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Abstract: Surveillance cameras are being installed in many primary daily living places to maintain
public safety. In this video-surveillance context, anomalies occur only for a very short time, and very
occasionally. Hence, manual monitoring of such anomalies may be exhaustive and monotonous,
resulting in a decrease in reliability and speed in emergency situations due to monitor tiredness.
Within this framework, the importance of automatic detection of anomalies is clear, and, therefore,
an important amount of research works have been made lately in this topic. According to these
earlier studies, supervised approaches perform better than unsupervised ones. However, supervised
approaches demand manual annotation, making dependent the system reliability of the different
situations used in the training (something difficult to set in anomaly context). In this work, it is pro-
posed an approach for anomaly detection in video-surveillance scenes based on a weakly supervised
learning algorithm. Spatio-temporal features are extracted from each surveillance video using a
temporal convolutional 3D neural network (T-C3D). Then, a novel ranking loss function increases
the distance between the classification scores of anomalous and normal videos, reducing the number
of false negatives. The proposal has been evaluated and compared against state-of-art approaches,
obtaining competitive performance without fine-tuning, which also validates its generalization ca-
pability. In this paper, the proposal design and reliability is presented and analyzed, as well as the
aforementioned quantitative and qualitative evaluation in-the-wild scenarios, demonstrating its high
sensitivity in anomaly detection in all of them.

Keywords: anomaly detection; RGB; CNN; multiple instance learning; video-surveillance

1. Introduction

In recent years, surveillance cameras have gained high popularity for taking care
of public safety against the increased security threats in various forms, such as robbery,
accidents, or illegal and anti-social activities. Nowadays, these cameras are commonly
installed in public places such as banks, shopping markets, railway and bus stations,
crowded streets or heavy traffic areas, which are liable to security threats, in order to
guarantee public safety.

Traditionally, it has been an operator who is responsible for reviewing the video-
surveillance images, and determines the existence of abnormal or dangerous events. How-
ever, manual detection of these anomalies from all the sequences captured by a camera
is labor and time intensive, and it requires a dedicated person to be employed for this
purpose. In addition, the efficiency of detection relies on the potential of the individual.
The task also becomes monotonous and boring as the occurrence of abnormal events is
very minimal when compared to that of the normal events. This drawback may lead to the
under-utilization of surveillance cameras. Hence, automation of this anomaly detection
task finds its applicability in several industrial contexts such as security guards, traffic
security, or crime prevention.
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In the context of automating anomaly identification from surveillance videos, com-
puter vision algorithms can be employed to sense and notify the abnormal events along
with the time frame within which these have occurred. As a first step, algorithms for
anomaly detection should be able to identify whether a specific video displays anomaly
events or not. If an anomaly is detected, it can be further processed to categorise it among
the many kinds of anomalies that may appear in a video-surveillance scenario: robbery,
accidents, burglary, etc.

Several methods have already been developed by the scientific community in order
to solve the automatic anomaly detection tasks in video-surveillance situations. The very
first ones were based on simple and specific anomaly detectors, such as accident, violence,
or illegal activities detectors based on image features. Violent flow descriptors [1] and
heuristic approaches [2] have also been employed to distinguish violent from non-violent
videos. However, these specialized anomaly detectors are just useful to identify events that
fall under a specific anomaly type. Thus, their applicability is limited.

In real world environments, anomalous events are complex, miscellaneous, and most
importantly, unexpected. Hence, it is difficult to list all of them beforehand, and, thus, to
design a detector reliable in all scenarios. Therefore, it is preferable that anomaly detection
algorithms can identify these anomalies without prior knowledge about them, that is, in an
unsupervised or weakly supervised way.

The earlier attempts towards anomaly detection can be categorized into supervised
and unsupervised approaches. Unsupervised approaches build a training model based on
normal events and then anomalies are detected based on the reconstruction error during
the testing phase.

However, this approach results in a high number of false positives as the normal
events itself will be radically changing over time and the latter normal events can be
detected as anomalous. Alternatively, supervised methods can be used. In this case, both
the normal and the anomalous videos are taken into consideration for training, appearing
the already mentioned problems of obtaining annotations for every video segment and
type. To overcome this global issue, weakly supervised learning techniques are explored,
since these methods combine the benefits from supervised approaches, without needing
an exhaustive labeling.

In this context, this work presents a proposal for anomaly detection based on multiple
instance learning (MIL), a weakly supervised learning approach. The proposed work,
thus, aims at contributing to anomaly detection in surveillance videos with improved
performance, that besides demonstrates a better capability of generalization. In this regard,
the primary contributions of this work include:

1. Employing temporal convolution 3D network (T-C3D) for feature extraction, trained
with the noise-free large scale Kinetic dataset;

2. Formulating a modified ranking loss function that minimizes the miss rate noticeably,
improving the anomaly detection performance;

3. Describing a global proposal, based on MIL, that demonstrates a high generalization
capability for anomaly detection in unseen real scenarios in the Wild, understanding
“in the Wild” as in non-prepared daily scenarios, instead of in lab-based ones [3,4].

