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Abstract: The time delay of seekers has grown to be a serious issue for tactical missile guidance with
the development of flight vehicle technologies. To address the problem, a measurement compensation
system for the seeker, with lags and delays based on predictive active disturbance rejection control, is
proposed. In addition, to eliminate the effects of target maneuvers to the tactical missile guidance, an
adaptive finite-time convergent sliding mode guidance law, based on super-twisting algorithm, is
proposed in three-dimensional missile-target engagement kinematics. Specifically, the compensation
system consists of a predictive tracking structure and an active disturbance rejection control system,
which could follow a virtual measurement without lags and delays. The compensation system
has advantages in disturbance rejection and model inaccuracy addressing, compared with existing
compensation methods for seeker measurement. As for the sliding mode guidance law design, the
proposed approach is based on an improved super-twisting algorithm with fast convergent adaptive
gains, which has advantages in addressing unknown but bounded target maneuvers and avoiding
chattering of the classical sliding mode control. As a result, the measurement compensation system
and the adaptive sliding mode guidance law is verified robust and effective under the proposed
constraints by the simulation examples.

Keywords: measurement compensation; time-delay system; predictive active disturbance rejection
control; guidance law; sliding mode control; adaptive super-twisting

1. Introduction

For tactical missiles, seeker (or detector) measurement and precision guidance are two
key technologies, which would influence homing performance significantly. In practice,
due to the seeker and filter dynamics, the complex information processing method and the
target detection algorithm, significant seeker lags and delays always exist in the missile
system. Consequently, the lags and delays may lead to the degradation of the guidance
precision or even missing targets, as studied in [1].

This problem motivates researchers to develop data compensation methods for the
time-delay seeker. The general goal of these methods is to estimate the ideal measurement
utilizing the undesirable output. Some researchers assumed the seeker dynamics model
as a first-order lag system [2–5], and achieved adequate outcomes for many purposes.
However, in many real situations, there exists both dynamics lags and pure time delays in
the seeker system [6,7]. In the literatures considering this problem, the compensation or
estimation approaches can be broadly divided into two directions:

1. Approaches based on a Kalman filter [8–12];
2. Approaches based on a predictor observer [13].

The former type of approach aims to obtain the estimation of time delays by fusing
the system state variable and the measurement variable. Reference [8] developed a Kalman
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filter insensitive to modeling errors to compensate one-sample delay in arrival of line-of-
sight angle measurements. Additionally, [9,10], also based on Kalman filters, proposed
feedback structures to model and estimate the delayed and lost measurements in the
guidance systems, employing command to line-of-sight strategy. In [11], a seeker time-
delay model and a filter for obtaining the look angle rate in the feedback signal loop,
based on the concept of the model matching technique, were introduced. Similarly, [12]
suggested a novel Kalman filter dynamic for time-delayed and noisy measurements of
optical sensors, and analyzed the robustness of the delayed pointing error measurements.
In general, these approaches build simple feedback loops and utilize filters to estimate the
delayed state variables. However, these methods require an accurate delayed seeker model
or target engagement model, which are always inaccurate in practice. Consequently, these
approaches might have poor effectiveness and robustness under the uncertain situations.

For the second strategy, in [13], a classical predictor observer was introduced, which
had considerable engineering significance for linear time-delayed seeker systems. The
proposed predictor observer consists of two components: a classical predictor feedback
and a Luenberger observer. Though the proposed observer can also be implemented
as a Kalman filter result from the identical structure, this approach was the first step in
studying the application of predictor feedback to a time-delay missile guidance system.
However, there is also much room for improvement. The predictor observer still has a
strong requirement for accurate system models, including exact seeker delays. Additionally,
the structure of the predictor leads to a conflict between increasing tracking speed and
improving disturbances rejection.

In the engineering domain, there are other advanced approaches addressing the time-
delay problem. In [14,15], cascade observers were employed for output-feedback control
under parametric uncertainties, disturbances, and arbitrary sensor delays. On the basis of
a predictor and sliding mode control, [16] proposed a sliding mode predictive control for
linear uncertain systems with time delays. Reference [17] utilized disturbance observers to
design a prediction-based control for multi-area interconnected power systems with input
time delays. In addition, many time-delay compensation control strategies implementing
active disturbance rejection control (ADRC) have been studied [18–23]. References [19,20]
proposed modified ADRC structures by adding a time-delay loop and reconstructing a
Smith predictor, respectively. Combined with a Smith predictor, [21] proposed a fast self-
learning ADRC algorithm, while [22] transferred the system into a two-degree-freedom
feedback control structure and used an internal model control for the delayed processes.
Moreover, [23] developed a novel higher-order ADRC method with a selectable response
smoothing degree based on integrator-plus-dead-time models, which give better results in
time-delayed compensation than simpler solutions [19,20]. Overall, the predictive ADRC
method has adequate performances and properties in addressing time-delay system and
rejecting disturbances, and it shows strong robustness under uncertain system modelling.
However, this approach has not been applied in the problem of tactical missile guidance
with time-delay seeker.

As for the development of guidance laws, sliding mode control (SMC) theory has been
regarded as a powerful tool to design guidance laws with constraints. By constructing
the sliding manifold with the first-order states (LOS angle) and second-order states (LOS
angular rate), SMC method can reach global stabilization, where the sliding mode surface
converges to zero [24,25]. In [26], a nonsingular terminal sliding mode guidance law was
implemented, which considered the impact angle constraint. Reference [27] proposed an
adaptive guidance law for obtaining a specified impact angle, and applied into a hypersonic
vehicle. Adding a second-order sliding mode observer, [28] proposed a robust guidance
law with autopilot lag consideration. Reference [29] presented an integral sliding mode
guidance law which could resolve the steady-state error problem of the traditional SMC. An
optimization design with the neural network was designed to improve the fuzzy variable
structure of sliding mode in [30]. However, the discontinuity of sliding mode controllers
may cause an undesirable chattering of the system with fast actuators. Furthermore,
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the SMC guidance laws require certain target maneuvers, which are always unavailable
in practice.

Thus, the adaptive super-twisting algorithm (STA) [31] controller became popular
due to its excellent property of eliminating chattering and disturbances. The main goal of
adaptive controller design is to ensure a dynamical adaption of the control gains in order
to be as small as possible while still sufficient to counteract the disturbances and ensure a
sliding mode [32–34]. In [35], an adaptive STA guidance law which could converge in finite
time was designed based on the increasing STA gains, as proposed in [32]. There is a distinct
disadvantage in that the gain will not decrease; as a consequence, the controller will not
follow the disturbance when it is decreasing. To address this problem, reference [36] utilized
an equivalent control strategy, as proposed in [33], and designed a STA-like guidance law
with actuator faults constraint. Considering the target maneuvering as system disturbance,
the guidance laws based on STA control have a smooth output without obtaining target
maneuvering. However, due to the linear error form between the adaptive gain and the
disturbance [33,36], the convergence speed of the error is slow and results in slow, even
false, adaptive gains.

