
sensors

Article

Privacy-Enhancing k-Nearest Neighbors Search over Mobile
Social Networks †

Yuxi Li 1,*,‡ , Fucai Zhou 2, Yue Ge 2 and Zifeng Xu 3

����������
�������

Citation: Li, Y.; Zhou, F.; Ge, Y.; Xu,

Z. Privacy-Enhancing k-Nearest

Neighbors Search over Mobile Social

Networks. Sensors 2021, 21, 3994.

https://doi.org/10.3390/s21123994

Academic Editor: Rongxing Lu

Received: 16 April 2021

Accepted: 4 June 2021

Published: 9 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China
2 Software College, Northeastern University, Shenyang 110819, China; fczhou@mail.neu.edu.cn (F.Z.);

yggeyue@foxmail.com (Y.G.)
3 School of Cybergram, Hainan University, Haikou 570228, China; tnimdk@gmail.com
* Correspondence: liyuxi@cse.neu.edu.cn
† This paper is an extended version of our paper published in “Li, Y.; Zhou, F.; Xu, Z.; Ge, Y. PPFQ:

Privacy-Preserving Friends Query over Online Social Networks. In Proceedings of the 2020 IEEE 19th
International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom),
Guangzhou, China, 29 December 2020–1 January 2021; pp. 1348–1353,
doi:10.1109/TrustCom50675.2020.00181.”.

‡ Current address: No.195, Chuangxin Road, Hunnan District, Shenyang 116024, China.

Abstract: Focusing on the diversified demands of location privacy in mobile social networks (MSNs),
we propose a privacy-enhancing k-nearest neighbors search scheme over MSNs. First, we construct a
dual-server architecture that incorporates location privacy and fine-grained access control. Under
the above architecture, we design a lightweight location encryption algorithm to achieve a minimal
cost to the user. We also propose a location re-encryption protocol and an encrypted location search
protocol based on secure multi-party computation and homomorphic encryption mechanism, which
achieve accurate and secure k-nearest friends retrieval. Moreover, to satisfy fine-grained access control
requirements, we propose a dynamic friends management mechanism based on public-key broadcast
encryption. It enables users to grant/revoke others’ search right without updating their friends’ keys,
realizing constant-time authentication. Security analysis shows that the proposed scheme satisfies
adaptive L-semantic security and revocation security under a random oracle model. In terms of
performance, compared with the related works with single server architecture, the proposed scheme
reduces the leakage of the location information, search pattern and the user–server communication
cost. Our results show that a decentralized and end-to-end encrypted k-nearest neighbors search over
MSNs is not only possible in theory, but also feasible in real-world MSNs collaboration deployment
with resource-constrained mobile devices and highly iterative location update demands.

Keywords: mobile social networks; privacy-enhancing; collaboration architecture; location search;
secure multi-party computation; homomorphic encryption

1. Motivation

With the rapid development of 5G Wireless Communication, mobile social networks
(MSNs), represented by instant messaging and location sharing, have become essential
parts of people’s everyday lives. According to [1], the number of enrolled users in MSNs
worldwide reaches 862 million in 2020, and it is estimated to exceed 900 million by the
end of 2021. In particular, the utilization rate of location-based MSN services reaches
96.9% based on the positioning system (e.g., GPS, WiFi, Bluetooth, etc.) embedded in
mobile devices, such as Facebook’s “Nearby friends”, Foursquare’s “Swarm”, and Joyrun’s
“real-time running competition”, and so forth. In these services, users can broadcast
their locations among friends and send location-based queries for nearby friends. There-
fore, the location-based services provide a profoundly mobile interface for users’ real-life
social networks.

Sensors 2021, 21, 3994. https://doi.org/10.3390/s21123994 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6697-1796
https://doi.org/10.3390/s21123994
https://doi.org/10.3390/s21123994
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21123994
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21123994?type=check_update&version=3

Sensors 2021, 21, 3994 2 of 19

Nevertheless, people are using the enormously popular MSNs services without re-
alizing their privacy concerns: the MSNs services providers can observe and accumulate
the geo-location that users transmit through the network. According to the Mobile APP
Security Research [2], among the 50 MSN services surveyed, there are 35 services that
leak users’ location data to advertisers or data analysis services on purpose without any
permission. In recent years, a lot of research also uses data analysis and machine learning
technology to extract a large number of their sensitive information from users’ location
information over MSNs: by analyzing their search patterns, the matched friends and search
similarities and so forth, it is easy to predict the location conversion patterns between
users and their friends [3,4]. It is also turned out that Facebook’s historical spatiotemporal
trajectory leaks the geographical distance between each user and the spot that he frequently
queries, and then the service provider can learn the access probability—whether and when
the user will check-in the next time [5].

To avoid illegal access to users’ locations and search patterns by unauthorized service
providers and hackers, previous research aimed to encrypt the location information before
uploading. However, traditional encryption methods limit the MSNs service provider’s
ability to provide location-based services for users. To achieve privacy-preserving location-
based query, the straightforward mathematical methods deploy private information re-
trieval [6], searchable encryption [7] and other crypto primitives to make the encrypted
location data searchable. However, these methods come at the huge cost of computation
and communication overhead. Moreover, in a privacy-preserving setting, users have their
keys embedded in their mobile devices. If a user is allowed to share his/her location en-
cryption key with friends, he/she needs to launch a search request to the platform multiple
times when he wants to retrieve his/her friends’ locations. Moreover, when granting or
revoking friends’ search rights, a user and his/her friends should update their keys with
synchronous locally, which are not suitable for MSNs platforms with highly extensible
requirements. To the best of our knowledge, it is fair to say that achieving fine-grained
location access control while providing an efficient, secure location-based neighbors search
service has become one of the challenging research topics in the field of privacy-enhancing
MSNs and still remains open.

In this work, we translate the high-level vision of the above issues and location
privacy demand in MSNs into technical requirements and design a privacy-enhancing
k-nearest neighbors search scheme containing cryptographic protocols that meet them.
The purpose of this work is to protect users’ location data and search patterns privacy,
and make it available for users to query for their k-nearest neighbors based on current
distances. In terms of technical contribution, our work presents an efficient construction so
that the server can effectively compute and sort the encrypted distance between a user and
his/her friends without any decryption operation, which is the first to tackle this problem
through the lens of secure multi-party computation. It also achieves lightweight friend
authentication and authority management by enabling users to grant/revoke their friends’
search rights without updating others’ keys. In terms of security, our scheme satisfies
adaptive L-semantic secure and revocation secure under random oracle model. We also
undertook an extensive experiment that validates our work, showing that the proposed
scheme is possible in theory and feasible in practice.

2. Related Works
2.1. MSNs Privacy

In recent decades, researchers have proposed many privacy-preserving approaches
for MSNs. Encryption is the most common method for achieving privacy. For example,
Flybynight [8] is a Facebook application for encrypting and decrypting sensitive data
using client-side JavaScript. However, it is easy to be attacked by an adversary because
the server holds users’ keys and takes charge of key management. NOYB (short for
none of your business) [9] offers privacy and preserves MSN services’ functionality based
on a secret dictionary’s encryption. Besides, there have been many privacy-preserving

Sensors 2021, 21, 3994 3 of 19

matching solutions over MSNs proposed with different techniques. Some schemes are
based on private set intersection protocols [10,11] to allow two users to compute the
intersection of the two private profile sets privately, but leak no useful information of both
parties. For example, Niu et al. designed a spatiotemporal matching scheme for privacy-
aware users in MSNs based on the profile’s weight or level and the participant’s social
strength [10]. Zhang et al. proposed the concept of a fine-grained privacy information
matching protocol by giving preference to each profile and using a similarity function
to measure the matching degree [11]. To reduce computation cost, some works [12,13]
designed non-encryption-based privacy-preserving matching protocols. Fu et al. proposed
a privacy-preserving common-friend matching scheme based on a bloom filter [12]. It
transmitted the common profiles of two users into an intersection of bloom filters, which
ensures the privacy of friend lists against unknown users. However, it will not be able to
resist brute-force attacks, resulting in privacy information leakage. Sun et al. [13] proposed
a privacy-preserving spatiotemporal profiles matching scheme to let each user periodically
record his locations by a geographic cell index among a large set of predefined ones,
which can ensure spatiotemporal privacy at the cost of possibly huge communication and
computation overhead.

2.2. Location Privacy

With the rapid development and enormous popularity of location-based services,
scholars have paid more and more attention to location data’s privacy and security. Many
approaches focus on how to perform privacy-preserving location queries: Bamba et al.
proposed a k-anonymity-based scheme that relies on a server to construct an anonymous
set based on users’ original queries to make query indistinguishable on the server-side [14].
Bordenabe et al. [15] and Shi et al. [16] both integrated differential privacy to realize
nearby friends’ queries. Differential privacy provides a rigorous privacy guarantee by
adding noise (randomly to choose a set of fake locations) to make their data and query
deferentially private. Jorgensen et al. incorporated a clustering procedure that groups users
according to the social network’s natural community structure and significantly reduced
noise [17]. The above works [14–17] can achieve relatively high efficiency. However, the
limitations of these works are that it is challenging to achieve provable security guarantees
with formal security definitions, since they did not employ well-designed and provable
encryption methods. Zhou et al. took advantage of private information retrieval (PIR) to
realize nearby friends’ queries [18]. It provides strong cryptographic guarantees but needs
complex operations, and it only protects query privacy but not location privacy. Li et al.
designed a private location information matching protocol over MSNs based on inner
product similarity (IPS) [19], putting users’ map locations into vectors and encrypting the
vectors. The similarity function is used to measure the similarity degree of the encrypted
vectors of different users. Schlegel et al. designed an encryption method of dynamic
location grid index structure [20], achieving neighbor point search on the premise of not
revealing location privacy to the third party. In the above encryption-based schemes, the
computation efficiencies are not ideal, requiring multi-round interactions at the logarithmic
level between user and server.