The rest of the paper is structured as follows. Section 2 presents the related work
pertaining to anomaly detection. Section 3 describes the proposed methodology. Section 4
discusses the dataset and reports the main results and Section 5 concludes the paper and
presents different future works.

2. Related Works

Several works have been previously proposed towards anomaly detection in surveil-
lance videos, most of them, using different machine learning and deep learning [5–7].

The different proposals can be categorized as supervised, unsupervised, and weakly
supervised approaches. Though the first ones have demonstrated to be really useful and
reliable in some scene understanding tasks (such as object detection or action recognition),
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this is not the same in the anomaly detection problem, given the difficulty of modeling all
versions of a given anomalous element in a specific context but with open conditions, as it
is the case in video-surveillance. In this context, unsupervised proposals have thus given
very promising results in recent years’ state-of-the-art.

Unsupervised methods that require minimal or no supervision have been employed
within different approaches by the scientific community to detect anomalies in videos.
These algorithms build training models from normal events while anomalies are detected
based on reconstruction error during the testing phase. They can be grouped as reconstruc-
tion, spatio-temporal prediction, and generative models.

The first approaches were focused on detecting anomalous trajectories in video-surveillance
scenes. A very interesting framework, based on pixel level anomaly probability density func-
tions, is proposed in [8]. Globally understanding, the approach analyzes objects size in relation
to height and width and their movement patterns, defined by their tracks: destination location
and transition time. This work opens a spatio-temporal pattern and local features based
approach, extensively exploited within the deep learning context in further and more modern
proposals, as the one presented in this paper. A similar approach based on particle o proba-
bilistic hypothesis trajectories is presented in [9]. Again, this proposal tackles the problem
in the dual spatio-temporal approach, however, tracking remains complex and unreliable,
and hence most of posterior methodologies adopt some other unsupervised approaches to
detect anomalies.

Lastly, a novel method is presented in [10] for abnormal activity region detection
from video-frames by utilizing prediction and measurement method. Particle weight and
particle estimation for variable regions are created using shifting cell structures in the video
frames. Location and motion features are then extracted using shifting regions for efficient
estimation of abnormal videos and frames.

Besides, in the pattern recognition area, a histogram of orientation magnitude and
entropy with fast accelerated test (also called HOME FAST) spatio-temporal descriptor, for
feature creation to estimate the anomaly in video frames, is defined in [11]. The created
filter is utilized in smart systems for robust anomaly prediction, by means of a deep
learning model trained with video frames to learn normal activity patterns. This model
efficiently predicts the local and global abnormal activity patterns, showing a competitive
performance while dealing with local and global anomaly environments.

Finally, in the context of unsupervised reconstruction-based models, also sparse
combination learning techniques have been adopted in [12] to detect anomalies in surveil-
lance contexts.

More recent works use encoder-decoder structures, or auto-encoders, for anomaly
detection. In [13], it is presented a hybrid combination of long short-term memory (LSTM)
encoder-decoders and auto-encoders used to get spatio-temporal information in video
segments, with which the presence or absence of anomaly is detected is presented in [13]
as an accurate approach. Additionally, authors of [14] propose to use a similar structure of
auto-encoder and LSTM for detecting video anomalies in an unsupervised way.

There are some other interesting works that use auto-encoders for spatio-temporal pre-
diction. In [15], firstly, spatio-temporal local features from an anomaly video-surveillance
dataset have been utilized to train a fully connected auto-encoder. Then, both these lo-
cal features, as well as neural network based classifiers, have been used to train a fully
convolution feed forward auto-encoder. Having thus reconstructed the model, anomaly
detection is performed by comparing the obtained error between testing videos and their
modeled-output.

Again within this context of spatio-temporal prediction, a deep neural network (DNN)
based spatio-temporal auto-encoder has been designed to detect anomalies in [16]. In this
different proposal, the encoder perceives a video representation to obtains from it both
spatial and temporal features separately. Moreover, a weight decreasing prediction loss
function has been incorporated to improve the learning rate of features related to motion.
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Similarly, in [17], the authors propose the use of a dictionary based learning method, where
a latent space of variational auto-encoder is used.

Finally, the authors of [18] propose a three-stage unsupervised anomaly detection
method that, instead of auto-encoders, uses a random projection in the first stage extracted
features to improve performance, followed by a refinement network and inference ensemble
stages. In the same direction, generative adversarial networks (GAN) have also been
trained to learn normal events [19], so during testing, discriminators of normal events are
utilized to detect abnormal events. The same idea is present in [20], where a method to
predict future frames based on spatial intensity, gradient, and motion characteristics in
order to identify anomalies if the predicted frame differs from the actual is described. In
this order, sparse coding-based methods (reconstruction based) achieve decent anomaly
detection accuracy. These methods are built on the basis that the initial few frames of the
video characterize normal events and, hence, can be utilized to construct a dictionary for
normality. Then, anomalous events are identified on the fact that they cannot be accurately
reconstructed from the normal event database.