Inspired by above works, this study proposes a measurement compensation method
based on predictive ADRC for time-delay seeker and a three-dimensional adaptive guid-
ance law based on SMC and adaptive STA control. The main contributions of this paper
can be concluded as follows:

1. A predictive ADRC method is first introduced into the tactical missile system to
compensate the seeker lags and delays, which can achieve satisfied results under the
approximate delay assumption and noisy measurement;

2. In order to design the sliding mode guidance law, a modified adaptive STA controller
is applied to the tactical system to obtain adaptive gains with a faster convergence
error form, and the stability of the control system is also analyzed.

The rest of the paper is organized as follows: Section 2 states the missile-target en-
gagement kinematics and preliminaries; Section 3 builds a time-delay seeker measurement
compensation system based on predictive ADRC; Section 4 designs a sliding mode guid-
ance law based on the compensation measurement and adaptive STA control; Section 5
discusses the effectiveness of the proposed methods, utilizing several simulation examples.

2. Problem Statement

In this section, kinematics model of missile-target guidance system and first-order
seeker lag during the engagement phase are presented for the later guidance design
law design. Moreover, some preliminaries are also considered for further application to
facilitate the design.

2.1. Missile-Target Engagement Kinematics

As illustrated in Figure 1, the three-dimensional pursuit geometry relationship be-
tween missile and target in inertial coordinate system (X, Y, Z). With two-times rotation of
the inertial coordinate, the line-of-sight (LOS) coordinate system (r, θ, φ) could be obtained,
where r, θ and φ are the relative distance between the point masses of missile and target,
the azimuth, and elevation angles of the LOS, respectively. The process of the rotation
could be formulated as  er

eθ

eφ

 = L(φ, θ)

 X
Y
Z

 (1)

where
[

er eθ eφ

]T is the component of the unit vectors of the LOS coordinate system,
and L(φ, θ) is the two-times rotation matrix, which is given by

L(φ, θ) =

 cos θ cos φ cos φ sin θ sin φ
− sin θ cos θ 0

− sin φ cos θ − sin θ sin φ cos φ

 (2)
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The relative velocity in LOS coordinate system V satisfies the following differential form

dV
dt

=
δV
δt

+ ω× V = aT − aM (3)

where V =
[

.
r r

.
θ cos φ r

.
φ
]T

; dV/dt and δV/δt represent the absolute derivative of V
in inertial coordinate system, and the relative derivative of V in LOS coordinate system,
respectively; aT and aM represent the accelerations of the target and missile, respectively;
and ω represents the relative rotation angular velocity of LOS coordinate system relative to
inertial coordinate, which is given by

ω = L(φ, θ)

 0
0
.
θ

+

 0
−

.
φ

0

 =


.
θ sin φ

−
.
φ

.
θ cos φ

 (4)

Substituting Equations (2) and (4) into the Equation (3), the three-dimension missile-
target engagement kinematic could be described as

..
r =

.
θ

2
cos2 φr +

.
φ

2
r + aTr − aMr

..
θ = 2

.
φ

.
θ tan φ− 2

.
r

.
θ

r + aTθ
r cos φ −

aMθ
r cos φ

..
φ = −

.
θ

2
sin φ cos φ− 2

.
r

.
φ

r +
aTφ

r −
aMφ

r

(5)

Remark 1. From Equation (5), it can be observed that r = 0 and φ = ±π/2 are singular points.
However, due to the physical shapes of the missile and target in real practice, the relative distance
converges in a neighborhood of zero, which means r = 0 does not occur throughout the detection
and guidance process. In addition, regular points φ = ±π/2 have been proven unstable in [26].
Hence, the control system just crosses these points without stay.

During the design of guidance law, desired LOS terminal angles θd and φd are always
considered to be the constraint. Denoting x1 =

[
x1θ x1φ

]T
=
[

θ − θd φ− φd
]T

and x2 =
.
x1 =

[
x2θ x2φ

]T
=
[ .

θ
.
φ
]T

as the control variables, Equation (5) can be
rewritten as .

x1 = x2.
x2 = F(x) + Bu + ∆

(6)

where

F =

[
2x2θ x2φ tan φ− 2

.
rx2θ
r

−x2
2θ sin φ cos φ− 2

.
rx2φ

r

]
, B =

[
− 1

r cos φ 0
0 − 1

r

]
u = aM =

[
aMθ aMφ

]T , ∆ =
[

∆1 ∆2
]
=
[

aTθ
r cos φ

aTφ

r

]T
(7)
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2.2. Preliminaries

Notation 1. For any given vector x =
[

x1 x2 · · · xn
]T , denote its absolute value as

|x| =
[
|x1| |x2| · · · |xn|

]T , its time derivative as
.
x =

[ .
x1

.
x2 · · · .

xn
]T , its sign

function as sign(x) =
[
sign( x1) sign(x2) · · · sign(xn)

]T , its second power as x2 =[
x2

1 x2
2 · · · x2

n
]T , and its 2-norm as ‖x‖ =

√
xTx. For any positive definite matrix P, denote

λmin(P) and λmax(P) to represent the minimum and maximum eigenvalues of P, respectively, and
satisfying following inequation: λmin(P)‖x‖2 ≤ xTPx ≤ λmax(P)‖x‖2. In addition, denote
operation symbol “◦” as the Hadamard product symbol, denote operation symbol “⊗” as the
Kronecker product symbol.

Assumption 1. Assume the target accelerations aTθ and aTφ are unknown but bounded, continu-
ous, and differentiable. Additionally, ∆ is unknown but bounded, continuous, and differentiable

and
.
∆ =

[ .
∆1

.
∆2

]T
is unknown but bounded and continuous. Assume the absolute values of ∆

and
.
∆ satisfy following inequation

|∆i| ≤ ∆max,
∣∣∣ .
∆i

∣∣∣ ≤ .
∆max, i = 1, 2 (8)

where ∆max and
.
∆max are positive constants.

Assumption 2. The seeker time delay τ is an approximate known positive constant.