Many other works are based on higher security assumptions to achieve a trade-off
between security and efficiency. For example, some works [21,22] assumed that the service
provider is honest and that it has the authority to access the location plaintext without
leaking any information to others. Some works [21,23,24] introduced a trusted third party
(TTP) to achieve the trade-off between security and efficiency. Unfortunately, there may
not exist such a TTP in real MSNs scenarios. Some non-TTP solutions [15,20] are based on
approximate measurements (e.g., linear programming and dynamic grid) with no accurate
result. Some works [18,25] need complex operations (e.g., sending fake queries or receiving
redundant results) to achieve secure guarantees, which incur high communication and
computation overhead at the user-side, making them unsuitable for resource-constrained
mobile devices.

Sensors 2021, 21, 3994 4 of 19

3. The Proposed Scheme
3.1. Overview

The privacy-enhancing k-nearest neighbors search scheme over MSNs can be viewed
as a decentralized system of end-to-end encrypted social network databases, focusing
on the diversified demands of location privacy in MSNs. Our design relies on various
cryptographic building blocks, including pseudo-random function, homomorphic crypto
mechanism, secure multi-party computation and broadcast encryption.

- Aiming at the limited computation power of resource-constrained mobile devices,
we design a lightweight end-to-end location encryption algorithm and a server-aid
location re-encryption protocol based on Paillier homomorphic encryption to achieve
further location sharing. The protocol allows the service provider to transfer friends’
location ciphertexts into the query user’s homomorphic ciphertexts without requiring
them to be online to participate in the calculation.

- We build a secure dual-server architecture and design a secure k-nearest neighbors
search protocol by secure multi-party computation and a homomorphic encryption
mechanism under this architecture. The server can effectively compute and sort the
distance between users and their friends without any decryption operation. Compared
with the cloud-center model, where a single server holds complete knowledge, the
dual-server architecture minimizes the leakage to the servers and reduces the cost of
communication between the mobile user and the server.

- To achieve fine-grained access control, we design a dynamic friends management
mechanism based on public-key broadcast encryption. It enables users to grant/revoke
their friends’ search rights without updating others’ keys, achieving lightweight friend
authentication and authority management. Moreover, this mechanism satisfies revo-
cation secure that the adversary cannot obtain the user’s location information through
collusion with the server and the revoked friends, thus further improving the scheme’s
overall security.

3.2. Architecture and Syntax

Our scheme is designed to be executed among: U, S1, and S2. U is a set that contains
n mobile users {U1, ...,Un}. Each user Ui ∈ U can connect with others as his friends
dynamically. S1 is the primary server that provides a mobile social network service to
all users in U. Each user Ui ∈ U can send a search request to S1 for k-nearest neighbors
among friends based on current location. S2 is a collaborated server to conduct secure
computation with S1 for k-nearest neighbors search.

The scheme’s architecture is shown in Figure 1. At a high level, users’ information and
their relationships are modeled by a direct graph structure G. To initialize the system, the
primary server S1 executes Initial algorithm to output public parameter params and an
empty G. Any user Ui should use public parameter params to generate his symmetric key
Ki and public/secret keys (PKi, SKi) locally by executing KeyGen algorithm and interacts
with the primary server S1 for registration by Join protocol. Any enrolled user Ui ∈ U
can grant/revoke Uj ∈ U’s location search right by interacting with S1 in Grant/Revoke
protocols. Ui holds a friends index Fi that records his granted friends. According to the
real-life MSNs’ location service architecture, we deploy trusted location infrastructure
to provide tracing service by sending the current location li of each user Ui ∈ U to his
local mobile device periodically. Ui executes LocUpdate to encrypt his location data li
by his symmetric key Ki at local and uploads the location ciphertext Ci to S1. Ui then
can execute Search protocol with S1 by sending k-nearest neighbors search request. S1
performs encrypted search in G with the assistance of S2 and returns the search result to Ui,
without relying on the presence of any other user. The proposed scheme’s syntax consists
of seven polynomial-time algorithms and protocols, which is shown in Syntax below:

Sensors 2021, 21, 3994 5 of 19

Figure 1. The architecture.

Version May 26, 2021 submitted to Journal Not Specified 5 of 20

Figure 1. The architecture

proposed scheme’s syntax consists 7 polynomial-time algorithms and protocols which is190

shown in Syntax below:

Syntax
− (G, params)← Initial(1k)

− (Ki, PKi, SKi)← KeyGen(params)

− (Fi;G ′)← Join(Ui(idi, PKi);S1(G))
− (⊥;G ′)← LocUpdate(Ui(Ki, li);S1(G))
− ((F′i, K′i);G ′)← Grant(Ui(idj, Ki, PKi, Fi);S1(G))
− (Rk;⊥;⊥)← Search(Ui(Ki, Fi);S1(G);S2(SKi))

− (F′i;G ′)← Revoke(Ui(idj, PKi, Fi);S1(G))

Definition 1 (Correctness). Correctness implies that, for all 1k, all (G, params) generated
by Initial(1k), all (Ki, PKi, SKi) generated by KeyGen(params), all (Fi;G ′) generated by
Join(Ui(idi, PKi);S1(G)), all (Ki, PKi, SKi) generated by KeyGen(params), and all sequences
of LocUpdate, Grant and Revoke protocols, Search(Ui(Ki, Fi);S1(G);S2(SKi)) will always
output result Rk that: Rk satisfies D1 < · · · < DK; and there does not exist Ui ∈ Rk such that
Ui /∈ Fs and Ui ∈ {Fs\Rk} that Di < maxUj∈Rk{Dj}.

3.3. Security Definition
3.3.1. Adaptive L-Semantic Secure200

The security definition of adaptive L-semantic secure is formalized by an ideal/real-
world paradigm[8]. Roughly speaking, we require that execution of the scheme in the
real-world is indistinguishable from an ideal-world. In real-world Real(1k), the protocols
between the adversarial servers and user execute just like the real scheme. In ideal-world
Ideal(1k), there exists two simulators Sim1 and Sim2 who can get the leakage information
from leakage functions and try to simulate the execution of A1 and A2 in Real(1k).

Definition 2 (Adaptive L-Semantic Secure). Given the syntax in Section 3.2 and consider
the following probabilistic paradigms where, U={U1, ...,Un} is users set, A1 and A2 are two
non-colluding adversaries with pseudo-random polynomial time (PPT) computation ability, Sim1
and Sim2 are two PPT simulators, and L1 to L4 are leakage functions.210

Definition 1 (Correctness). Correctness implies that, for all 1k, all (G, params) generated by
Initial(1k), all (Ki, PKi, SKi) generated by KeyGen(params), all (Fi;G ′) generated by
Join(Ui(idi, PKi);S1(G)), all (Ki, PKi, SKi) generated by KeyGen(params), and all sequences
of LocUpdate, Grant and Revoke protocols, Search(Ui(Ki, Fi);S1(G);S2(SKi)) will always
output result Rk that: Rk satisfies D1 < · · · < DK; and there does not exist Ui ∈ Rk such that
Ui /∈ Fs and Ui ∈ {Fs\Rk} that Di < maxUj∈Rk{Dj}.

3.3. Security Definition
3.3.1. Adaptive L-Semantic Secure

The security definition of adaptive L-semantic secure is formalized by an ideal/real-
world paradigm [7]. Roughly speaking, we require that the execution of the scheme
in the real-world is indistinguishable from an ideal-world. In real-world Real(1k), the
protocols between the adversarial servers and the user execute just like in the real scheme.
In ideal-world Ideal(1k), there exist two simulators Sim1 and Sim2 that can obtain the
leakage information from leakage functions and try to simulate the execution of A1 and
A2 in Real(1k).

Definition 2 (Adaptive L-Semantic Secure). Given the syntax in Section 3.2 and considering
the following probabilistic paradigms, where U = {U1, ...,Un} is the users’ set, A1 and A2 are two
non-colluding adversaries with pseudo-random polynomial time (PPT) computation ability, Sim1
and Sim2 are two PPT simulators and L1 to L4 are leakage functions.

Sensors 2021, 21, 3994 6 of 19Version May 26, 2021 submitted to Journal Not Specified 6 of 20

Real(1k): It is run among the A1, A2 and U using the real scheme.