The above-stated unsupervised approaches perform well if normal events are similar
all the time and the abnormal ones differ from them noticeably. However, generally, in real
applications normal events themselves may change drastically and hence these approaches
result in high false-positive rates. Alternatively, supervised approaches [21,22] have also
been widely used towards anomaly detection, due to the promising results exhibited by
deep learning approaches in different computer vision applications.

There are only few works that address anomaly detection using approaches based on
supervised learning, mainly due to the lack of large annotated datasets. In this context, the
proposal described in [23] uses a graph convolutional neural network to correct noisy labels
for anomaly detection. The noise correction is carried out based upon a feature similarity
and temporal consistency. Then, anomaly detection is performed in a fully supervised
way, with high accuracy, by classifying the actions in the scene. Additionally, the proposal
in [24] is based on a supervised approach. The authors propose to use a light-weight CNN
followed by a residual attention-based LSTM for anomaly detection. The light-weight
CNN reduces time complexity allowing to obtain competitive accuracy.

As it has been stated before, there is a lack of large annotated datasets for anomaly
detection, thus, most of the supervised proposals are based on action recognition. This is
because supervised learning algorithms require a large amount of annotated samples for
both normal and anomalous events. Furthermore, all the anomalous events to be detected
must be included in the training stage. Besides, supervised approaches only works in
controlled conditions in which there are available annotated samples for both, normal and
abnormal events that must be detected.

Taking into account the inconveniences that both supervised and also unsupervised
approaches present in video-surveillance anomaly detection, semi-supervised techniques
appear to be good solutions for this problem. These approaches usually provide better
accuracy that unsupervised ones, and require the annotation in the video level, but not
for every video segment or frame. Thus, it is avoided the need for thorough labeling,
which, on one hand, is not always possible and on the other hand constraints too much
the normality, leading to a high false positive rate in anomaly detection. Thus, weakly
supervised learning builds training models based on the weakly labelled data but predicts
the label for every frame during testing.

In this context of weakly supervised approaches, multiple instance learning (MIL,
firstly cited in [25]) technique has been widely used. The base of the technique is to build the
training model from labelled bags (comprising of multiple instances) rather than labelled
individual instances. A bag is annotated as negative if all the instances in it are negative
while it is marked positive if at least one instance in it is positive. Then, the learned model
must be able to predict labels for individual instances.

There are several proposals based on MIL for anomaly detection in video sequences.
The approach described in [26] use inflated 3D pre-trained from Kinetics dataset to extract
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features. These features are passed through an anomaly regression network (AR-Net)
which requires video level label for anomaly detection. Similarly, the proposal in [27] uses a
graph-based MIL model whose output is used to improve a dictionary. Anomalous events
are then detected based on the sparse reconstruction cost (SRC).

Another proposal based on MIL is the one in [28]. In this work, outer bag loss,
associated with the difference in score between abnormal and normal bags, is formulated
to push apart the anomalous and normal bags from each other. The above-stated work has
been extended to include inner bag loss in [29] as intra-difference between scores within a
bag should be as low as possible.

Previously described works, based on MIL [28,29], can detect some anomalous se-
quences, but in some cases, the anomaly scores are low, mainly due to the high variability
of the anomalous events in video-surveillance. Therefore, some anomalous video-segments
are detected as normal ones, appearing a high number of false negatives.

As it has been explained in this section, there exists several proposals for anomaly
detection in the literature, based on unsupervised, semi-supervised, and fully-supervised
deep learning techniques. To avoid the drawbacks of the unsupervised an fully-supervised
methods, this paper presents a novel approach based on MIL. Moreover, to reduce the
number of false negatives that appear in the described MIL proposals, there is introduced a
new ranking loss function that is able to reduce the variability for anomalous sequences and
increases the difference between the scores for normal and abnormal sequences, improving
the accuracy. The proposed approach is described in detail below.

3. Methodology
3.1. Proposed Architecture and Training Procedure

The proposed methodology towards anomaly detection in surveillance videos using
MIL is presented in detail in this section. In order to overcome the challenge in anomaly
detection, we proposed an architecture as shown in Figure 1.

Figure 1. Proposed architecture for anomaly detection in surveillance videos.
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Because of the memory bottleneck, the whole video cannot be fed to the model at
once. So every video in the training and testing sets is split into 32 non-overlapping video
segments (which is set after several experiments, and a standard in the state of the art), then
the spatio-temporal features are extracted for each video segment using a T-C3D [30] as a
feature extractor. We have also observed that using 64 non-overlapping video segments
performs better on longer videos.