Lemma 1. For a first-order nonlinear system
.
x = f (x, t), x ∈ Rn. Assume there exists continuous

and positive definite function V(x) satisfies the following inequality [37]

.
V(x) + λ1V(x) + λ2Vλ3(x) ≤ 0 (9)

where λ1, λ2 > 0, and λ3 ∈ (0, 1) are constants. Then, there exists a region U0 ∈ Rn such that
any V(x) starting from this region can reach V(x) ≡ 0 in a finite time Tr, which is formulated as

Tr ≤
1

λ1(1− λ3)
ln
(

1 +
λ1

λ2
V1−λ3(x0)

)
(10)

where V(x0) is the initial value of V(x).

3. Measurement Compensation System for Time-Delay Seeker Based on Predictive ADRC

In this section, a seeker measurement model with lags and delays is formulated.
Following this, based on predictive ADRC theory, a measurement compensation system is
reconstructed, and the calculation process is given.

3.1. Modelling for Time-Delay Seeker Considering Lag Dynamics

In the process of homing missile guidance, the guidance loop needs to obtain the real-
time LOS angles and LOS angular rates. Denoting θg and φg are the measured azimuth and
elevation angles of the seeker, respectively. Then, considering first-order seeker dynamics
and time delay, θg and φg can be formulated as

.
θg = − 1

Ts
θg +

1
Ts

θ(t− τ)
.
φg = − 1

Ts
φg +

1
Ts

φ(t− τ)
(11)

where Ts is the time scale of the seeker dynamics and τ is the pure time delay of the seeker,
which is an unknown but positive constant. Based on Equation (11), Figure 2a,b show the
trend of LOS angles and LOS angular rates measurement, respectively, in respect to the
flight time of missiles under different pure time delays.
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For Equation (11), denoting x3 =
[

x31 x32
]T

=
[

θg φg
]T , y3 =

[
y31 y32

]T
=

x3, and u3 =
[

u31 u32
]T

=
[

θ(t) φ(t)
]T , rewrite it as

.
x3 = − 1

Ts
x3 +

1
Ts

u3(t− τ)

y3 = x3
(12)

From Equation (12), one can observe that the input variable u3 is the LOS angle
without time delay and dynamics lag, which is ideal for the missile guidance system. To
estimate u3 and reconstruct the seeker measurements, the following analysis is based on
S-domain for convenience. Denoting s as the complex variable, the S-domain transfer
function of system (12) can be formulated as

y3
u3

=
1

Ts + 1
e−τs (13)

Introduce a virtual output variable
¯
y3 which is given by

¯
y3 =

1
Ts + 1

u3 (14)

It is obvious that
¯
y3 has no time delay, implying that if we could track its value we

could eliminate the effects of time delay. Inspired by [18], this paper proposes a novel
measurement reconstruction system based on tracking differentiator and active disturbance

rejection control theory to track
¯
y3 and reject disturbance.

3.2. Measurement Compensation System Design

Figure 3 shows the entire measurement reconstruction structure for the seeker. The
reconstruction process can be divided into two parts:

1. Predictive tracking for virtual measurement
¯
y3
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This part is formed from an optimal tracking differentiator (TD) and a state feedback
(SF) controller. The discrete TD equation can be formulated as

fy(k) = f han
(
y′3(k)− y3(k), y′′3 (k), p0, h0

)
y′3(k + 1) = y′3(k) + hy′′3 (k)
y′′3 (k + 1) = y′′3 (k) + hfy(k)

(15)

where k and k + 1 are previous time mark and current time mark, respectively; h is sample
time; p0 and h0 are designed positive constants, higher p0 leads to higher tracking speed,
and higher h0 leads to better filtering effect to the system; y′3 =

[
y′31 y′32

]T and y′′3 =[
y′′31 y′′32

]T are the output of TD, which tracks
¯
y3 and

.
¯
y3, respectively; and function

f han
(
y′3 − y3, y′′3 , p0, h0

)
is given by

g = p0h0
g0 = h0g

mi = (y′3i − y3i) + h0y′′3i
a0i =

√
g2 + 8p0|mi|

ai =

{
y′′3i + (a0i − g)sign(mi)/2, |mi| > g0

y′′3i + mi/h0 |mi| ≤ g0

f hani =

{
−p0sign(ai), |ai| > g
−p0ai/g |ai| ≤ g

(i = 1, 2) (16)

It can be concluded that TD in the form of Equation (15) has the property to filter noises
due to its first-order differentiation loop. Then the SF controller in a classical predictor
observer can be described as

¯
y3(k + 1) = y′3(k) + τy′′3 (k)

However, τ is an approximate known constant based on Assumption 2. Thus, rewrite
above equation as

¯
y3(k + 1) = y′3(k) + ατy′′3 (k) (17)

where 0 < α < 1 and τ > 0 are designed constants.

2. ADRC for virtual measurement

In the process of predictive tracking for virtual measurement
¯
y3, approximate delay

parameters are used, which add uncertainty to the system. In addition, noises and lags

occur in the seeker detection process, and disturbances also exist when
¯
y3 has dynamic

changes. To compensate lag, and reject the uncertainty and disturbances including noises,
an ADRC system is introduced, which consists of three subsystems: TD, extended state
observer (ESO), and state error feedback (SEF).

• Transient process based on TD



Sensors 2021, 21, 3977 8 of 24

The TD is utilized to track u3 and
.
u3, which is given by

fu(k) = f han
(
u′3(k)− u3(k), u′′3 (k), p0, h0

)
u′3(k + 1) = u′3(k) + hu′′3 (k)
u′′3 (k + 1) = u′′3 (k) + hfu(k)

(18)

where u′3 =
[

u′31 u′32
]T and u′′3 =

[
u′′31 u′′32

]T are the output of TD, which tracks u3
and

.
u3, respectively; function fhan is given in Equation (16).

• State and disturbance estimation based on ESO

The ESO is used to eliminate disturbances and estimate the real value of
¯
y3, which is

formulated as 
e1(k) = z′3(k)−

¯
y3(k)

z′3(k + 1) = z′3(k) + h
(
z′′3 (k) + Rû3(k)

)
− β1 f al(e1(k))

z′′3 (k + 1) = z′′3 (k)− β2 f al(e1(k))
(19)

where input gain R is a positive constant; error gains β1 and β2 are positive constants; û3 =[
û31 û32

]T
=
[

θ̂ φ̂
]T is the observed quantity of u3; e1 =

[
e11 e12

]T is the error

between the estimated and real value of
¯
y3; z′3 =

[
z′32 z′32

]T and z′′3 =
[

z′′31 z′′32
]T are

the output values of the ESO, which represent the estimation of
¯
y3 and error, respectively;

and f al(e1i) is error function, which is given by

f al(e1i) =

{
|e1i|µsign(e1i) |e1i| > δ

e1i/δ1−µ |e1i| ≤ δ
(i = 1, 2) (20)

where 0 < µ ≤ 1 and δ > 0 are constants, which represent order and boundary of
e1, respectively.