– A1 initializes a empty graph structure G by (G, params)← Initial(1k);
– Every Ui ∈ U computes (Ki, PKi, SKi)← KeyGen(params);
– Every Ui ∈ U interacts with A1 and A2 to execute LocUpdate, Grant and Revoke

protocols in any order;
– U send polynomial times queries (q1, . . . , qt) to A1;
– For each qi:
– Us and A1 run Search protocol with A2;
– A1 outputs Ri

k .

Ideal(1k): It is run by Sim1 and Sim2 and a challenger C.

– A1 initializes a empty simulated G̃ and update it by L1;
– Sim1 and Sim2 simulate LocUpdate, Grant and Revoke protocols in any order by
L2;

– C sends polynomial times queries (q1, . . . , qt) to Sim1;
– For each qi:
– Sim1 and Sim1 simulate Search(S imL3,L4

1 (1k),S imL4
2 (1k)) by L3 and L4;

– Sim1 outputs the simulated R̃i
k.

The proposed scheme achieves adaptive L-semantic secure if for all polynomial time A1
and A2, there exists polynomial time simulators Sim1 and Sim2 such that the following two
distribution ensembles are computationally indistinguishable:

OutputReal(1k)
A1/2

≈ OutputIdeal(1k)
Sim1/2

.

3.3.2. Revocation Secure

Revocation secure guarantees that the scheme satisfies that any user’s revoked
friend cannot provide a valid search for his location, even if an adversary illegally steals
the revoked friend’s key. We construct the experiment ExpRevoke

Arev
(1k) to formalize the

revocation secure definition. ExpRevoke
Arev

(1k) is interactively executed by a challenger C
and an adversary Arev who has the ability to add friends, perform search and revoke
friends in the real scheme. C deletes the user who has been added to friends index
by Arev. Arev continues to generate a search token using the revoked friend’s identity220

and make a search request. After a polynomial number of queries, C revokes all users
queried to the Grant oracle but not subsequently queried to the Revoke oracle (i.e., all
users for which Arev holds their valid user keys).

The adversary Arev must then produce a search token which, when used as input
to Search protocol, does not produce null, i.e., Arev must produce a valid search request
even though it does not hold a non-revoked key. After several rounds of queries, ifArev’s
probability of winning the revocation secure experiment with PPT computation ability
is negligible, then we can say that the proposed scheme satisfies revocation secure.

Definition 3 (Revocation Secure). Given the syntax in Section 3.2 and consider ExpRevoke
Arev

(1k)
which is executed by a challenger C and an adversary Arev:230

Version May 26, 2021 submitted to Journal Not Specified 6 of 20

Real(1k): It is run among the A1, A2 and U using the real scheme.

– A1 initializes a empty graph structure G by (G, params)← Initial(1k);
– Every Ui ∈ U computes (Ki, PKi, SKi)← KeyGen(params);
– Every Ui ∈ U interacts with A1 and A2 to execute LocUpdate, Grant and Revoke

protocols in any order;
– U send polynomial times queries (q1, . . . , qt) to A1;
– For each qi:
– Us and A1 run Search protocol with A2;
– A1 outputs Ri

k .

Ideal(1k): It is run by Sim1 and Sim2 and a challenger C.

– A1 initializes a empty simulated G̃ and update it by L1;
– Sim1 and Sim2 simulate LocUpdate, Grant and Revoke protocols in any order by
L2;

– C sends polynomial times queries (q1, . . . , qt) to Sim1;
– For each qi:
– Sim1 and Sim1 simulate Search(S imL3,L4

1 (1k),S imL4
2 (1k)) by L3 and L4;

– Sim1 outputs the simulated R̃i
k.

The proposed scheme achieves adaptive L-semantic secure if for all polynomial time A1
and A2, there exists polynomial time simulators Sim1 and Sim2 such that the following two
distribution ensembles are computationally indistinguishable:

OutputReal(1k)
A1/2

≈ OutputIdeal(1k)
Sim1/2

.

3.3.2. Revocation Secure

Revocation secure guarantees that the scheme satisfies that any user’s revoked
friend cannot provide a valid search for his location, even if an adversary illegally steals
the revoked friend’s key. We construct the experiment ExpRevoke

Arev
(1k) to formalize the

revocation secure definition. ExpRevoke
Arev

(1k) is interactively executed by a challenger C
and an adversary Arev who has the ability to add friends, perform search and revoke
friends in the real scheme. C deletes the user who has been added to friends index
by Arev. Arev continues to generate a search token using the revoked friend’s identity220

and make a search request. After a polynomial number of queries, C revokes all users
queried to the Grant oracle but not subsequently queried to the Revoke oracle (i.e., all
users for which Arev holds their valid user keys).

The adversary Arev must then produce a search token which, when used as input
to Search protocol, does not produce null, i.e., Arev must produce a valid search request
even though it does not hold a non-revoked key. After several rounds of queries, ifArev’s
probability of winning the revocation secure experiment with PPT computation ability
is negligible, then we can say that the proposed scheme satisfies revocation secure.

Definition 3 (Revocation Secure). Given the syntax in Section 3.2 and consider ExpRevoke
Arev

(1k)
which is executed by a challenger C and an adversary Arev:230

The proposed scheme achieves adaptive L-semantic security if, for all polynomial time A1 and
A2, there exists polynomial time simulators Sim1 and Sim2 such that the following two distribution
ensembles are computationally indistinguishable:

OutputReal(1k)
A1/2

≈ OutputIdeal(1k)
Sim1/2

.

3.3.2. Revocation Security

Revocation security guarantees that the scheme satisfies that any user’s revoked
friend cannot provide a valid search for his location, even if an adversary illegally steals
the revoked friend’s key. We construct the experiment ExpRevoke

Arev
(1k) to formalize the

revocation security definition. ExpRevoke
Arev

(1k) is interactively executed by a challenger C
and an adversary Arev who has the ability to add friends, perform a search and revoke
friends in the real scheme. C deletes the user who has been added to the friends index by
Arev. Arev continues to generate a search token using the revoked friend’s identity and
makes a search request. After a polynomial number of queries, C revokes all users that are
queried to the Grant oracle but are not subsequently queried to the Revoke oracle (i.e., all
users for which Arev holds their valid user keys).

The adversary Arev must then produce a search token which, when used as an input
to Search protocol, does not produce null, that is, Arev must produce a valid search request
even though it does not hold a non-revoked key. After several rounds of queries, if Arev’s
probability of winning the revocation security experiment with PPT computation ability is
negligible, then we can say that the proposed scheme satisfies revocation security.

Definition 3 (Revocation Secure). Given the syntax in Section 3.2 and considering ExpRevoke
Arev

(1k),
which is executed by a challenger C and an adversary Arev:

Sensors 2021, 21, 3994 7 of 19Version May 26, 2021 submitted to Journal Not Specified 7 of 20

ExpRevoke
Arev

(1k)

(G̃, params)← S im1(1k)

(Ki, PKi, SKi)←$KeyGen(1k)

st← Arev(1k, PP)

G←$Initial(1k, KUi , PP)

st←$AOrev(st)

For idj ∈ Fi

(KUi , PP)←$Revoke(·,G, idj, PKi, Fi)

τ←$AOrev(st)

Rk←$Search(τ, kS1)

If Rk 6= ⊥ return 1

else return 0

Specifically, C runs Initial to initialize G, generates key (Ki, PKi, SKi) and state ciphertext
csti by KeyGen and Join. C sends G and csti to Arev. Arev can access to the following oracles,
where · denotes the parameters that are provided by Arev himself:

– OGrant(·,G, idj, PKi, Fi): Arev can send grant friend request to this oracle. If idj /∈ Fi, then
the oracle OGrant runs Grant by the input provides by Arev. If idj ∈ Fi, then the oracle
ORevoke outputs ⊥.

– ORevoke(·,G, idj, PKi, Fi): Arev can send revoke friend request to this oracle. If idj ∈ Fi,
then the oracle ORevoke runs Revoke by the input provides by Arev. If idj /∈ Fi, then the
oracle ORevoke outputs ⊥.240

– OSearch(·,G, PKs, Fs): Arev can send search request in G to this oracle. Arev generates a
search token and sends it to OSearch. Then the oracle OSearch runs Search by the input
provides by Arev, and outputs the search result to Arev.

After polynomial times rounds of queries, C revokes all the users that have access to
OGrant(·,G, idj, PKi, Fi) but not ORevoke(·,G, idj, PKi, Fi). Arev generates a search token τ in
Search protocol. If the output of Search is not ⊥, then returns 1, otherwise returns 0.

The proposed scheme achieves revocation secure if for all Arev, all 1k, the advantage of Arev
to win ExpRevoke

A (1k) is negligible:

|Pr[ExpRevoke
Arev

(1k) = 1]| ≤ negl(1k).

