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Abstract: Three-dimensional object detection utilizing LiDAR point cloud data is an indispensable
part of autonomous driving perception systems. Point cloud-based 3D object detection has been a
better replacement for higher accuracy than cameras during nighttime. However, most LiDAR-based
3D object methods work in a supervised manner, which means their state-of-the-art performance
relies heavily on a large-scale and well-labeled dataset, while these annotated datasets could be
expensive to obtain and only accessible in the limited scenario. Transfer learning is a promising
approach to reduce the large-scale training datasets requirement, but existing transfer learning object
detectors are primarily for 2D object detection rather than 3D. In this work, we utilize the 3D point
cloud data more effectively by representing the birds-eye-view (BEV) scene and propose a transfer
learning based point cloud semantic segmentation for 3D object detection. The proposed model
minimizes the need for large-scale training datasets and consequently reduces the training time. First,
a preprocessing stage filters the raw point cloud data to a BEV map within a specific field of view.
Second, the transfer learning stage uses knowledge from the previously learned classification task
(with more data for training) and generalizes the semantic segmentation-based 2D object detection
task. Finally, 2D detection results from the BEV image have been back-projected into 3D in the
postprocessing stage. We verify results on two datasets: the KITTI 3D object detection dataset and
the Ouster LiDAR-64 dataset, thus demonstrating that the proposed method is highly competitive in
terms of mean average precision (mAP up to 70%) while still running at more than 30 frames per
second (FPS).

Keywords: 3D object detection; point cloud processing; transfer learning; semantic segmentation

1. Introduction

The point cloud is becoming more and more critical for autonomous driving due to
the availability and significant improvement of automotive LiDAR sensors in recent years.
The LiDAR sensor is capable of representing the surrounding vehicles in 3D form. It has the
advantage of providing depth information and direct distance measurement, which make
it suitable for autonomous driving applications such as 3D object detection [1], tracking [2],
and road lane line detection [3]. However, recognizing 3D objects in LiDAR data is still
challenging because LiDAR can output millions of point clouds per second, consequently
increasing computational cost and effect efficiency. Alternatively, the existing methods
based on point cloud address this problem using the recent deep learning techniques [4–6].
However, most of these methods take a supervised fashion, which means it needs large
labeled data for training which can be challenging to gather and label in a specific scenario.
Therefore, it is worth finding ways to improve real-time efficiency, reduce the requirements
of a larger dataset, and shorten training time.

Researchers proposed the idea of semi-supervised learning [7] and weakly supervised
learning [8] to solve the problem of larger annotated datasets in the 3D object detection
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domain. Still, these methods take annotations for a specific class of objects, and their
accuracy is highly dependent on the labels in the image domain. Therefore, it is not
possible to implement these methods on only LiDAR data. Existing studies on transfer
learning mainly focused on 2D [9,10] object detection. Nevertheless, 2D object detection
does not provide depth information, a requisite for autonomous driving tasks such as path
planning [11] and collision avoidance [12].

For this reason, in this paper, a transfer learning semantic segmentation based 3D
object detection approach has been proposed to take advantage of a pretrained model to
minimize the need for large annotated datasets and consequently reduce training time
requirements. Unlike conventional methods, the proposed architecture has been trained
on a small dataset for a short period. Still, the model achieves real-time efficiency with
mean average precision (mAP) up to 70%. During experiments, it is observed that a
pretrained model is beneficial for a classification task and can also convey knowledge to
other tasks such as the semantic segmentation task with certain modifications. Hence,
the fully connected layers are changed into convolution layers, enabling a classification
network to output a heat map. The proposed network architecture is based on an encoder-
decoder strategy, where MobileNetv2 [13] is used as an encoder and builds a simple yet
efficient lightweight matching decoder on the top. To avoid losing low-level information,
skip-connections similar to U-Net [14] have been added. Finally, a modified cross-entropy
loss has been defined that takes unlabeled pixels into account through masking. The main
contributions of this paper are:

1. A 3D point cloud is projected into birds-eye-view representation with filtering tech-
niques to improve the model learning capability and reduce computing time.

2. The amount of annotated data and time required for training has been minimized
using transfer learning.

3. The proposed model runs in real-time, which is almost two times faster than many of
the leading 3D object detection methods for LiDAR.

The famous KITTI vision benchmark suite [15] and dataset collected around the
campus using Ouster LiDAR-64 has been used for 3D object detection and birds-eye-view
2D object detection.

The rest of the paper is organized as follows: Section 2 presents related work, Section 3
explains the material and proposed method, Section 4 contains results and discussion, and
finally, Section 5 concludes the paper and gives the road map for future work.