Remark 2. The stabilization of ESO systems has been proven in [18], which clarified that when the
observer gains are selected appropriately, the errors of the ESO could converge to neighborhood of
zero in finite time.

• Input estimation based on SEF

The SEF can calculate the error between u′3 and z′3, which is given by{
e2 = u′3 − z′3
¯
u3 = β3e2

(21)

where
¯
u3 =

[
u31 u32

]T is the error feedback; β3 is positive constant. Thus, û3 can be
formulated as

û3 =

(
¯
u3 − z′′3

)
/R (22)

As a result, using Equations (15)–(22), the input estimation û3 can be calculated.
Meanwhile, the delayed measurement is compensated, and the LOS angle is reconstructed
during the process.

Remark 3. The reconstruction of LOS angular rate can be described by the difference of LOS angle,
which is given by

.̂
θ(k + 1) = θ̂(k+1)−θ̂(k)

h.̂
φ(k + 1) = φ̂(k+1)−φ̂(k)

h

(23)
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where
.̂
θ(k + 1) and

.̂
φ(k + 1) are the estimations of azimuth and elevation angular rates at current

time, respectively.

4. Adaptive Guidance Law Design Considering Terminal Angle Constraint

In this section, a fast convergent nonsingular sliding manifold variable is introduced.
An adaptive sliding mode guidance law, regardless of target maneuvers and based on STA,
is proposed, and the stabilization of the guidance law is studied based on Lyapunov theory.

4.1. Design of Adaptive Sliding Mode Guidance Law Based on STA

Considering both convergence speed and nonsingularity, the following sliding mani-
fold for system (6) is proposed, which is given by

σ = x2 + k1x1 + k2w(x1) (24)

where σ =
[

σ1 σ2
]T is the sliding manifold vector; k1 and k2 are positive constants; and

term w(x1) =
[

w(x11) w(x12)
]T is formulated as

w(x1i) =

{
|x1i|k3 sign(x1i), σi = 0 or σi 6= 0, |x1i| ≥ ξ

k4x1i + k5x2
1isign(x1i), σi 6= 0, |x1i| < ξ

(i = 1, 2) (25)

where σi = x2i + k1x1i + k2|x1i|k3 sign(x1i); constants 0 < k3 < 1, ξ > 0; k4 and k5 are
designed to keep w(x1i) continuous, which satisfies

k4 = (2− k3)v
k3−1, k5 = (2− k3)v

k3−2 (26)

Then the time derivative of σ can be formulated as

.
σ =

.
x2 + k1x2 + k2

.
w(x1) (27)

where term
.

w(x1) is given by

.
w(x1i) =

{
k3xk3−1

1i x2i, σi = 0 or σi 6= 0, |x1i| ≥ ξ

k4x2i + 2k5x1ix2i, σi 6= 0, |x1i| < ξ
(i = 1, 2) (28)

According to Equations (15)–(23), denote

x̂1 =
[

x̂1θ x̂1φ

]T
=
[

θ̂ − θd φ̂− φd
]T , x̂2 =

[
x̂2θ x̂2φ

]T
=
[ .̂

θ
.̂
φ

]T
(29)

Then Substituting Equation (6) into Equation (27) and replacing φ, x1 and x2 with φ̂,
x̂1 and x̂2 yields

.
σ =

¯
F(x̂) + BaM + k1x̂2 + k2

.
w(x̂1) + ∆ (30)

where
¯
F(x̂) =

[
2x̂2θ x̂2φ tan φ̂− 2

.
rx̂2θ
r

−x̂2
2θ sin φ̂ cos φ̂− 2

.
rx̂2φ

r

]
(31)

In order to eliminate the chattering of the sliding mode control and ensure the effec-
tiveness of the guidance law facing maneuvering target. The adaptive STA control method
is utilized in this paper. On the bases of adaptive super-twisting control theory and the



Sensors 2021, 21, 3977 10 of 24

nonlinear sliding manifold, regarding ∆ as the system disturbance, a target-independent
guidance law with adaptive gains based on STA can be formulated as

aM = −B−1(
¯
F(x̂) + k1x̂2 + k2

.
w(x̂1)− η(t))

η(t) = −a1(t) ◦ σ

‖σ‖1/2 − a2(t) ◦ σ + y(t)
.
y(t) = −a3(t) ◦ σ

‖σ‖ − a4(t) ◦ σ

(32)

where
a1(t) = b1

√
L(t),

a3(t) = b3L(t),
a2(t) = b2L(t)
a4(t) = b4L2(t)

(33)

where b1, b2, b3, and b4 are positive constants. In reference [33], to compensate the objective

system uncertainty, an equivalent control variable
¯
ueq(t) and its error variable δ(t) are

introduced, which satisfies
.
¯
ueq(t) = 1

υ

(
a3(t) ◦ σ

‖σ‖ −
¯
ueq(t)

)
δ(t) = L(t)− 1

vb3

∣∣∣∣¯ueq(t)
∣∣∣∣− ε

(34)

where v is a constant, satisfies 0 < v < 1; υ is a positive constant; and ε =
[

ε1 ε2
]T is

small and positive, which satisfies (1/vb3 − 1)
∣∣∣∣¯ueq(t)

∣∣∣∣+ ε/2 > 0.

In Equation (34), the equivalent control variable
¯
ueq(t) is based on a first-order low

pass filter, to filter the discontinuous injection signal σ, and the error variable δ(t) is
designed to satisfy δ(t)→ 0 , as t→ 0 . Hence, to improve the filtering performance and

the convergent speed of the error variable, a novel equivalent control variable
¯
ueq(t) and

its error variable δ(t) are formulated as

¯
δ(t) = L(t)− 1

v

∣∣∣∣¯ueq(t)
∣∣∣∣− ε

δ(t) =
∣∣∣∣¯δ(t)∣∣∣∣κsign

(¯
δ(t)

)
..
¯
ueq(t) = 1

υ1

(
a3(t) ◦ σ

‖σ‖ + a4(t) ◦ σ − υ2

.
¯
ueq(t)−

¯
ueq(t)

) (35)

where υ1 and υ2 are positive constants, and 0 < κ < 1. Compared with Equation (34), the
error variable δ(t) in Equation (35) has a fast convergence form which can drive the value

of the adaptive gain to counteract the equivalent control variable of disturbance
¯
ueq(t) in

faster speed.
Then, the adaptive time-varying gain L(t) is given by

L(t) = l0 + l(t)
.
l(t) = −ρ(t) ◦ δ(t)

ρ(t) = q0 + q(t)
.
q(t) = ς|δ(t)|

(36)

where l0 =
[

l01 l02
]T is the initial value of l(t); q0 =

[
q01 q02

]T is the initial value
of q(t); and ς is a positive constant.