The proposed T-C3D divides the video into multiple frames that are them utilized
to make a clip. The created clips using video frames are used as an input to the 3D
convolutional network. The robust 3D features from videos are extracted using extended
2D temporal dimensions, being the weights of 3D-CNN the same on the entire video
clip. Features extracted from different videos are fused by using the aggregation function
to determine the class score for the prediction of video clip. Thus, the proposed T-C3D
computes the loss value using the loss function and perform predictions on videos. The
implanted T-C3D model deals with all the parameters, features, and predictions at the
video instead of single frames. Video clips of all categories are created, and the regression
function combines the clips of the same categories into a specific video, from what the
network is able to estimate the probability of each activity. In our proposed work the
output layer is the last fully connected layer. The implementation of back-propagation
allows differentiating the temporal encoding method. The use of logarithmic loss function
allows to compare segmentation process to achieve the final segmented region will be
expressed as:

M(y, H) =
N

∑
i=1

yi

(
Hi − log

N

∑
j=1

exp Hj

)
(1)

The number of classes is represented by N and yi denotes the ground-truth label
of prediction class i. H is the logarithmic consensus loss function of segmented regions.
Aggregation and regression derivable functions enable the multiple clips to update the net-
work weights W using the traditional back-propagation algorithm. The back-propagation
gradient weights and loss value L can be defined by Equation (2):

∂L(y, H)

∂W
=

∂L
∂W

S

∑
s=1

∂Q
∂F(Ca)

∂F(Ca)

∂W
(2)

T-C3D adopted video clips are denoted by W. In the above equation H is derived from
clip prediction using the optimization of weights by segmentation concurrence. Q describes
the aggregation function which contains the fusion of multiple clips of videos. The proposed
T-C3D is utilized for feature extraction from a noise-free abnormality detection dataset.

The T-C3D learns video actions through a hierarchical multi-granularity method, that
gives spatial information from a single image, and temporal information when provided
with a sequence of images. Thus, it encapsulates the temporal dynamics of the entire video
through a temporal encoding approach, enhancing the model real-time inference speed.
T-C3D considers the whole video level features while calculating the loss function. This
makes the model enable to learn hard examples more efficiently. Instead of feeding the
whole video at once T-C3D feed batch of segments and use an aggregation function to gain
video-level features.

Some previous works that incorporate long-term temporal convolution (LTC) [31] and 3D
CNNs show that 3D models pre-trained with Sports-1M [31] demonstrate better performance
than those trained from scratch. Sports-1M dataset is composed of more than one million
videos, but it includes some noise owing to a lack of manual annotation. Recently, ref. [32],
introduce the Kinetics dataset that comprises 400 human action categories with at least
400 video samples for each one. This dataset is, thus, large-scale and free from noise. Because
of that, in this proposal, T-C3D is pre-trained using the Kinetics dataset, instead of Sports-1M,
with the view to improve the accuracy of the proposed anomaly detector.

The generated feature vector from T-C3D is used to label the video segment as positive
(presence of anomaly) or negative (absence of anomaly). This feature vector is further
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processed at the classifier network (deep MIL network) which is included at the end of
T-C3D feature extractor. It consists of a 3D average pooling layer, followed by four fully
connected layers, also including batch normalization. A dropout of 60% is incorporated in
the ReLU activation function.

In order to train the deep MIL framework, instances are grouped into bags as it
necessitates the annotations at only video level rather than at video segment level. The bag
of features which contains at least one positive video segment (with anomaly) is labelled
as a positive bag Ba, while the bag where all the video segments correspond to negative
ones is considered to be a negative bag Bn. The algorithm learns and builds a model from
the labelled bags. The objective function is applied based on the aggregation of scores of
individuals in the bags.

In this context, the anomaly detection is viewed as a regression problem. Therefore,
classification scores to Ba and Bn are predicted for each video segment.

The obtained scores are provided as input to the the loss function f (v), so it is desirable
that video segments with anomalies f (va) are characterized by higher scores than those
without anomalies f (vn), (Equation (3)), where vn and va refer to normal and anomalous
video segments, respectively.

f (va) > f (vn), (3)

Nevertheless, ground truth annotations are given only at video-level rather than at
video segment-level, thus minimizing labeling time and complexity. Because of that, the
relationship in Equation (3) cannot be used for this work. Besides, it is proposed a new
multiple instance ranking loss that is explained in Section 3.2.

In addition, instead of using an adaptive gradient algorithm (AdaGrad) [33], it is
employed Adadelta [34] as the optimizer, since an empirical analysis performed in this work
concludes that AdaGrad is too aggressive in decreasing learning rates. Adam algorithm
was also tested, but it demonstrated a large momentum minimization error.

To pre-train TC3D with Kinetics 400 dataset took 13 weeks with our system. During
training of the UCF-Crime dataset we run a total of 60k iterations and decrease the learning
rate by half at 20k, 40k, and stop at 60k with a total of 3.5 weeks of training time.

3.2. Proposed Ranking Loss Function

Our proposed technique is inspired by [28] using MIL. The concept considers the
input videos as binary instance. The negative instances are the videos with normal activity
whereas positive instance videos contains abnormal activity. Abnormal activity is a small
segment of the whole video and all the video contains these segments of anomalies. The
baseline method computes the loss function as follows:

max
i∈Ba

f
(

vi
a

)
+ max

i∈Bn
f
(

vi
n

)
(4)

According to Equation (4), a bag is assigned the highest score among all the video
segments in that bag. The logic of this ranking objective is that the video segment with
the maximum score in a positive bag (marked with red in Figure 1) should rank higher
than that of the one with the maximum score in the negative bag (marked with green
in Figure 1). The baseline loss function for normal and abnormal instance classification
as follows:

L(Ba,Bn) = max
(

0, 1−max
i∈Ba

f
(

vi
a

)
+ max

i∈Bn
f
(

vi
n

))
(5)

We derived (6) from baseline (4) and (5).