3.4. The Detailed Construction

LetBE = {BE .KeyGen,BE .J oin,BE .Enc,BE .Dec} be a broadcast encryption scheme
that retains CPA secure against a coalition of revoked users[22], P = {P .KeyGen,P .
Enc,P .Dec} be the Pallier encryption scheme[23], GM = {GM.KeyGen,GM.Enc,GM.Dec}250

be the Goldwasser-Micali encryption scheme[24], and F : {0, 1}k × {0, 1}∗ → {0, 1}k be
a pseudo-random function. The detailed construction is given as follows:

3.4.1. Initialization

On input the security parameter 1k, S1 initializes the global social network graph
structure G = (V , E) and public parameters params. In graph G, the maximal number of
vertexes in V is n, that is |V| = n, which represents the maximum amount of enrolled
users. Each vertex vi ∈ V should be attached with the information for a enrolled user
Ui ∈ U that S1 gathered. The existing of a non-zero edge eij ∈ E between vi ∈ V and
vj ∈ V represents the friends relationship of Ui and Uj. In other words, if Ui and Uj are
strangers of each other, then eij = 0. G is empty at initialization.260

Specifically, C runs Initial to initialize G, generates key (Ki, PKi, SKi) and state ciphertext
csti by KeyGen and Join. C sends G and csti to Arev. Arev can access to the following oracles,
where · denotes the parameters that are provided by Arev himself:

- OGrant(·,G, idj, PKi, Fi): Arev can send grant friend request to this oracle. If idj /∈ Fi, then
the oracle OGrant runs Grant by the input provides by Arev. If idj ∈ Fi, then the oracle
ORevoke outputs ⊥.

- ORevoke(·,G, idj, PKi, Fi): Arev can send revoke friend request to this oracle. If idj ∈ Fi, then
the oracle ORevoke runs Revoke by the input provides by Arev. If idj /∈ Fi, then the oracle
ORevoke outputs ⊥.

- OSearch(·,G, PKs, Fs): Arev can send a search request in G to this oracle. Arev generates
a search token and sends it to OSearch. Then, the oracle OSearch runs Search by the input
provides by Arev, and outputs the search result to Arev.

After polynomial times rounds of queries, C revokes all the users that have access to
OGrant(·,G, idj, PKi, Fi) but not ORevoke(·,G, idj, PKi, Fi). Arev generates a search token τ in
Search protocol. If the output of Search is not ⊥, then returns 1, otherwise returns 0.

The proposed scheme achieves revocation security if, for all Arev, all 1k, the advantage of Arev
to win ExpRevoke

A (1k) is negligible:

|Pr[ExpRevoke
Arev

(1k) = 1]| ≤ negl(1k).

3.4. The Detailed Construction

Let BE = {BE .KeyGen,BE .J oin,BE .Enc,BE .Dec} be a broadcast encryption scheme
that retains CPA secure against a coalition of revoked users [26], P = {P .KeyGen,P .Enc,P .Dec}
be the Pallier encryption scheme [27], GM = {GM.KeyGen,GM.Enc,GM.Dec} be the
Goldwasser-Micali encryption scheme [28], and F : {0, 1}k × {0, 1}∗ → {0, 1}k be a
pseudo-random function. The detailed construction is given as follows:

3.4.1. Initialization

On input of the security parameter 1k, S1 initializes the global social network graph
structure G = (V , E) and public parameters params. In graph G, the maximal number of
vertexes in V is n, that is |V| = n, which represents the maximum amount of enrolled users.
Each vertex vi ∈ V should be attached with the information for an enrolled user Ui ∈ U
that S1 gathered. The existence of a non-zero edge eij ∈ E between vi ∈ V and vj ∈ V
represents the friends relationship of Ui and Uj. In other words, if Ui and Uj are strangers
to each other, then eij = 0. G is empty at initialization.

Sensors 2021, 21, 3994 8 of 19

3.4.2. Key Generation

If a user Ui is willing to join in the system, he should generate his own keys at local.
Ui’s keys consists of the following parts: the key for the pseudo-random function F to
encrypt location data, the key pair for the broadcast encryption scheme BE , the key pairs
for the Pallier encryption scheme P and the Goldwasser-Micali encryption scheme GM.
Ui first takes as input the binary representation of the public parameters params, and
randomly selects a k-bit string ki ∈ {0, 1}k for his key of F . Then he generates (bpki, mski)
by BE .KeyGen, (pki, ski) by P .KeyGen and (pk′i, sk′i) by GM.KeyGen. Afterwards, he
forms his symmetric key Ki as (mski, ki), public key PKi as (bpki, pki, pk′i) and secret key
SKi as (ski, sk′i). The lengths of the above keys are determined by the security parameter 1k.
Finally, Ui publishes his public key PKi throughout the system.

3.4.3. Join

Before joining in, Ui should generate his friends index Fi with d entries, where d
represents the maximum amount of Ui’s friends. Fi is a key-value data structure, which is
empty at first. The key part of Fi will be attached with the granted friends’ identities, the
corresponding value part will be attached with the granted friends’ session keys. More
precisely, if Uj is a friend of Ui, then Fi[idj] stores the session key ki

j that Uj has shared

with Ui, where idi represents Ui’s identity: Fi[idj] = ki
j, where idj represents Uj’s identity.

To register, Ui should also add the server S1 in Fi by generating S1’s session key ki
S1

by
BE .J oinmski

(S1) and setting Fi[S1] = ki
S1

. Afterwards, Ui randomly selects a k-bit string
sti as his current state value and encrypts sti to csti by BE .Encbpki

(S1, sti). Then Ui sends
S1 a registration request Rei = (idi||csti||ki

S1
). S1 selects an empty vertex vi ∈ V in G and

attaches vi with Rei.

3.4.4. Location Update

An enrolled user Ui ∈ U can interact with S1 to update his location by LocUpdate
protocol. First, Ui obtains his current geo-location li from the trusted location infrastructure
that sends Ui’s geo-location to his local mobile device periodically. Ui maps li into an
integer xi from Zk and computes its square xi

2. To hide li from S1, Ui needs to encrypt
xi and xi

2 at local: he chooses two random values r1 and r2 from Zk, uses his key ki to
generate p1 = Fki

(r1) and p2 = Fi(r2) by pseudo-random function F , and hides xi and
xi

2 into cxi = (xi + p1, r1) and cxi
2 = (xi

2 + p2, r2) by (p1, p2) and (r1, r2). Finally he forms
his current location ciphertext Li as Li = (cxi , cx2

i
) and sends Li to S1. S1 updates the

information embedded in vertex vi in G as vi ← vi||{Li}.

3.4.5. Grant

When Ui connects Uj as his friend, he should grant Uj’s right to search his location
by conducting Grant protocol with S1. First, Ui adds Uj’s identity idj as an entry in Ui’s
friends index Fi, generates Uj’s session key ki

j by BE .J oinmski
(idj), sends ki

j to Uj in secure
channel. Ui then selects a k-bit string st′i as his updated state value, encrypts st′i to cst′i for
the updated friends group in Fi that contains Uj by BE .Enc(bpki)

(st′i, Fi), and boardcasts

cst′i to the system. After receiving his session key kj
i from Uj, he attaches Fi[idj] with kj

i :

Fi[idj] = kj
i . Afterwards, he sends grant request (cst′i||idj) to S1. S1 first checks whether

there is a non-zero direct edge eij in G. If not, it sets eij = 1 and update vi in G with new
cst′i: vi ← vi\{csti} ∪ {cst′i}.

3.4.6. K-Nearest Neighbors Search

Each enrolled user Us ∈ U can send a search request to S1 for retrieving his k-
nearest neighbors sorted by distances, shown in Protocol 1. First of all, Us retrieves
his friends’ identities {id1, . . . , idd} from his friends index Fi, downloads the state cipher-
texts {cst1, . . . , cstd} for all his friends {U1, . . . ,Ud} from the system. For each csti ∈

Sensors 2021, 21, 3994 9 of 19

{cst1, . . . , cstd}, Us decrypts it to st′i by BE .Decki
s
(st′i). Afterwards, Us consolidates the

decryption results into search token τ = (st′1, . . . , st′d) and sends τ to S1. After re-
ceiving τ, S1 extracts {cst1, . . . , cstd} from vj’s all adjacents {v1, . . . , vd} in G. For each
csti ∈ {cst1, . . . , cstd}, S1 decrypts it to sti by BE .Decki

S1
(csti). It compares each sti in

{st1, . . . , std} with st′i in τ: if st′j is equal to sti, then Us has been granted the right to search
for Ui’s location. Afterwards, for each granted Ui, S1 retrieves the encrypted location Li
attached in vi. Then, S1 and S2 conduct the following protocols:

Version May 26, 2021 submitted to Journal Not Specified 9 of 20

csti ∈ {cst1, . . . , cstd}, Us decrypts it to st′i by BE .Decki
s
(st′i). Afterwards, Us consolidates

the decryption results into search token τ = (st′1, . . . , st′d) and sends τ to S1. After310

receiving τ, S1 extracts {cst1, . . . , cstd} from vj’s all adjacents {v1, . . . , vd} in G. For each
csti ∈ {cst1, . . . , cstd}, S1 decrypts it to sti by BE .Decki

S1
(csti). It compares each sti in

1, . . . , std} with st′i in τ: if st′j is equal to sti, then Us has been granted right to search Ui’s
location. Afterwards, for each granted Ui, S1 retrieves the encrypted location Li attached
in vi. Then S1 and S2 conduct the following protocols:

1. Location re-encryption protocol P1:

1. S1: selects a random value p∗ from {0, 1}k;
2. computes c∗xi

= xi + p1 + p∗ to statistically hide xi + p1;
3. sends (c∗xi

, r1) to S2.
4. S2: computes c∗xi

−Fki
(r1);

5. computes [c∗xi
−Fki

(ri)]← P .Encpks (c
∗
xi
−Fki

(ri));
6. sends [c∗xi

−Fki
(ri)] back to S1.