Proposition 1. Following Equations (34)–(36), the STA adaptive gain L(t) satisfies L(t) ≥
∣∣∣ .
d(t)

∣∣∣
in finite time.
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Proof of Proposition 1. See Appendix B. �

4.2. Stability Analysis of The Proposed Guidance Law

The main conclusion of this part is summarized as following theorem.

Theorem 1. Consider the three-dimension missile-target engagement system with terminal angle
constraint (Equation (6)), the proposed adaptive STA guidance law (Equation (32)) can drive the
sliding surface converge to a small neighborhood around zero in finite time Treach, if the adaptive
gain factors are governed as

9b2
1b2

2 + 8b2
2b3 − 4b3b4 < 0 (37)

and Treach is given by

Tr ≤
2
ζ1

ln
(

1 +
ζ1

ζ2
V1/2(x0)

)
(38)

where ζ1 and ζ2 are denoted in Equation (58).

Proof of Theorem 1. Substituting Equation (32) into Equation (30) and replacing y(t) by
¯
y(t) yields

.
σ =

[ .
σ1

.
σ2
]T

= −a1(t) ◦ σ

‖σ‖1/2 − a2(t) ◦ σ +
¯
y(t)

.
¯
y(t) =

[ .
y1(t)

.
y2(t)

]T
= −a3(t) ◦ σ

‖σ‖ − a4(t) ◦ σ +
.
∆

(39)

In order to simplify the Hadamard product operations, consider the adaptive gain
L(t) as a scalar quantity form L(t), and Equation (39) can be rewritten as

.
σ = −a1(t) σ

‖σ‖1/2 − a2(t)σ +
¯
y(t)

.
¯
y(t) = −a3(t) σ

‖σ‖ − a4(t)σ +
.
∆

(40)

Introduce an auxiliary vector z, which is formulated as

z=

 z1
z2
z3

 =


√

Lσ/‖σ‖1/2

Lσ
¯
y

 (41)

Then, the derivative of z is given by

.
z=

 .
z1.
z2.
z3

 =


.
Lσ

2(L‖σ‖)1/2 +
(

L
‖σ‖

)1/2
(

I2×2 − σσT

2‖σ‖2

)
.
σ

.
Lσ + L

.
σ

− γ(t)
‖σ‖σ +

.
∆

 (42)

Consider following Lyapunov function candidate

V =
1
2

zTPz (43)

where

P =

 (
4b3 + b2

1
)
I2×2 b1b2I2×2 −b1I2×2

b1b2I2×2 (2b4 + b2
2)I2×2 −b2I2×2

−b1I2×2 −b2I2×2 2I2×2

 (44)
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From Equation (43), one can conclude that

λmin(P)‖z‖2 ≤ zTPz ≤ λmax(P)‖z‖2 (45)

Taking the derivative of V into time yields

.
V =

L
4‖z1‖

zT
(

AT
1 P + PA1

)
z− LzT

2

(
AT

2 P + PA2

)
z + zTPA3 (46)

where

A1 =

 b1I2×2 b2I2×2 −2I2×2
02×2 02×2 02×2

2b3I2×2 02×2 02×2

 A2 =

 02×2 02×2 02×2
b1I2×2 b2I2×2 −I2×2
02×2 b402×2 02×2


A3 = A31 + A32 + A33 =

.
L

2L

 z1
2z2
02

+

 02
02.
∆

+

 −Lz1zT
1 z3/

(
2‖z1‖3

)
02
02


Denote Ṽ = zTPA3 and Ṽi = zTPA3i, i = 1, 2, 3. Thus, Ṽ can be written as

Ṽ = Ṽ1 + Ṽ2 + Ṽ3 (47)

where

Ṽ1 =

.
L

2L

[(
4b3 + b2

1

)
‖z1‖2 + 3b1b2zT

1 z2 − b1zT
1 z3 +2

(
2b4 + b2

2

)
‖z2‖2 − 2b2zT

2 z3

]
(48)

Ṽ2 =
.
∆

T
[2z3 − b1z1 − b2z2] (49)

Ṽ3 = − L
2‖z1‖

[(
4b3 + b2

1

)
zT

1 z3 +
b1b2zT

2 z1zT
1 z3

‖z1‖2 −
b1zT

3 z1zT
1 z3

‖z1‖2

]
(50)

It can be concluded that Equations (48)–(50) satisfy

Ṽ1 ≤
.
L

2L
zTΩz (51)

Ṽ2 ≤
√

4 + b2
1 + b2

2‖
.
∆‖‖z‖ (52)

Ṽ3 ≤ −
L

2‖z1‖

[(
4b3 + b2

1

)
zT

1 z3 − b1‖z3‖2
]
− Lb1b2

2
zT

1 z3 (53)

where
Ω1 = diag(Ω10, Ω20, Ω30)⊗ I2×2
Ω10 = 4b3 + b2

1 + 1.5b1b2 + 0.5b1
Ω20 = 4b4 + 2b2

2 + 1.5b1b2 + b2
Ω30 = 0.5b1 + b2

Then, the derivative of the Lyapunov function satisfy the following inequality

.
V ≤ − L

2‖z1‖
zTΩ2z− LzTΩ3z + Ṽ1 + Ṽ2 (54)
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where

Ω2 =

 b1(b2
1 + 2b3) 0 −b2

1
0 b1(5b2

2 + 2b4) −3b1b2
−b2

1 −3b1b2 b1

⊗ I2×2

Ω3 =

 b2(2b2
1 + b3) 0 0
0 b2(b2

2 + b4) −b2
2

0 −b2
2 b2

⊗ I2×2

It can be concluded that Ω2 and Ω3 are positive definite matrices under condition (37).
Thus, Ωi, i = 1, 2, 3 satisfy

λmin(Ωi)‖z‖2 ≤ zTΩiz ≤ λmax(Ωi)‖z‖2, i = 1, 2, 3 (55)

Considering (45) and (55), the following condition holds

λmin(Ωi)V
λmax(P)

≤ zTΩiz ≤
λmax(Ωi)

λmin(P)
, i = 1, 2, 3 (56)