L(Ba,Bn) = max
(
0, 1−maxi∈Ba f

(
vi

a
)
+ maxi∈Bn f

(
vi

n
))
+

λ1 ∑n−1
i
(

f
(
vi

a
)
− f

(
vi+1

a
))2

+ λ2 ∑n
i f
(
vi

a
) (6)

where normal and abnormal activity segments recognition is denoted by f
(
vi

a
)

and f
(
vi

n
)
,

respectively. The term max elaborated all activity segments of videos in the instances.
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Sparsity is denoted by ∑n
i f
(
vi

a
)

and smoothness is denoted by ∑n−1
i
(

f
(
vi

a
)
− f

(
vi+1

a
))2 in

the mathematical modeling.
The ranking loss function in Equation (3) allows classifying the video-segments in

normal or anomalous, however, due to the high variability of the anomalous events, in
some cases the anomaly scores are low and similar to the normal ones. Therefore, some
anomalous video-segments are detected as normal ones, appearing a high number of
false negatives. Our proposed loss function depicts that the baseline method has large
distributions for normal; and abnormal activity which makes the method more complex
for accurate prediction of activity. The data driven baseline method with high distribution
scores near the ground truth distributions is efficient in classical method of classification.
The proposed method has the log base loss function to achieve better distribution is
expressed as shown in Equation (7).

L(Ba,Bn) = −
s

∑
i=1

Q
(

f
(

vi
a

))
log
(

Q
(

f
(

vi
n

)))
(7)

where, the batch of all videos is denoted by L(Ba,Bn) and distribution density of f
(
vi

a
)

is
predicted by using the Q

(
f
(
vi

n
))

function. Logarithmic function reduces the variability
for anomalous sequences and increase the difference between the scores for normal and
abnormal sequences, thus reducing the number of false negatives. The proposed ranking
loss function derived from [28] is as follows:

L(Ba,Bn) = max
(

0, 1−max
i∈Ba

f
(

vi
a

)
+ max

i∈Bn
f
(

vi
n

))
+max

(
0, max

i∈Bn
f
(

vi
n

)
− log2

(
max
i∈Ba

f
(

vi
a

))) (8)

This loss function aims at diminishing the miss rate, that is, anomalous videos will
not be missed and declared as normal. This is a valuable decision as in applications related
to anomaly detection, since miss rate is a significant parameter and it should be kept as
low as possible. However, it does not consider specific temporal structures of anomalies.
As anomalies tends to happen for short times, the temporal structure of videos in bags of
anomalous segments tend to be sparse. Moreover, the score should characterize smoothness
as it should be continuous. Hence, a regularization term that incorporates the difference in
anomaly scores between successive video segments as formulated in [35] is incorporated
to the proposed function. Smoothness and sparsity constraint is included in the proposed
ranking function, finally used in this work, is reformulated as follows:

L(Ba,Bn) = max
(

0, 1−max
i∈Ba

f
(

vi
a

)
+ max

i∈Bn
f
(

vi
n

))
+max

(
0, max

i∈Bn
f
(

vi
n

)
− log2

(
max
i∈Ba

f
(

vi
a

)))
+λ1

n−1

∑
i

(
f
(

vi
a

)
− f

(
V i+1

a

))2
+ λ2

n

∑
i

f
(

vi
a

) (9)

The proposed final logarithmic loss function along with T-C3D features enhances the
system robustness. Loss function helps the T-C3D to derive robust features from video
frames by removing redundancy. The feature extraction is performed at a continuous frame
level using a MIL hierarchical architecture for a better understanding of the whole video.
Besides, the use of loss function decreases the information loss and miss rate at the training
level which enables the network to learn the most relevant features. In the proposed
technique loss function and fine-tuned T-C3D are, thus, the main factors impacting the
system performance.
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4. Experimental Results and Discussion
4.1. Experimental Setup

The proposed method of anomaly detection algorithm which is presented in this
paper is analyzed both quantitatively and qualitatively. Our proposed method has been
validated on three different datasets: the widely used UCF-Crime [28], GBA [36] and the
Web dataset [37]. Firstly, UCF-Crime dataset is described, then the details of GBA and the
Web datasets are also provided. It is to be mentioned that the UCF-Crime dataset is used
to train and test the proposal, whereas GBA and The Web dataset are just used to test the
final solution in an unrestricted and uncontrolled standard scenario, thus validating the
system design in a real application, where no fine-tuning is performed.

