100 98.5 98.5 91.42

Average - - - - - - 88.66 97.67 91.93 99.22 64.16 73.27 88.01 99.69 99.11 99.28
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4. Discussion

After comparing the average of the three algorithms’ accuracy on different records, the
following ratio is recommended to test the feature extraction algorithm: the proportions
of regular, irregular, fast rhythm, and noisy beats should be 50%, 20%, 20%, and 10%,
respectively. Users of the toolbox can synthesize more PPGs with different sampling rates
and different waveforms to evaluate the feature extraction algorithms. Because the order
of the templates is random, the toolbox’s PPG signal output may differ even if the same
parameters (e.g., scale, sampling rate, signal length) are used.

To ensure the authenticity of the synthetic PPGs, all PPG templates came from real
PPGs in the MIMIC III database. Noise was not added to the PPG templates. If noise is
required, users can generate PPGs and then add noise. The advantage of this toolbox is
that it can generate PPGs with annotations; previous studies [15–19] only generated the
PPGs without annotation. Thus, by using this toolbox, users can generate PPGs to test and
compare the developed feature extraction algorithms. Several PPG features exist in the
time domain—onset, systolic peak, dicrotic notch, and diastolic peak. This study focused
only on the main features of a PPG waveform: systolic peak and onset. However, other
annotated features can also be generated using the same method, as discussed in [32,33].

One advantage of this toolbox is that the augmented PPGs are generated based on
human data. Augmenting PPGs under the same condition can mislead the evaluation
of the feature extraction algorithms. However, the combination of different data types
covers different conditions to simulate real-life situations, reducing bias in performance
assessment. One limitation of this toolbox is that only four types of PPG templates are
included by default. If more PPG morphologies are needed, users can add their templates
in the “ManageTemplates” tab of the toolbox.

5. Conclusions

PPGTempStitch, a new MATLAB toolbox for generating annotated PPG signals with
any sampling frequency and a time length longer than 5 s, was described herein. The
generated PPGs can contain different noise, waveform, and heart rhythm levels to simulate
real-life conditions. Users can generate different annotated PPG types by adding new
PPG templates. The developed toolbox is free and open-source software. Hopefully, the
user-friendly toolbox will make PPG research easier, especially when evaluating PPG
feature extraction algorithms.
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