7. S1: computes [p∗]−1;
8. computes [xi] = [c∗i −Fki

(ri)][p∗]−1 to remove p∗ from [c∗xi
−Fki

(r1)];
9. S1 and S2 generate [x2

i] by the same procedures in 1-8.
10. S1: gets Ui ’s location ciphertext Ls

i = ([xi], [x2
i]) under pks.

2. Encrypted distance computation protocol P2:

1. S1 : selects a random value ri from {0, 1}k;
2. generates x′i = [xi] ∗ [ri];
3. sends x′i to S2.
4. S2 : decrypts [x′i] to xi: x′i ← P .Decsks [x

′
i]);

5. computes h← hi ∗ hs mod n;
6. encrypts h under pks: [h]← P .Encpks (h);
7. sends [h] to S1.
8. S1 : computes s = [h] ∗ [xi]

n−rs mod n;
9. gets [Di] = [x2

i] ∗ [n− 2][xixs] ∗ [x2
s].

After conducting P1 and P2 for all Us’s friends, S1 forms a key-value set I =
{(id1, [D1]), . . . , (idd, [Dd])} that contains all pairs of the encrypted distances between
Us and his friends along with their identities. S1 encrypts each idi ∈ I to [idi] by
P .Encpks(idi), and generates R̃ = {([id1], [D1]), . . . , ([idd], [Dd])}. S1 and S2 perform a320

secure comparison protocol P3[35] for S1 and S2 to compare each pair ([idx], [Dx]) and
([idy], [Dy]) in R̃ based on the distance Dx and Dy. We use P3 as a black-box building
block for Search protocol, and pick Batcher’s sorting[26] for performing efficient parallel
multi-time comparisons.

Finally, S1 gets the sorted final result R = {([id1], [D1]), . . . , ([idd], [Dd])}, and
sends it back to Us. Us can decrypt each [idi] to idi by P .Decsks [idi], then get his k-nearest
neighbors identities Rk = (id1, . . . , idk) that sorted by distance.

3.4.7. Revoke

When Ui wants to revoke Uj’s search right, he should conduct Revoke protocol
with S1. Ui first deletes Fi[idj] at local, selects a k-bit string st′i as his updated state value,330

encrypts st′i to cst′i by BE .Encbpki
(st′i, Fi) for the updated group in Fi that excludes Uj .

Afterwards, he sends revoke request (cst′i||idj) to S1. S1 first checks whether there is
a non-zero direct edge eij in G. If true, it set eij = 0 and update vi in G with new cst′i:
vi ← vi\{csti} ∪ {cst′i}.

After conducting P1 and P2 for all Us’s friends, S1 forms a key-value set
I = {(id1, [D1]), . . . , (idd, [Dd])} that contains all pairs of the encrypted distances be-
tween Us and his friends along with their identities. S1 encrypts each idi ∈ I to [idi]
by P .Encpks(idi), and generates R̃ = {([id1], [D1]), . . . , ([idd], [Dd])}. S1 and S2 perform a
secure comparison protocol P3 [29] for S1 and S2 to compare each pair ([idx], [Dx]) and
([idy], [Dy]) in R̃ based on the distance Dx and Dy. We use P3 as a black-box building
block for Search protocol, and pick Batcher’s sorting [30] for performing efficient parallel
multi-time comparisons.

Finally, S1 obtains the sorted final result R = {([id1], [D1]), . . . , ([idd], [Dd])}, and
sends it back to Us. Us can decrypt each [idi] to idi by P .Decsks [idi], then obtain his k-nearest
neighbors identities Rk = (id1, . . . , idk) that were sorted by distance.

3.4.7. Revoke

When Ui wants to revoke Uj’s search right, he should conduct Revoke protocol with
S1. Ui first deletes Fi[idj] locally, selects a k-bit string st′i as his updated state value, encrypts
st′i to cst′i by BE .Encbpki

(st′i, Fi) for the updated group in Fi that excludes Uj . Afterwards,
he sends revoke request (cst′i||idj) to S1. S1 first checks whether there is a non-zero direct
edge eij in G. If true, it set eij = 0 and update vi in G with new cst′i: vi ← vi\{csti} ∪ {cst′i}.

Sensors 2021, 21, 3994 10 of 19

Protocol 1 K-Nearest Neighbors Search

Us(Ks, Fs) S1(PKs,G)
1: For 1 ≤ i ≤ d do

2: st′i ← BE .Decki
s
(csti)

3: τ ← (st′1, . . . , st′d)

4: τ Protocol 2 Secure Sort

S1(τ, PKs,G) S2(SKs)

1: (st′1, . . . , st′d)← τ

2: For 1 ≤ i ≤ d do

3: sti ← BE .Decki
S1
(csti)

4: If st′i = sti

5: Li ← vi

6: Ls
i ←− P1(S1(Li , PKs); S2(SKs)) −→ ⊥

7: Di ←− P2(S1(Li , Ls
i , PKs); S2(SKs)) −→ ⊥

8: I ← {(id1, [D1]), . . . , (idd, [Dd])}
9: For 1 ≤ i ≤ d do

10: [ui]← P .Encpks (ui)

11: R̃← {([id1], [D1]), . . . , ([idd], [Dd])}
12: R̃i ← R̃

13: For 1 ≤ j ≤ ((log d)2)do

14: R̃j+1 ← R̃j

15: For 1 ≤ i ≤ d do

16: (([idx]
i , [Dx]

i), ([idy]
i , [Dy]

i))← Pi

17: Pi+1 ←− P3(S1(Pi .next), PKs);S2(SKs)) −→ ⊥

18: R← R̃

5: R

Us output:R S1 output:⊥

4. Security Analysis
4.1. Adaptive L-Semantic Secure

Theorem 1. If F is a pseudo-random function, P , GM and BE are CPA secure, and the DGK
protocol [31] is proved to be semantically secure in the random oracle model, then the proposed
scheme satisfies adaptive L-semantic security, which is defined in Definition 2.

Proof. We construct two simulators Sim1, Sim2 that can generate the simulated values in
Ideal(1k) using the information given in the leakage functions L1 to L4, and prove that
Ideal(1k) is indistinguishable with Real(1k) by any PPT adversary.

Given the information leaked from L1, Sim1 can learn |cstj
i | and {|cst1

i |, . . . , |cstq
i |}.

Afterwords, it can choose random value c̃st
j
i with lengths |cstj

i | to simulate cstj
i . Due to

the CPA secure of BE , cstj
i is indistinguishable from c̃st

j
i by any PPT adversary. Therefore,

Sim1 cannot learn extra information from {|cst1
i |, . . . , |cstq

i |}, which satisfies:

OutputReal
A1

({cst1
i , . . . , cstq

i }) ≈ OutputIdeal
Sim1

({c̃st
1
i , . . . , c̃st

q
i }).

Given the information leaked from L2, Sim1 can learn |cj
xi | and |cj

xi
2 | in Lj

i = (cj
xi , cj

xi
2).

Afterwards, it can choose two random values in lengths |cj
xi | and |cj

xi
2 | to output the

Sensors 2021, 21, 3994 11 of 19

simulated L̃j
i = (c̃j

xi , c̃j
xi

2). Since Lj
i is generated by F , L̃j

i and Lj
i are indistinguishable by any

PPT adversary due to the randomness of F . Therefore, Sim1 cannot learn extra information
from the update history {L1

i , . . . , Lq
i }, which satisfies:

OutputReal
A1

({L1
i , . . . , Lq

i }) ≈ OutputIdeal
Sim1

({L̃1
i , . . . , L̃q

i }).

Given the information leaked from L3, Sim1 can obtain search tokens {τ1, . . . , τq}.
Afterwards, it can choose random value τ̃i in size |τi| to simulate each τi. Moreover, since
{st′1, . . . , st′d) is generated by BE .Dec by decrypting {cst1, . . . , cstd} using keys {k1

s , . . . , kd
s),

and each ki
s in {k1

s , . . . , kd
s} is a k-bit random string, each st′j in τi is indistinguishable from

τ̃i by any PPT adversary. Therefore, Sim1 cannot learn extra information from τ1, . . . , τq,
which satisfies:

OutputReal
A1

({τ1, . . . , τq}) ≈ OutputIdeal
Sim1

({τ̃1, . . . , τ̃q}).

The sorting network between A1 and A2 contains (log d)2 levels, and each level
contains (log d)2 times of P3 protocols. Therefore, the simulation of the sorting network
can be reduced to prove Sim1 and Sim2 can simulate the secure comparison protocol P1
with leakage functions. Given the information leaked from L4, Sim2 can learn the leaked
information ([[zi]], [λi]) from each round of P3 and the rounds number (log d)2. In each
round, Sim2 can learn ([Dx], [Dy], l). Sim1 and Sim2 should simulateA1 andA2 with L4 by
all pairs with (log d)2 times in sorting protocol to get the final simulation value. At every
pairs i, A1’s view can be denoted as viewA1 = (sks, [[z]], ‖λ‖). Given (sks, [[z]], [λ]), we can
build Sim1 in the following phases:

- Randomly choose λ̃, compute ||λ̃|| as xx ≤ xy;
- Randomly choose z̃← (0, 2λ+l)

⋃
Z;

- Encrypt z̃: [z̃]← P .Encpks(z);
- Output viewSim1 = (sks, l, [z̃], ||λ̃||).