The UCF-Crime dataset [28] includes both training and testing samples, in indoor
and outdoor scenarios. The training ones are labeled at the video level while the testing
video samples are annotated both at video segment and video levels. There are 1610 videos
available for training, out of which 800 do not contain any anomalies and 810 contain
anomaly video segments. There are 290 videos for testing the effectiveness of the proposed
methodologies. Out of the 290 videos, 140 videos characterize anomalies while the remain-
ing 150 videos do not exhibit any abnormality. The dataset exploits 13 different kinds of
anomalies, including abuse, arrest, arson, assault, burglary, explosion, fighting, robbery,
road accidents, shooting, stealing, shoplifting, and vandalism. Table 1 shows a summary of
the number of videos in the UCF-Crime dataset and its distribution for training and testing.

Table 1. Number of videos for training and testing, including normal and abnormal ones in UCF-
Crime dataset.

Stage # Videos Normal Abnormal

Training 1610 800 810

Testing 290 150 140
#: number.

GBA dataset [36] comprises of around 3000 indoor video sequences characterized by
a resolution of 1280× 720 pixels. It includes various individuals performing 4 different
actions: walk, run, sit down, and fall down. All these sequences have been recorded at
the Polytechnics School of the University of Alcalá, with a GoPro HERO4 camera during
different days. Hence the dataset also includes significant variations in lighting. In the
GBA dataset, labels are provided for each image. For each person, both his position and
performed actions are annotated.

Table 2 presents a summary of the GBA dataset characteristics. For testing purposes,
videos corresponding to people falling down are considered as anomalous, whereas the
other actions correspond to normal behavior. Some sample images corresponding to the
anomalous action ’Fall down’ in GBA dataset are shown in Figure 2.

Table 2. Number of sequences and individuals performing any of the 4 actions in GBA dataset [36].

Action People Sequences

Walk 13 72

Run 12 75

Sit down 16 78

Fall down 14 70
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Figure 2. Qualitative visual results and comparison in scenes from GBA.

The proposal in this work is also tested on the dataset of normal and crowd scenes
called The Web [37]. It contains high quality crowd and normal videos in different scenes
which are collected from sites such as Getty Images and ThoughtEquity.com. This dataset
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contains 12 normal crowd videos (pedestrian walking, marathon running) and 8 abnormal
videos (escape panics, protesters clashing, crowd fighting, etc).

For the authors knowledge, UCF-Crime and The Web datasets are the most well known
and referenced by the scientific community for this context [28,29], due to its diversity
and size, being this the reason for its selection for training and testing the proposal here
included. GBA is also included, as it comprises indoor anomalous scenes from standard in
the wild environments [36], of high interest in security applications.

4.2. Experimental Results and Performance Comparison

The proposed method has been implemented using Pytorch. All the experiments have
been performed on a PC including an intel core i7 8th generation equipped with 32 GB of
RAM and 11 GB of NVidia GTX1080Ti graphic card.

In this section, there are presented the main result obtaining in different datasets, as
well as a comparison to other state-of-the-art approaches. Thus, the proposed method has
been tested on three challenging anomaly detection datasets: GBA, UCF-Crime, and Web
dataset. Different performance evaluation measures (PEM) are calculated to validate the
proposed method’s performance. The PEMs include f1-score, precision, recall [38], area
under the curve (AUC) and receiver operating characteristic (ROC).

Most of the works in the literature that address anomaly detection use AUC and ROC
curves for presenting their results. In this work, there are use both of them for comparison
with other established works. AUC represents the area under the ROC curve, and it does
not depend on the threshold, but provides a probability distribution of data which allows
the positive class to rank above the negative one.

Table 3 provides a performance comparison of the proposed model with baseline
method proposed in [12,15,28,29], displaying as classification quality value the AUC for
each proposal tested in UCF-Crime dataset, as well as information about the kind of
approach (supervised, unsupervised, or weakly supervised). In this table, it can be easily
concluded the contribution of weakly supervised classifiers in anomaly detection, as
explained in the contribution, and how the proposal here presented improves the results in
this task from the state of the art.

Table 3. Performance comparison using UCF-Crime dataset. The performance of the proposed in
this paper appears in italics.

Model Learning Algorithm AUC

Binary classifier Binary SVM classifier 49.99

Hassan et al. [15] Unsupervised 50.66

Lu et al. [12] Unsupervised 65.51

Sultani et al. [28] Weakly Supervised 75.41

Zhang et al. [29] Weakly Supervised 78.66

Proposed method without log2 Weakly Supervised 78.63

Proposed method with log2 Weakly Supervised 80.36

The experiments have been conducted with the entire set of test videos of UCF-Crime
with an average computational time of 1 min and 45 s for each video (with an average length
of 2221 frames), what allows the proposal working at over 20 fps. Besides, the proposed
methodology achieves in this condition, an AUC of 80.36% whereas the existing state-of-art
methods achieve a maximum AUC of 78.66% justifying the outstanding performance of
the proposal. It can also be observed in Figure 3, which displays the ROC comparison of
the proposed approach (in red), as well as that of earlier methods.
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Figure 3. ROC comparison of the base binary classifier (blue), with the proposal in [12] (cyan), the
one in [15] (black), the one described in [28] (red) and the proposed in this paper (pink and red,
according to the different loss function.) in the UCF-Crime dataset.