Substituting (51), (52) and (56) into (54) yields

.
V ≤

[ .
Lλmax(Ω1)
Lλmin(P)

− 2Lλmin(Ω3)
λmax(P)

]
V − Lλmin(Ω2)

‖z1‖λmax(P)
V +

√
(4 + b2

1 + b2
2)‖z‖

.
∆max

≤ −
(

Lγ2 −
.
L
L γ1

)
V −

(
Lγ3 − γ4

.
∆max

)
V1/2

(57)

where

γ1 =
λmax(Ω1)

λmin(P)
, γ2 =

2λmin(Ω3)

λmax(P)
, γ3 =

λmin(Ω2)
√

λmin(P)√
2λmax(P)

, γ4 =

√
2(4 + b2

1 + b2
2)

λmin(P)

Letting
ζ1 = Lγ2 −

.
Lγ1/L, ζ2 = Lγ3 − γ4

.
∆max (58)

It can be found that ζ1 and ζ2 are positive in finite time under Proposition 1. And
based on Lemma 1, the proposed guidance law is stabilized in finite time. �

5. Simulation

In this section, several simulation situations are designed to study the effectiveness of
the proposed measurement compensation system and guidance law. First, the effective-
ness of the compensation system based on predictive ADRC is discussed; next, variable
desired terminal angles are taken in consideration to test the performance of the proposed
guidance law with the compensation system. Finally, compared with other guidance laws,
the property of the proposed guidance law with measurement compensation system is
demonstrated further. All the simulations are supported by MATLAB platform due to its
adequate libraries and powerful matrix calculation ability. Throughout the simulations, a
fourth-order Runge-Kutta solver with a fixed step size is used.

5.1. Simulation of The Predicrive ADRC Compensation System

A simulation example of missile-target engagement guidance is investigated to verify the
effectiveness of the proposed predictive ADRC compensation system (Equations (15)–(23)). In
addition, this example is simulated on the basis of the proposed guidance law (Equation (32)).

Since the capacity of actuator dynamics is limited in real practice, the maximum lateral
acceleration aM is limited as follows

aM =

{
aM,maxsign(aM) i f |aM| ≥ aM,max

aM i f |aM| < aM,max
(59)
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This paper selects aM,max = 300 m/s2 throughout the simulations.
To address the discontinuity problem of the sign function sign(x), a sigmoid function

is utilized to replace it during the simulation, which is formulated as

sigmoid(x) =
2

1 + e−x − 1 (60)

The simulation example is set up as follows: (1) the initial missile-target engagement
condition: r0 = 8000 m,

.
r0 = −800 m/s, θ0 = 15◦, φ0 = 45◦,

.
θ0 =

.
φ0 = 0◦/s, θd = 40◦

and φd = 60◦; (2) the target maneuver condition: aTθ = aTφ = −30 sin(0.4πt) m/s2, and
aTr = 0 m/s2; (3) the seeker parameters: Ts = 0.2 s, τ = 0.1 s, output noise is zero-mean
Gaussian white noise with power spectral density Sw = 0.0001 W/Hz, and its variance is
0.0001 ◦/s considering narrow band; (4) the parameters of measurement compensation
system are given in Table 1; (5) the parameters of sliding mode manifold and adaptive STA
are given in Table 2; and (6) the fixed step size of the fourth-order Runge-Kutta solver is
0.001 s.

Table 1. The parameters of measurement compensation system.

Parameter Value Parameter Value

p0 0.5 β1 0.21
h0 0.001 β2 2.23
α 0.4 β3 1.47
τ 0.5 µ 0.1
R 5 δ 0.1

Table 2. The parameters of sliding mode manifold and adaptive STA.

Parameter Value Parameter Value

ξ 0.2 b1 5
k1 0.5 b2 0.1
k2 0.1 b3 1.2
k3 2.5 b4 1

ε1, ε2 0.2 κ 0.5
ς 0.1 v 0.67
υ1 0.5 υ2 0.2

l01, l02 0.1 q01, q02 0.1

The simulation results are illustrated in Figure 4. Figure 4a,c show the LOS angle and
LOS angular rate estimations of predictive ADRC compensation system, respectively. The
estimation could track the true value calculated by the missile-target engagement dynamics
in the overall guidance process. The original value detected by the time-delay seeker is
also given as a comparison. Moreover, the errors between them are shown in Figure 4b,d,
which illustrates the good performance of the predictive ADRC compensation system
quantitively. The error ranges of LOS angles θ and φ are (−0.5◦ to −0.1◦) and (−0.2◦ to
−0.2◦), respectively, and that of LOS angular rates

.
θ and

.
φ are (−0.4 ◦/s to 0.2 ◦/s) and

(−0.1 ◦/s to −0.1 ◦/s), respectively.
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Figure 5 shows the Monte Carlo simulation result, where the single scatter point
represents the average value of the errors between estimation values and true values
during the entire flight time in one Monte Carlo run. Excluding a few large error scatters,
the range of the error mean value can be governed. The mean value error ranges of LOS
angles θ and φ are (−0.6◦ to 0◦) and (−0.3◦ to 0.1◦), respectively, and that of LOS angular
rates

.
θ and

.
φ are (−0.015 ◦/s to 0.006 ◦/s) and (−0.015 ◦/s to −0.004 ◦/s), respectively.

Those small errors demonstrate the strong property of robustness of the proposed predictive
ADRC compensation system.
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5.2. Simulation of Different Terminal Angle Constraints

In order to test the terminal angle constraint properties of the proposed guidance law
with the ADRC predictor observer, a simulation example of missile-target engagement
guidance is investigated. The missile is expected to hit the target in the desired terminal
angles: φd = 70◦, 60◦, 50◦, 30◦, and 20◦, when θd = 45◦; θd = 45◦, 30◦, 20◦, 0◦, and−15◦, when
φd = 15◦. Other initial conditions and system parameters are the same as in Section 5.1.

The simulation results are illustrated in Figures 6 and 7. Figures 6a and 7a show
the trajectories of missile target relative distances in the inertial coordinate system when
θd = 45◦ and φd = 15◦. We see that all the trajectories converge to zero, which implies that
the missile can catch up with the target in finite time without obtaining target acceleration
information. Figures 6b and 7b show the trend of LOS angle over flight time in the
two conditions. In this sample, the LOS angles θ and φ can reach the desired terminal
angle within 7 s and 10 s, respectively, and then maintain it. This phenomenon verifies
the terminal angle and seeker delay constraint properties of the proposed guidance law.
Moreover, the convergence time and flight time are subject to the difference between the
initial LOS angle and desired terminal angle. Larger gaps could lead to longer trajectories
and longer convergence time.