2. Related Work

There are various methods available for object detection. Depending upon the ap-
proach used, they are divided into the following three categories:

2.1. 3D Object Detection

Three-dimensional object detection systems aim to detect objects of interest and
estimate oriented 3D bounding boxes in the 3D real world. However, existing methods
are based on full supervision, assuming that precise 3D ground truth is provided in the
training dataset. Frustum-based Networks [16] using PointNet [17] deal directly with the
point cloud shown high performance on KITTI benchmark suite [15] in birds-eye-view
(BEV) detection category. However, the model has two downsides: (i) The model detection
accuracy depends on the camera used as a secondary sensor. (ii) The framework runs two
deep learning pipelines simultaneously, resulting in lower efficiency.

In contrast, VoxelNet [18] operates only on LiDAR data. The whole architecture is
implemented in an end-to-end manner without any preprocessing. During training, grid
cell inside features are learned using a PointNet [17] approach to build up a Convolutional
Neural Network (CNN) that predicts 3D bounding boxes. Regardless of high accuracy, the
model has a low inference rate of only 4 FPS on TitanX GPU [18]. McCrae [19] minimizes
the number of LiDAR frames per forward pass by modifying PointPillars to become a
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recurrent network. Furthermore, the model accuracy has been increased to detect smaller
objects more accurately.

Methods such as [20,21] propose the idea of multi-sensor fusion networks [20,21] to
increase the model accuracy, but despite high accuracy, these methods are computationally
expensive. To tackle the sensor-fusion computational problem, this [22] proposed an early-
fusion method to fuse both camera and LiDAR with only one backbone, attaining a good
balance between accuracy and efficiency. Other methods such as [23] solve the problem
of data correction and temporal point cloud fusion for object detection using only 4-layer
LiDAR. However, the discussed state-of-the-art approaches’ performance depends on the
large-scale training dataset and ground truth labels.

2.2. Semi-Supervised Object Detection

Semi-supervised object detection assumes that annotation for the bounding boxes
is not included in the training dataset and trained model only with image-level labels.
Minsu et al. [24] apply the idea of weakly supervised learning and propose a part-based
region matching approach to output a set of candidate bounding boxes for object and object
parts. Sangineto et al. [25] suggest a training protocol based on a self-paced learning pattern.
Bilen [26] changes the image classification network to anticipate object proposal selection
and classification at the region level. Object instance mining (OIM) framework [27] detects
all possible object instances in each image by initiating information propagation on all the
spatial appearance graphs without additional labeling. This work [28] gives the idea of
unsupervised learning for object detection utilizing weighted cluster as a separate cluster
but failed to put 3D bounding volumes on a detected candidate. Recently, we have seen
many state-of-the-art semi-supervised and unsupervised based object detection; however,
most of the detectors are for 2D object detection rather than 3D. Extracting 3D bounding
boxes without full supervision, especially from the point cloud, is still a challenging and
ill-efficient approach.

2.3. Transfer Learning

Transfer learning uses the knowledge gained while solving one problem (where we
have access to a larger dataset) and applies it to a different but related problem (where we
have a limited dataset). Methods like [29] used transfer learning for semantic segmentation
to minimize the gap between abundant synthetic data and limited real data.

Unlike existing weakly supervised approaches, Hong et al. [30] proposed a decoupled
encoder-decoder architecture to generates spatial highlights of each class presented in
images using an attention model and eventually perform binary segmentation for each
highlighted region using the decoder. Lokesh [31] uses transfer learning to overcome the
classification problem. The transfer learning-based approach is a well-known research
topic in the 2D detection domain, whereas 3D object detection based on transfer learning
technique is a much less explored and more challenging topic, especially on point cloud
data. There are few works available but they will be further explored in this paper.

3. Proposed Approach

This section describes the point cloud grid-based preprocessing and the specific
network architecture. The ultimate goal is to find an optimal policy π that maps the point
clouds p to an obstacle information obj, which includes the position P(x,y) and distance
d ∈ R. Unlike many traditional 3D object detection methods, we do not rely on a large
labeled dataset. Alternatively, the proposed method is trained on a minimal dataset to map
the 3D point cloud into a 2D image frame, making it faster and more reliable.

obj = π(p) (1)

As shown in the Figure 1, the detection pipeline consists of three modules, (1) prepro-
cessing module (PPM), (2) deep learning module (DLM), and (3) back projection module
(BPM), which is further elaborated in the coming sections.
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Figure 1. Overview of the proposed 3D object detection architecture. The proposed model directly
utilizes LiDAR-based birds-eye-view (BEV) images to estimate and localize 3D bounding volumes.
The whole pipeline consists of a preprocessing module, deep learning, and back projection module.

3.1. Preprocessing Module (PPM)

The 3D point cloud p =

x
y
z

 inside covering area Φ of a single frame obtained from

LiDAR is converted into a single birds-eye-view RGB map bt as shown in the Figure 2. The
grid size of the image bt is defined with n = 600 and m = 900 and resolution of about
γ = 10 cm.

Figure 2. Schematic representation of the birds-eye-view RGB map.