The generalization capability of the proposed model validated using Figure 4 ROC
curve obtained from implementing the method on GBA and Web datasets without fine-
tuning. In our experiment with The Web and GBA datasets, we resized all the test videos
into 320× 240 dimensions (.mp4, H.264 codec) and manually annotated abnormal videos.
The ROC in Figure 4 shows that our proposal for The Web dataset achieves an AUC of
78.58% which outperformed state-of-the-art, which was an AUC of 73% [37] method and
for GBA dataset we have obtained 61.65%.

Figure 4. ROC of the proposal for GBA and The Web datasets.

Results of the proposal on The Web dataset are better than those obtained within
GBA one because some anomalous scenes in The Web dataset are similar to some in the
UCF-Crime one. It means that the proposal already has some knowledge of Web anomalies
before inserting any of its videos into the model. On the other hand, GBA data has no scene
similar to those appearing in UCF-Crime, thus with a result less predictable.

It is worth highlighting that, although the scenarios in GBA dataset are totally different
from those in UCF-Crime, the proposal is able to obtain valid results in anomaly detection
without fine-tuning, thus ensuring its generalization capability.
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To complete the quantitative analysis, Table 4 shows the precision, recall and f1-score
for the three used datasets. Furthermore, there are also included these values for the baseline
method [28] in the UCF-Crime dataset. Our introduced method achieved competitive results
with a precision of 0.95, recall 0.91 and f1-score of 0.93 for abnormal class, whereas [28] method
got precision of 0.94, recall 0.88 and f1-score of 0.91 for abnormal behavior. The presented
results show that the proposal outperforms the baseline. It is noteworthy that these results
have been obtained training only with UCF-crime, without fine-tuning for GBA and The Web
datasets, so it allows demonstrating the generalization capability of the proposed method,
that is able to detect anomalies even in different scenarios and with different characteristics.
The proposed model attained the precision of 0.95, recall 1.00 and f1-score of 0.97 for abnormal
activity on GBA dataset and the precision of 0.96, recall 0.98 and f1-score of 0.97 in the
detection of abnormal activity on The Web dataset.

Table 4. Precision, recall and f1-score obtained with the proposal for anomaly detection in UCF-crime,
GBA and The Web datasets, and comparison with [28] in UCF-Crime.

Dataset Model Precision Recall F1-Score

GBA dataset

Proposed method

0.95 1.00 0.97

The Web dataset 0.96 0.98 0.97

UCF-Crime 0.95 0.91 0.93

Sultani et al. [28] 0.94 0.88 0.91

As it has been explained in the introduction, recognition of anomalous events or
dangerous situation in real world applications in difficult, since the occurrence of abnormal
events is minimal when compared to normal ones, and those anomalous events are complex,
miscellaneous, and unexpected. Furthermore, they can change depending on the scenario.
However, since the proposed method does not rely upon any specific kind of abnormal
events, it can be applied in several different contexts, such as streets, airports, banks,
shopping malls, etc., helping human operators to detect anomalous or dangerous situations
(including crime detection, traffic analysis, etc.).

Regarding the computational cost, for real applications, it is desirable that the proposal
works in real-time. The proposed work is able to detect anomalies with a speed over 20 fps,
that can be enough for some applications, such as helping a security guard to know if there
is an anomaly in the area under surveillance or detect a traffic accident. The use of more
powerful hardware elements (GPU) can increase the speed, making it possible to use it in
numerous real-world applications.

Having reported the quantitative results, qualitative ones are presented in Figure 2. In
order to visualize the improved performance of the proposed method, both UCF-Crime
dataset and real scenarios unseen by the algorithm from GBA are considered. The scenarios
comprise both far-view and near-view video sequences.

The proposed methodology and the baseline method proposed by [28] are executed on
all of them, and the anomaly responses from both the models are compared. The anomaly
ground truth of each video is then plotted along with the anomaly score obtained from
each proposal. The anomaly ground truth indicates a maximum anomaly score of 1, while
represents normal with a minimum of 0.

For each result, they are shown, in the corresponding figure, four images from each
selected sequence at the top, and the anomaly scores given by the two different architectures
at the bottom, within the ground truth (in dotted green): Sultani’s one at the left side of the
figure, and our proposal at the right side.

The first test (shown in Figure 2) is performed over the GBA dataset, corresponding
to a far-view sequence in which a person falls. It comprises four scenarios namely: (a) a
person walking, (b) the person falling down, (c) the person still lying on the ground, and



Sensors 2021, 21, 3993 14 of 20

(d) the person getting up. According to the ground truth, scenarios (b), (c), and (d) are
considered anomalous, while scenario (d) is normal.

Within this context, as it can be seen in Figure 2, the proposed methodology yields
high anomaly scores for the scenarios presenting the person’s fall ((b) and (c)) and getting
up (d), whereas a low anomaly score for the normal event (person walking) in scenario
(a). Besides, the model from Sultani’s paper gives a moderate score for scenario (b) and
a low anomaly score for all remaining scenarios (a,c,d), which supposes a false negative.
Thus, comparing the anomaly scores, the values assigned to scenario (b) by the proposed
model are significantly high (near the maximum), so it can be concluded as an anomalous
scenario. In the case of scenarios (c) and (d), the proposed model assigns a moderately
high score while the one proposed by Sultani assigns a lower value.