Sensors 2021, 21, x FOR PEER REVIEW 18 of 26 
 

 

  
(a) (b) 

Figure 6. The performance of the proposed guidance law with different desired terminal azimuth angles: (a) Relative 
distance trajectories; and (b) LOS angles. 

  
(a) (b) 

Figure 7. The performance of the proposed guidance law with different desired terminal elevation angles: (a) Relative 
distance trajectories; and (b) LOS angles. 

5.3. Compared with Other Guidance Laws 
The fixed-gain STA-based sliding mode control (STASMC) guidance law and fast 

convergent terminal sliding mode (TSM) guidance law are introduced for comparison. 
The fixed-gain STASMC guidance law is formulated as [35] 

1
1 2 2 1 1 21/ 2

3 4

= ( ) ( ) ( )

( )=

M k k w c c t

t c c

−
 
 − + + + − +
 
 

− −

σa B F x x x σ Φ
σ

σΦ σ
σ




 (61)

This paper selects the parameters of (62) as 1 1.6c = , 2 0.1c = , 3 0.4c = , and 4 0.1c = . 
The TSM guidance law is given by [28] 

Figure 6. The performance of the proposed guidance law with different desired terminal azimuth angles: (a) Relative
distance trajectories; and (b) LOS angles.



Sensors 2021, 21, 3977 17 of 24

Sensors 2021, 21, x FOR PEER REVIEW 18 of 26 
 

 

  
(a) (b) 

Figure 6. The performance of the proposed guidance law with different desired terminal azimuth angles: (a) Relative 
distance trajectories; and (b) LOS angles. 

  
(a) (b) 

Figure 7. The performance of the proposed guidance law with different desired terminal elevation angles: (a) Relative 
distance trajectories; and (b) LOS angles. 

5.3. Compared with Other Guidance Laws 
The fixed-gain STA-based sliding mode control (STASMC) guidance law and fast 

convergent terminal sliding mode (TSM) guidance law are introduced for comparison. 
The fixed-gain STASMC guidance law is formulated as [35] 

1
1 2 2 1 1 21/ 2

3 4

= ( ) ( ) ( )

( )=

M k k w c c t

t c c

−
 
 − + + + − +
 
 

− −

σa B F x x x σ Φ
σ

σΦ σ
σ




 (61)

This paper selects the parameters of (62) as 1 1.6c = , 2 0.1c = , 3 0.4c = , and 4 0.1c = . 
The TSM guidance law is given by [28] 

Figure 7. The performance of the proposed guidance law with different desired terminal elevation angles: (a) Relative
distance trajectories; and (b) LOS angles.

5.3. Compared with Other Guidance Laws

The fixed-gain STA-based sliding mode control (STASMC) guidance law and fast
convergent terminal sliding mode (TSM) guidance law are introduced for comparison. The
fixed-gain STASMC guidance law is formulated as [35]

aM = −B−1
(

¯
F(x) + k1x2 + k2

.
w(x1) + c1

σ

‖σ‖1/2 − c2σ + Φ(t)
)

.
Φ(t) = −c3

σ
‖σ‖ − c4σ

(61)

This paper selects the parameters of (62) as c1 = 1.6, c2 = 0.1, c3 = 0.4, and c4 = 0.1.
The TSM guidance law is given by [28]

aM = −B−1
(

¯
F(x)− BaT + k1x2 + k2

.
w(x1) + v1|σ|1−1/v2sign(σ)− v3

¯
Φ

)
.
¯
Φ(t) = B|σ|1−2/v2sign(σ)

(62)

This paper selects the parameters of (62) as v1 = 5, v2 = 0.8, and v3 = 1, and assumes
the target acceleration aT is known for ease.

To further verify the applicability and robustness of the proposed guidance law and
the proposed predictive ADRC compensation system, three kinds of scenarios with various
measurement and target maneuvers are taken into account:

1. The seeker measurement is ideal, which has no delays or noises. The target accelera-
tions in LOS coordinate is given by aTθ = aTφ = −30 sin(0.4πt) m/s2;

2. The seeker measurement is ideal, which has no delays or noises. The target accelera-
tions in LOS coordinate is given by aTθ = aTφ = −30 m/s2;

3. The seeker measurement has delays and noises, which are given by Ts = 0.2 s,
τ = 0.1 s, Sw = 0.0001 W/Hz. The target accelerations in LOS coordinate is given by
aTθ = aTφ = −30 sin(0.4πt) m/s2.

Besides the above, the initial conditions and parameters of these three scenarios are as
same as that in Section 5.1.

The comparison results of scenarios 1 and 2 are shown in Figures 8 and 9, respectively.
Figures 8a and 9a illustrate the relative distance trajectories, and all the three guidance laws
converge to zero. In Figures 8b and 9b, one can observe that the acceleration output of the
proposed guidance law is continuous and smooth. Contrarily, the accelerations of STASMC
and TSM chatter significantly. The LOS angle curves in Figures 8c and 9c and the LOS
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angular rate curves in Figures 8d and 9d depict the terminal angle constrained property of
the guidance laws. The LOS angles of these three conditions can reach the desired terminal
angle and the LOS angle rates can converge to zero. Figures 8e and 9e show the trend of
the adaptive STA gains of the proposed guidance law, which are bounded during flight
time. The sliding variables of the proposed scenarios reach zero at approximately 6 s and 5
s, respectively, as shown in Figures 8f and 9f.
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Moreover, other information including flight time, miss distance, settling time (±0.5◦),
and error of LOS angles is listed in Tables 3 and 4. Miss distance states the distance between
missile and target at the end. Settling time (±0.5◦) indicates the time that LOS angles reach
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the ±0.5◦ neighborhood of the desired terminal angles and then maintain it. Error of θ
and error of φ are errors between simulation terminal angles and desired terminal angles.
From Tables 3 and 4, one can conclude that the proposed guidance law has a superior
performance in miss distance, settling time (±0.5◦), and terminal LOS angle errors in these
two designed scenarios.

Table 3. Simulation results of scenario 1.

Guidance Law Flight Time Miss Distance Settling Time
of θ (±0.5◦)

Settling Time
of φ (±0.5◦) Error of θ Error of φ

Proposed 12.745 s 0.0218 m 5.923 s 6.733 s 0.0187◦ 0.0057◦

STASMC 12.756 s 0.3915 m 6.460 s 7.057 s 0.0532◦ 0.0369◦

TSM 12.204 s 0.1018 m 8.084 s 8.025 s 0.0635◦ 0.0617◦

Table 4. Simulation results of scenario 2.