Since z = x + r, where x is a l-bits integer and r is a l+λ-bits integer, the distribution of
z̃ is indistinguishable from z. We can get (sks, [z̃]) ≈ (sks, [z]). Besides, since the distribution
of z̃ and z are independent of t, we can get (sks, l, [z̃]||λ̃||) ≈ (sks, l, [z], ||λ̃||). In a similar
way, at every pairs i,A2’s view can be denoted as viewA2 = (([Dx]i, [Dy]i, l, pks, r, ‖λ‖, [zl]).
We can build Sim2 to simulate A2 in the following phases:

- Choose r̃ ← (0, 2λ+l)
⋃

Z;
- Choose two random values λ̃, z̃l , computes ||λ̃||, ‖z̃‖;
- Output viewSim2 = ([Dx], [Dy], l, pks, r̃, [z̃l]).

In both viewA2 and viewSim2 , r is extracted from uniform distribution (0, 2λ+l)
⋃
Z,

[z̃l] is the ciphertext of P which is randomness, so ([Dx], [Dy], l, pks) ≈ ([Dx], [Dy], l, pks, r,
[z̃l]). We can obtain: viewA2 and viewSim2 are computational indistinguishable. What is
more, since ||λ̃|| ≈

∥∥[Dx] ≤ [Dy]
∥∥, (sks, l, [z], ||λ̃||) ≈ (sks, l, [z],

∥∥[xx] ≤ [yy]
∥∥). Due to the

semantic security of DGK, Sim1 and Sim2 can obtain d ciphertexts that are unsorted from
the leakage function L4. Then, Sim1 and Sim2 can simulate Bathcer’s sorting protocols in
(log d)2 times.

Therefore, for all polynomial time A1 and A2, there exists polynomial time simulators
Sim1 and Sim2 such that:

We can demonstrate that the proposed scheme satisfies adaptive L-semantic security
in the random oracle model, which is defined in Definition 2. Theorem 1 proved.

Sensors 2021, 21, 3994 12 of 19

4.2. Revocation Secure

Theorem 2. If BE is CPA secure, then the proposed scheme satisfies revocation secure, which is
defined in Definition 3.

Proof. Assuming the advantage ofArev to win ExpRevoke
Arev

(1k) is negligible, we can construct
an adversary Abe, who can break the CPA secure of BE with assist of Arev. We will show
that if Arev has a non-negligible advantage in ExpRevoke

Arev
(1k), then we can construct an

adversary Abe that uses Arev as a subroutine to break the CPA secure of BE .
To make the output of ExpRevoke

Arev
(1k) as 1, Arev needs to provide a valid search token.

To achieve that, Arev must know sti. A new value of sti is randomly selected and encrypted
by BE .Encbpki

(sti, Fi\uj) at each time a user is revoked from the system, where Fi\uj is the
new friends index. Arev then broadcast this encrypted value to all users. BE ’s security
ensures that only a non-revoked friend of Ui can decrypt this ciphertext to obtain sti with
overwhelming probability. Hence, the adversary can only create a valid search token if he
is a valid friend of Ui, or he will break the security of BE . That is, the probability that a
random bit string is valid is 2−k. It means that the adversary will not be able to produce a
valid token with non-negligible probability.

Let C be the challenger for the adversaryAbe against BE , Abe will act as the challenger
for Arev:

1. C runs BE .KeyGen(1k) to generate keys (mskbe, bpki). Abe initializes Fi, randomly
chooses a k-bit string sti, and sends (sti, Fi) to C. C runs BE .Encbpki

(sti, Fi) to generate
stS1 , and sends it to Abe. Abe runs KeyGen to generate Ki, runs Join to generate ki

S1
,

where Ki does not include kbe.
2. Abe issues a query to C for the secret key of Arev. C runs BE .J oinmski

(Arev) to
generate kArev , sends kArev to Abe. To fully enroll Arev as a valid friend, the state
ciphertext also needs to be updated by Abe. Abe send Fi and a newly generated sti to
C, C runs BE .Encbpki

(sti, Fi) to generate new csti. Abe runs Grant to generate the key
ki
Arev

of Arev.
3. Abe runs Initial to generate graph G, and sends ki

Arev
and G to Arev. Arev can access

to oracles OGrant and ORevoke.
4. Abe revokes Arev by running Revoke, Abe runs Revoke a second time in order to

produce two values sti0 ← {0, 1}k and sti1 ← {0, 1}k for sti, and sends sti0 and sti1 to
C as the challenge value for Abe, along with a set of no revoked friends Fi of Arev.

5. C selects a bit b ∈ {0, 1}, uses BE .Encbpki
(stib, Fi) to encrypt stib and generates cstib,

sends cstib to Abe as the challenge ciphertext for the CPA secure of BE . Abe sends
cstib to Arev as the challenge ciphertext of ExpRevoke

Arev
(1k).

6. Arev generates token τ, and sends τ to Abe. Since the advantage for Arev to win
ExpRevoke

Arev
(1k) is non-negligible, the probability of validity of τ is non-negligible.

7. If t0 6= ⊥, then Search stops. According to the following situations, Abe outputs its
guess for b:

- If t0 6= ⊥, this tells Abe that sti0 was used to generate the token, Abe outputs its
guess for b as b′ = 0;

- Of t1 6= ⊥, this tells Abe that sti1was used to generate the token, Abe outputs its
guess for b as b′ = 1.

Sensors 2021, 21, 3994 13 of 19

From the above analysis, the advantage of Abe to break the CPA secure of BE can be
computed as AdvBEAbe

(1k):

AdvBEAbe
(1k) = |[(Pr[(t0 ∨ t1) 6= ⊥] · 1−

1
2
) + (Pr[((t0 ∧ t1) 6= ⊥] ·

1
2
− 1

2
)|

= |δ · 1 + (1− δ) · 1
2
− 1

2
|

= | (δ + 1)
2

− 1
2
|

=
δ

2
.

Since the advantage δ of Arev to win ExpRevoke
Arev

(1k) is non-negligible, the advantage δ
2

ofAbe to break the CPA security of BE is non-negligible, which contradicts the CPA security
of BE . Therefore, there exists no Arev, who can win ExpRevoke

Arev
(1k) with non-negligible

probability, and the proposed scheme satisfies revocation security as defined in Definition 3.
Theorem 2 proved.

5. Theoretical Analysis

The complexity analysis is shown in Table 1, where n is the maximum amount of
enrolled users and d is the maximum amount of each user’s friends. We compare our
scheme with the related privacy-preserving location-based query schemes [15,18,20] in
Table 2. Due to the significant differences among the existing schemes in application
scenarios, secure models, evaluation indicators and other factors, we focus on comparing
characteristics and security.

Table 1. Complexity analysis.

Storu StorS1 StorS2 Compu CompS1 CompS2 Commu CommS1 CommS2

Register O(1) O(n) O(n) O(1) – – O(1) O(1) O(1)
Grant O(d) O(nd) – O(d) – – O(d) O(nd) –
Revoke – – – O(1) O(1) – O(1) O(1) –
LocUpdate – O(n) – O(1) – – O(1) O(n) –
Search – – – O(d) O(d+(logd)2) O(d+(logd)2) O(k) O((logd)2) O((logd)2)

Stor: storage complexity; Comp: computation complexity; Comm: communication complexity.

Table 2. Properties comparison.

Accuracy Evaluation Method Dynamic Cryptography tool SP LP AC Rank Model

[16] X Euclidean distance/Anchor points × PIR/P X X × –
[17] × Linear Programming X HMAC X X × –
[21] × Dynamic Grid × HMAC X × × User

Ours X Squared Euclidean distance X P/GM/BE X X X 2 servers

SP: Search Privacy; LP: Location Privacy; AC: Access Control.

For result accuracy, [15] achieves differential privacy for location information using
linear programming techniques. It is specifically designed for simple computation that
cannot provide accurate encrypted distance sorting. Ref. [20] uses a dynamic location grid
structure to cluster users close to each other. However, the search results in [15,20] have a
specific rate of false positives, which are suitable for similarity search. Our scheme and [18]
use Euclidean distance to calculate the encrypted distance to achieve precise secure sorting.
Ref. [18] focuses on searching the number of points of interest in a specific location area;
our scheme sorts the distances based on the proven-secure comparison protocol. In terms
of security, Ref. [18] protects location search privacy by way of private information retrieval
(PIR). Although it adopts the anchor technology to improve search efficiency, it still has a
certain communication overhead. Ref. [20] achieves sort privacy by assuming the server

Sensors 2021, 21, 3994 14 of 19

only performs the search, and the user performs the result sorting. As a result, the above
methods each sort privacy but lead to high computation or communication costs.