Subsequently, both models have been utilized to process a scenario from GBA in
near-view, showing the obtained results in Figure 5. This second example is related to
abandoning objects at standard smart spaces (like airports) that may be an important
anomaly in video surveillance. It also comprises 4 scenarios: initially, in scenario (a) there
is a bag on the ground. Scenario (b) depicts a person taking the bag from the ground, and
in scenario (c) another person leaves a new bag on the ground. Finally, in scenario (d)
someone looks back at the bag on the ground. According to ground truth, scenario (a) is
considered normal, while the remaining ones are anomalous.

In this case, both the models have yielded high anomaly scores to the scenarios (c)
and (d) and, hence, work similarly. Oppositely, just the proposal presented in this work
detects the action of taking a bag, thus behaving better than Sultani’s one.

Thus, both in the case of far and near views of the GBA dataset, the proposed method-
ology achieves better performance than the proposed by Sultani.

Finally, they are graphically shown the results in two samples from the UCF-Crime
dataset to compare again in them the results given by both methods.

The first test is performed in an arrest situation, as shown in Figure 6. In this example,
scenario (a) shows a road with a red car parked and people walking. Scenario (b) shows a
motorbike being hit by another car. Scenario (c) shows the police trying to get the driver
out of the hitting car, and scenario (d) displays the moment in which this driver is finally
caught by the police. According to the ground truth, scenario (a) is a normal event while
scenarios (b,c,d) are anomalous.

Comparing the results given by the proposed model with those generated by Sultani’s
one in this example, our model yields higher anomaly scores for all anomalous scenarios,
hence concluding that it performs better. Besides, both models detect the normal scenario
in the same manner.

The second sample from UCF-Crime, in Figure 7, is an explosion. In this example,
scenario (a) depicts a normal situation. Scenario (b) shows the explosion moment, and
scenarios (c) and (d) present firemen trying to put off the fire. In the ground truth, scenario
(a) is labeled as normal while scenarios (b,c,d) are labeled as anomalous.

In this comparison, our proposed method yields higher anomalous scores for scenarios
(b) and (c) when compared to those provided by Sultani’s model. In the case of scenario
(d), both models perform similarly. Thus, this example also projects the outstanding
performance of the proposed model.
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Figure 5. Qualitative visual results and comparison in scenes from GBA.
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Figure 6. Qualitative visual results and comparison in scenes from UCF-Crime.
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Figure 7. Qualitative visual results and comparison in scenes from UCF-Crime.
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5. Conclusions and Future Works

Anomaly detection is explored in videos captured from surveillance cameras in the
wild in real daily living scenarios. In the proposal, scene features are generated through a
temporal convolutional 3D network (T-C3D). This extractor is pre-trained with the large-
scale Kinetic dataset. The resulting features are input into a multiple instance learning
(MIL) classifier, thus building a normality-anomaly model with an also new proposed
ranking loss function, that aids in reducing the classification miss rate greatly.

The proposed approach achieves an AUC of 80.36%, outperforming all previous works
of the related state-of-the-art and more precisely it achieves 1%, 3%, and 2% higher in
precision, recall and f1-score for anomaly detection when comparing with the baseline
model [28]. It is found to be more sensitive in the detection of anomalous videos, both
within the UCF-Crime dataset, and the standard indoor realistic scenario of GBA.

Recognition of different anomalous activities in the real world is complicated. Since
our proposed method does not rely upon any specific kind of normal and abnormal activity
so it can use in various application scenarios such as streets, airports, banks, shopping
malls, school or college campuses, etc., helping human operators to detect anomalous or
dangerous situations.

However, the proposed approach faces challenges in handling videos and frames
with fast motions, high density of people groups, low resolution, and poor illumination.
The efficiency and robustness of the anomaly detection model in handling challenging
situations can be improved in future works by taking motion information also into the
account. In this context, a two-channel approach exploiting both RGB and optical flow
information can be adopted, as in some proposals from the scientific community.

An important work-in-progress improvement is to modify the proposal to be able
to run in test it in real-time, in order to obtain a stand-alone surveillance product. In
fact, a real-time application for anomaly detection in the video-surveillance context needs
high-speed detection in order to respond quickly and efficiently to crime and anomalous
incidents. Currently, with our proposed model, we can detect normal and abnormal
activity with a speed over 20 fps. We strongly believe that in our future work (using a
two-channel approach), our model might be able to detect anomalies in real-time. For
the pursuit demonstrator, the model should be tailored to detect anomalies within a time
window of few seconds, tackling the problem as a time-labeling task. A reliability analysis
of the proposed architecture results with training-testing ratios within a new dataset like
80%–20%, 60%–40% and 50%–50% is also under process, in order to obtain cost-efficient
conclusions of the proposal. Some approaches towards this last approach are a near-future
work of the one here presented.
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