Guidance Law Flight Time Miss Distance Settling Time
of θ (±0.5◦)

Settling Time
of φ (±0.5◦) Error of θ Error of φ

Proposed 12.567 s 0.0108 m 6.783 s 7.391 s 0.0350◦ 0.0450◦

STASMC 12.572 s 0.1043 m 6.908 s 7.488 s 0.0430◦ 0.0510◦

TSM 12.141 s 0.1009 m 8.692 s 9.032 s 0.0891◦ 0.0643◦

Unlike Figures 8 and 9, the comparison results of scenario 3 in Figure 10 take the
proposed compensation system in account as well. Figure 10a is the relative distance
trajectories of the proposed guidance law with the proposed compensation system and
the three guidance laws without measurement compensation structures. It is obvious
that the trajectories of those without compensation have distinct chattering, and are
longer than those proposed with a compensation system. The chattering also occurs
in the aspects of output accelerations, LOS angles, and LOS angular rates, as shown in
Figures 10b, 10c and 10d, respectively. The chattering phenomenon is caused by the addi-
tional seeker lag, measurement delay, and noise. Due to this reason, the LOS angle and
LOS angular rate curves of these three guidance laws do not converge. On the other hand,
due to the compensation property of the proposed compensation system for lags, delays,
and noises, the curves of the proposed guidance law with compensation system are smooth
and stable in Figure 10b–d.

Similarly, the information about flight time, miss distance, settling time (±0.5◦), and
LOS angle error is listed in Table 5. We can observe that the proposed guidance law with
compensation has the best performance in all aspects in this scenario. It should be noted
that the settling time and LOS angle error of the proposed guidance law, STASMC, and
TSM are not available due to their divergent LOS angles. Moreover, compared with the
property of the proposed of scenario 1 listed in Table 3, the proposed with compensation
maintains broadly stable flight times and miss distances, but have a slightly decreasing
performance in settling time and LOS angle error.

Table 5. Simulation results of scenario 3.

Guidance Law Flight Time Miss Distance Settling Timeof
θ (±0.5◦)

Settling Timeof
φ (±0.5◦) Error of θ Error of φ

Proposed with compensation 12.857 s 0.0163 m 7.687 s 6.825 s 0.1993◦ 0.0058◦

Proposed 15.024 s 0.3282 m None None None None
STASMC 15.194 s 2.2072 m None None None None

TSM 13.362 s 0.3880 m None None None None
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As a result, compared with STASMC and TSM, the proposed guidance law has no
output chattering, less terminal LOS angle settling time, and error. In addition, the system
which consists of the proposed guidance law and the proposed ADRC compensation
structure has excellent seeker lag, delay, and noise constraint property and robustness.

6. Conclusions

In order to address the lag and delay problems of the seeker measurement, this paper
presents a novel measurement compensation system for tactical missiles. Moreover, this
paper presents a novel adaptive guidance law regardless of target maneuvers which has
fast convergent gains. The simulation results demonstrate the strong disturbance rejection
and accuracy property of the proposed compensation system. Also, the simulations verify
the effectiveness and robustness of the proposed guidance law.

Specifically, the details of the proposed method can be summarized as follows:

1. The measurement compensation system has a predictive ADRC structure, which
consists of a predictive tracking loop and an ADRC loop. The predictive tracking
loop could follow a virtual measurement without lags and delays. The ADRC loop
ensures the tracking process stable under disturbances;
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2. The sliding mode guidance law is based on adaptive STA control. In order to speed the
convergence of the gain error, a fast convergent error form is proposed implementing
the equivalent control method to design adaptive gains. In addition, the control
system is proofed for finite time convergence.
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Appendix A

Table A1. The list of acronyms used in the paper.

Acronym Full Name

ADRC active disturbance rejection control
SMC sliding mode control
LOS Line-of-sight
STA super-twisting algorithm
TD tracking differentiator
SF state feedback

SEF state error feedback
ESO extended state observer

STASMC STA-based sliding mode control
TSM terminal sliding mode

Appendix B

Proof of Proposition 1. Letting ι(t) =
.
d(t), and satisfying ‖ι(t)‖ ≤ d1 and ‖ .

ι(t)‖ ≤ d2.
Defining an auxiliary variable as

.
¯
δ(t) =

.
l(t)− 1

v

∣∣∣∣∣
.
¯
ueq(t)

∣∣∣∣∣ (A1)

Taking the derivative of
¯
δ(t) to time yields

.
¯
δ(t) =

.
l(t)− 1

v

∣∣∣∣∣
.
¯
ueq(t)

∣∣∣∣∣ (A2)
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Then,
¯
δ(t) ◦

.
¯
δ(t) ≤

¯
δ(t) ◦

.
l(t) + d1

v

.
¯
δ(t)

= −q0 ◦
∣∣∣∣¯δ(t)∣∣∣∣− q ◦

∣∣∣∣¯δ(t)∣∣∣∣+ d1
v

.
¯
δ(t)

= −q0 ◦
∣∣∣∣¯δ(t)∣∣∣∣+ e(t) ◦

∣∣∣∣¯δ(t)∣∣∣∣
(A3)

Take following Lyapunov function

V =
1
2

¯
δ ◦

¯
δ +

1
2ς

e ◦ e (A4)

Thus, the derivative of V is formulated as

.
V =

¯
δ ◦

.
¯
δ + 1

ς e ◦ .
e

≤ −q0 ◦
∣∣∣∣¯δ∣∣∣∣+ e ◦

∣∣∣∣¯δ∣∣∣∣+ 1
ς e ◦ (−ς

∣∣∣∣¯δ∣∣∣∣)
= −q0 ◦

∣∣∣∣¯δ∣∣∣∣ ≤ 0

(A5)

One can observe that
¯
δ(t) is bounded, and when t→ ∞ ,

¯
δ(t)→ 0 . Hence, there

exists a finite time t0 such that
∣∣∣∣¯δ(t)∣∣∣∣ ≤ ε/2 holds for t > t0, which can be written as

∣∣∣∣¯δ(t)∣∣∣∣ = ∣∣∣∣L(t)− 1
v

∣∣∣∣¯ueq(t)
∣∣∣∣− ε

∣∣∣∣ ≤ ε

2
(A6)

If v < 1, L(t) satisfies

L(t) ≥ 1
v

∣∣∣∣¯ueq(t)
∣∣∣∣+ ε

2
≥
∣∣∣∣¯ueq(t)

∣∣∣∣+ ε

2
≥
∣∣∣ .
d(t)

∣∣∣ (A7)

This completes the proof. �
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