Besides, compared with other schemes, our scheme also has a flexible access control
mechanism. Moreover, our scheme achieves a constant-time computation cost and commu-
nication cost when updating friends and encrypting locations, and a user only needs to
store key-related information locally. Therefore, we can demonstrate that our proposed
scheme has both a very light user workload and a moderate server workload while being
secure against the honest-but-curious adversary. In nowadays’s mobile social networking
environment, the user-side lightweight device’s storage and computation cost should be
minimized as much as possible. As a consequence, the proposed scheme is more suitable
for the real-life thin clients MSNs deployment scenario.

6. Implementation

We implement and analyze the performance of our scheme. The experiments were
run on several computers with Linux Ubuntu 18.04.2 64-Bit Version with Inter(R) Core(TM)
I7-2600 quad-core processor (3.4 ghz) and 8 GB memory, which were installed on VMware
Workstation in the LAN in C++ language. One of the computers acted as the server-end and
the others acted as user-ends, respectively. We implemented a job allocation mechanism in
the server-end that the computer acted as the master server and used threads to simulate
the collaborated server that performed the assistant job. Each user-end stored the user’s
keys locally and interacted with the server-end. To submit a search request, a user-end
only communicated with the master server.

In the simulation experiments, the security parameter k was set to 256 bits. We chose
SHA256 in the OpenSSL library [32] for the pseudo-randomness function, and used the
Relic library [33] to implement Paillier and GM homomorphic encryption. To implement
the scheme more securely, we improved the modulus n of the Paillier and GM to 1024
bits. Besides, we used BGW2 [26] to implement public-key broadcast encryption. The key
length in the above public encryption methods was set to be 1024 bits.

We conducted data simulations based on real-world data sets, which came from the
newest version of the Enron email dataset [34], where we randomly selected 1000 accounts
as the total users set. We represented users’ friendships in the form of linked contacts.
We selected a random integer in (10, 50) to simulate the user’s location’ value, which was
updated periodically. Moreover, we initialized the social network graph structure G with
1000 vertexes and 3831 edges that contained the above data and used a unique value to
identify each vertex (user) in Zk. We did not record the network communication time
during all the experiments since it depends on the user-end and the server-end’s network
connection. Each data point in the experiments was obtained after being repeated 50 times
to generate the average value.

6.1. Storage Analysis

We first analyzed the storage overhead of our scheme. Table 3 shows the comparison
between the encrypted G and unencrypted G of the generation time and the server’s storage
cost in the trend of the number of users increases. It can be seen that the server’s storage cost
increased almost linearly with the increase of the number of users. Since we used symmetric
encryption to encrypt location, compared with the Paillier homomorphism ciphertext, the
inflation rate of the symmetric ciphertext of the location decreased significantly, which
is consistent with the theoretical analysis. Therefore, the proposed scheme achieves the
trade-off of users’ location confidentiality and search privacy with the acceptable additional
storage cost.

Sensors 2021, 21, 3994 15 of 19

Table 3. Storage cost.

Unencrypted G Encrypted G
Vertex Storage (kb) GenTime (s) Storage (kb) GenTime (s) Inflation Rate

200 18.752 0.423 57.506 2.359 306.665%
400 38.101 0.477 115.302 2.941 302.622%
600 57.460 0.514 174.379 3.316 303.478%
800 74.677 0.538 225.039 3.770 301.349%
1000 95.988 0.575 289.864 4.113 301.979%

6.2. Communication

In terms of communication, we mainly analyzed the amount of data transformed
between (1) Ui and S1 and (2) S1 and S2 in Search protocol. Theoretically, when Ui requests
to search k-nearest neighbors among his d friends, Ui’s communication overhead increases
almost linearly with k. When S1 and S2 interact with each other to compute the distance
from the total of d friends’ location ciphertexts, the data size of the communication between
them is O((logd)2).

Figure 2a,b shows the relationship between the two types of communication overhead
in the experiment with the increasing trends of the friends’ number d and the search
parameter k, respectively. In general, the amount of data transmission required by the user
in Search protocol is positively related to k. When k increases to a particular value (greater
than d), the data transmission volume tends to be stable. The communication overhead
between S1 and S2 is mainly positively related to d, but independent of the increase of k.
Moreover, the distance computation sub-procedure requires several rounds of interactions,
so the amount of communication overhead between servers is relatively large, which is
consistent with the theoretical analysis.

Figure 2. Communication overhead.

6.3. Search Time

We also analyzed the primary source of the search time overhead for Search protocol.
First, we divided the Search protocol at the server-end into two sub-procedures of location
search and distance sort. Figure 3 shows the relationship between search time and the
number of friends d. In Figure 3, the total time overhead of Search protocol is shown in the
blue curve, the time overhead to extract and re-encrypt location ciphertext is shown in the
yellow curve, and the time overhead to compute and sort the encrypted distance is shown
in the red curve.

Sensors 2021, 21, 3994 16 of 19

Figure 3. Search time overhead.

From Figure 3, we can see that the time overhead of the two sub-procedures in the
Search protocol generally increases with the increasing trend of d. Specifically, the location
search time is far lower than the distance sort time, and with d increases to 4, the curve
growth is slowing down. The distance sort time has a stable approximate linear relation
with d. Therefore, it can be concluded that the computation and comparison of encrypted
distances are two primary time-overhead sources of the Search protocol, which is consistent
with the theoretical analysis.

6.4. Scalability

In terms of scalability, we first analyzed the impact of the search users’ number who
submit search requests in parallel on the time overhead of the Search protocol. To be
specific, we deploy one host to simulate one user to execute the Search protocol and record
the total time overhead. Then we deploy six hosts to simulate six users to repeat the same
experiment and compare the results. It is worth mentioning that, when recording the time
of multi-user search, multiple user-ends simultaneously send the search requests to the
server-end. We record the start and end time when the server-end receives the search
request until it completes each user’s search. Figure 4 shows the relationship between
the parallel search users’ number and Search protocol’s total time. It can be seen that one
user’s search time is slightly lower than six parallel users’ search times. The former is
approximately in a stable linear relation with d, and the latter slows down to a constant
level with the increase of d. From the trend it can be concluded that, with the number of
search users d increasing, its impact on search time overhead is weakened, and it further
weakens the influence of the increasing number of friends on the search time. Therefore,
the multi-user parallelism has a weak impact on search time overhead, which helps the
scheme to achieve a certain level of scalability.

Besides, we analyzed the influence of the expandable number of remote servers on the
search time overhead. First, we deployed three servers to execute the Search protocol for six
users simultaneously and recorded the total time overhead. Then we deployed six servers
to repeat the same experiment and compare the results. Figure 4 shows the relationship
between the number of servers and the search time. It can be seen that the search time of
6-server deployment is significantly lower than the running time with 3-server deployment,
and the former’s growth was slowed down to a constant level after d reaches 4, but the
latter’s growth takes an approximately linear relationship with the number of friends
steadily. Therefore, it can be concluded that deploying multiple servers to perform parallel
searches can reduce the search time overhead and further weaken the influence of the
increasing number of friends on the search time.

Sensors 2021, 21, 3994 17 of 19

Figure 4. Scalability.

Remark 1. It is worth pointing out that the search process’s main computation cost is the homo-
morphic encryption/decryption operation and broadcast decryption operation. The computation
efficiency is closely related to the selected parameters of the underlying algorithms. The server-end
implementation can also be optimized to reduce the search time by using multiple threads for distance
sorting and using approximate sorting algorithms, and so forth. In our experiment, we did not
adopt any optimization method. The server was allowed to complete all the computation steps in a
single thread in each phase to reflect the scheme’s original execution efficiency faithfully.

7. Conclusions

Aiming at the problem of location privacy disclosure in MSNs, we propose a privacy-
enhancing k-nearest neighbors search scheme over MSNs. We deploy a dual-server collab-
orative architecture and design an encrypted location-oriented k-neighbor search protocol
based on secure multi-party computation and homomorphic encryption. Our scheme
achieves accurate nearby friends retrieval while protecting the geo-location and the dis-
tance order from revealing them to the servers. We propose a lightweight dynamic friends
management mechanism based on public-key broadcast encryption to satisfy the fine-
grained access control requirement. It enables users to grant/revoke a friend’s location
search right without updating others’ keys and achieves constant-time identity authenti-
cation. The scheme satisfies adaptive L-semantic security and revocation security under
the random oracle model. Compared with the works on single server architecture, the
proposed scheme reduces the communication cost between users and the server and pre-
vents location information leakage, which achieves a trade-off of the location availability
and privacy.

Author Contributions: Conceptualization, Y.L. and F.Z.; Data curation, Y.L.; Formal analysis, Y.L.;
Funding acquisition, F.Z.; Methodology, Y.L.; Project administration, F.Z.; Validation, Y.G. and Z.X.;
Writing–original draft, Y.L.; Writing–review & editing, Y.L., Y.G. and Z.X. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by Northeastern University Annual Basic Scientific Research
Funding under Grant 02190022121006 and the Natural Science Foundation of China under Grant
61772127, Grant 61532007 and Grant 61472184.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Global Social Media Stats. Available online: https://datareportal.com/social-media-users (accessed on 10 April 2021).
2. Weichbroth, P.; Łysik, Ł. Mobile Security: Threats and Best Practices. Mob. Inf. Syst. 2020. [CrossRef]
3. Anastasios, N.; Salvatore, S.; Mascolo, C.; Pontil, M. An empirical study of geographic user activity patterns in foursquare. In

Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media, Barcelona, Spain, 17–21 July 2011.
4. Cheng, Z.; Caverlee, J.; Lee, K.; Sui, D. Exploring millions of footprints in location sharing services. In Proceedings of the

International Conference on Weblogs and Social Media, Barcelona, Spain, 17–21 July 2011; pp. 81–88.

https://datareportal.com/social-media-users
http://doi.org/10.1155/2020/8828078

Sensors 2021, 21, 3994 18 of 19

5. Preotiuc, P.D.; Cohn, T. Mining user behaviors: A study of check-in patterns in location based social network. In Proceedings of
the Conference on ACM Web Science, Paris, France, 2–4 May 2013; pp. 306–315.

6. Chor, B.; Goldreich, O.; Kushilevitz, E.; Sudan, M. Private information retrieval. In Proceedings of the IEEE 36th Annual
Foundations of Computer Science, Milwaukee, Wisconsin, 23–25 October 1995; pp. 41–50.

7. Curtmola, R.; Garay, J.; Kamara, S.; Ostrovsky, R. Searchable symmetric encryption: Improved definitions and efficient construc-
tions. J. Comput. Secur. 2016, 19, 895–934. [CrossRef]

8. Lucas, M.M.; Nikita, B. Flybynight: Mitigating the privacy risks of social networking. In Proceedings of the 7th ACM Workshop
on Privacy in the Electronic Society, Alexandria, VA, USA, 27 October 2008; pp. 1–8.

9. Guha, S.; Kevin, T.; Paul, F. NOYB: Privacy in online social networks. In Proceedings of the First Workshop on Online Social
Networks, Seattle, WA, USA, 18 August 2008; pp. 49–54.

10. Niu, B.; Li, X.; Zhu, X.; Li, X.; Li, H. Are you really my friend? Exactly spatiotemporal matching scheme in Privacy-Preserving
mobile social networks. In Proceedings of the International Conference on Security and Privacy in Communication Systems,
Beijing, China, 24–26 September 2014; pp. 33–40.

11. Zhang, R.; Zhang, Y.; Sun, J.; Yan, G. Fine-grained private matching for proximity-based mobile social networking. In Proceedings
of the IEEE INFOCOM, Orlando, FL, USA, 25–30 March 2012; pp. 1969–1977.

12. Fu, Y.; Wang, Y. BCE: A privacy-preserving common-friend estimation method for distributed online social networks without
cryptography. In Proceedings of the 7th International Conference on Communications and Networking, Kunming, China, 8–10
August 2012; pp. 212–217.

13. Sun, J.; Zhang, R.; Zhang, Y. Privacy-preserving spatiotemporal matching. In Proceedings of the IEEE INFOCOM, Turin, Italy,
14–19 April 2013; pp. 800–808.

14. Bamba, B.; Liu, L.; Pesti, P.; Wang, T. Supporting anonymous location queries in mobile environments with PrivacyGrid. In
Proceedings of the 17th international conference on World Wide Web, New York, NY, USA, 21–25 April 2008; pp. 237–246.

15. Bordenabe, N.E.; Chatzikokolakis, K.; Palamidessi, C. Optimal Geo-Indistinguishable Mechanisms for Location Privacy. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security (CCS ’14), Scottsdale, AZ, USA,
3–7 November 2014; pp. 251–262.

16. Elaine, S.; Richard, C.; Hubert, C. Privacy-preserving aggregation of time-series data. In Proceedings of the Network and
Distributed System Security Symposium (NDSS 2011), San Diego, CA, USA, 6–9 February 2011; pp. 1–17.

17. Jorgensen, Z.; Yu, T.; Cormode, G. Publishing attributed social graphs with formal privacy guarantees. In Proceedings of the 2016
International Conference on Management of Data, San Francisco, CA, USA, 26 June–1 July 2016; pp. 107–122.

18. Zhou, C.L.; Chen, Y.H.; Tian, H.; Cai, S.B. Location Privacy and Query Privacy Preserving Method for K-nearest Neighbor Query
in Road Networks. J. Softw. 2020, 31, 471–492. [CrossRef]

19. Li, Z.; Wang, C.; Yang, S.; Jiang, C.; Li, X. Lass: Local-activity and social-similarity based data forwarding in mobile social
networks. IEEE Trans. Parallel Distrib. Syst. 2014, 26, 174–184. [CrossRef]

20. Schlegel, R.; Chow, C.; Huang, Q.; Wong, D. User-defined privacy grid system for continuous location-based services. IEEE Trans.
Mob. Comput. 2015, 14, 2158–2172. [CrossRef]

21. Han, M.; Li, L.; Xie, Y.; Wang, J.; Duan, Z.; Li, J.; Yan, M. Cognitive approach for location privacy protection. IEEE Access 2018, 6,
13466–13477. [CrossRef]

22. Siddula, M.; Li, Y.; Cheng, X.; Tian, Z.; Cai, Z. Privacy-enhancing preferential lbs query for mobile social network users. Wirel.
Commun. Mob. Comput. 2020. [CrossRef]

23. Yang, X.; Yang, M.; Yang, P.; Leng, Q. A multi-authority attribute-based encryption access control for social network. In Proceed-
ings of the 2017 3rd IEEE International Conference on Control Science and Systems Engineering (ICCSSE), Beijing, China, 17–19
August 2017; pp. 671–674.

24. Luo, E.; Liu, Q.; Wang, G. Hierarchical multi-authority and attribute-based encryption friend discovery scheme in mobile social
networks. IEEE Commun. Lett. 2016, 20, 1772–1775. [CrossRef]

25. Alanwar, A.; Shoukry, Y.; Chakraborty, S.; Martin, P.; Tabuada, P.; Srivastava, M. PrOLoc: Resilient localization with private
observers using partial homomorphic encryption. In Proceedings of the 2017 16th ACM/IEEE International Conference on
Information Processing in Sensor Networks (IPSN), Pittsburgh, PA, USA, 18–21 April 2017; pp. 41–52.

26. Boneh, D.; Craig, G.; Brent, W. Collusion resistant broadcast encryption with short ciphertexts and private keys. In Proceedings
of the Advances in Cryptology—CRYPTO 2005, Santa Barbara, CA, USA, 14–18 August 2005; pp. 258–275.

27. Paillier, P. Public-key cryptosystems based on composite degree residuosity classes. In Proceedings of the International Conference
on the Theory and Applications of Cryptographic Techniques, Prague, Czech Republic, 2–6 May 1999; pp. 223–238.

28. Goldwasser, S.; Micali, S. Probabilistic Encryption. J. Comput. Syst. Sci. 1984, 28, 270–299. [CrossRef]
29. Li, Y.; Zhou, F.; Xu, Z. PPFQ: Privacy-Preserving Friends Query over Online Social Networks. In Proceedings of the 2020 IEEE

19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Guangzhou, China,
29 December–1 January 2021; pp. 1348–1353.

30. Batcher, K.E. Sorting networks and their applications. In Proceedings of the spring joint computer conference, New York, NY,
USA, 30 April–2 May 1968; pp. 307–314.

31. Veugen, T. Improving the DGK comparison protocol. In Proceedings of the International Workshop on Information Forensics and
Security, Tenerife, Spain, 2 December 2012; pp. 49–54.

http://dx.doi.org/10.3233/JCS-2011-0426
http://dx.doi.org/10.13328/j.cnki.jos.005679
http://dx.doi.org/10.1109/TPDS.2014.2308200
http://dx.doi.org/10.1109/TMC.2015.2388488
http://dx.doi.org/10.1109/ACCESS.2018.2805464
http://dx.doi.org/10.1155/2020/8892321
http://dx.doi.org/10.1109/LCOMM.2016.2584614
http://dx.doi.org/10.1016/0022-0000(84)90070-9

Sensors 2021, 21, 3994 19 of 19

32. The OpenSSL Project. OpenSSL: The Open Source Toolkit for SSL/TLS. 2015. Available online: http://www.openssl.org/
(accessed on 26 May 2021).

33. Relic-Toolkit. Available online: https://github.com/relic-toolkit (accessed on 26 May 2021).
34. Cohen, W.W. Enron Email Dataset. 2015. Available online: https://www.cs.cmu.edu/~enron/ (accessed on 26 May 2021).

http://www.openssl.org/
https://github.com/relic-toolkit
https://www.cs.cmu.edu/~enron/

	Motivation
	Related Works
	MSNs Privacy
	Location Privacy

	The Proposed Scheme
	Overview
	Architecture and Syntax
	Security Definition
	Adaptive L-Semantic Secure
	Revocation Security

	The Detailed Construction
	Initialization
	Key Generation
	Join
	Location Update
	Grant
	K-Nearest Neighbors Search
	Revoke

	Security Analysis
	Adaptive L-Semantic Secure
	Revocation Secure

	Theoretical Analysis
	Implementation
	Storage Analysis
	Communication
	Search Time
	Scalability

	Conclusions
	References