The LiDAR is considered within the origin with respect to [x, y] of pΦ and defined:

pΦ = {p = [x, y, z]Tx ∈ [−15, 30], y ∈ [−20, 20], z ∈ [−2, 1.25]} (2)

xbtimg
= −p(y) ∗ γ (3)

ybtimg
= −p(x) ∗ γ (4)

Pz = [((maxz − p(z)/(maxz −minz)) ∗ 255] (5)
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where in Equations (2) and (3) each pixel position was defined from the p=[x, y]T ∈ pΦ
coordinates. The pixel value Pz in Equation (5) is the normalized z component of the point
cloud partitioned into three regions, yielding a three-channel 2D representation.

3.2. Deep-Learning Module (DLM)

The Deep-Learning Module (DLM) takes as input the generated birds-eye-view image
bt from the PPM. The DLM leverages knowledge from a pretrained classification model
and uses it to solve semantic segmentation for 3D object detection. Traditional deep
learning models are designed to work in isolation. These models are task-specific, which
means that the model has to be trained from scratch once the domain changes.

Transfer learning is the idea of overcoming the isolated learning paradigm and uti-
lizing knowledge acquired from one task to solve related ones. Certain low-level features
can be used for a task different from the original one in computer vision applications. For
transfer learning implementation, first a classification function Fc has been defined as:

Fc = {(c1, y1)...(cn, yn)} (6)

where, ci ∈ C is the number of samples for training and yi ∈ Y are the corresponding labels
for each class, a predictive function fq, which can be presented probabilistically as p(y/c),
and output a classification task Tc. Second, we define the semantic segmentation function
Fs as:

Fs = {(s1, l1)...(sn, ln)} (7)

where, si ∈ S is the number of samples used for training the segmentation model and
li ∈ L are the labels for each class and finally a segmentation predictive function fk and
specific segmentation task Ts. Using transfer learning, we improve the learning of seg-
mentation predictive function fk using knowledge in Fc and fq where, Tc 6= Ts as shown
in Figure 3. Knowledge from the pretrained classification task act as an additional input
when learning a semantic segmentation task.

Figure 3. Transfer learning from classification to segmentation.

Equations (6) and (7) defined for transfer learning are used to convert the classification
network into a convolutional network to output a segmented heat map. The segmented heat
map later provides the basis for the birds-eye-view 2D object detection. The CNN models
trained for image classification restrain relevant information used for segmentation in the
proposed method. The convolution layers of the pretrained model are reused in the encoder
layer of the segmentation model. Another primary requirement for transfer learning is
the availability of pretrained models. Luckily, the deep learning community open-sourced
many of the pretrained models such as VGG-16 [32], Inception [33], Deeplab [34], and
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MobileNet. The MobileNetv2 pretrained model has been adopted in the proposed method
because of its significant fever parameters and minor computational complexity.

The model architecture usually consists of several convolutional layers, nonlinear
activations, batch normalization, and pooling layers. The initial layers tend to learn the
low-level concepts and the higher layers retain the high-level information. For the image
classification task, the model maps the spatial tensor from the convolution layer to a
fixed-length vector using fully connected layers which flatten all the spatial information.

In contrast, for semantic segmentation, spatial information is critical. Therefore,
the fully connected layers are converted into convolutional layers. The DLM is based
on encoder-decoder architecture where at the encoder stage, the convolutional layers
combined with downsampling layers produce a low-resolution tensor containing the high-
level information, and at the decoder stage, more convolutional layers have been added
and coupled with upsampling layers to increase the size of the spatial tensor and generate
high-resolution segmentation outputs.

However, simply stacking the encoder and decoder may result in the loss of low-level
information. Hence, the segmentation map boundaries generated by the decoder will
be defective. Therefore, the decoder has been allowed to access the low-level features
produced by the encoder layers using skip connections. Intermediate outputs of the
encoder are concatenated with the inputs to the intermediate layers of the decoder at
relevant positions, as shown in Figure 4.

Figure 4. Schematic illustration of an encoder-decoder architecture. The left-hand side is a birds-
eye-view RGB map that is passed to a series of computational layers, and the right-hand side is the
output decoder feature map. The arrows are skip connection layers, where input is being directly
concatenated from encoder to decoder.

Table 1 presents the general framework of the MobileNetV2, where the number of
the output channel is represented by c, n means repeating number, s is the stride, and for
the spatial convolution, 3× 3 kernel has been used. The network of width 1, 224, 224, uses
3.4 million parameters with a resulting computational cost of 300 million multiply-adds.
Even the architecture size ranges between 1.7 million and 6.9 million, and the computational
cost reaches less than 585 million MAdds.
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Table 1. MobileNetV2 overall architecture [13].

Input Operator t c n s

2242 × 3 conv2d - 32 1 2
1122 × 32 bottleneck 1 16 1 1
1122 × 16 bottleneck 6 24 2 2
562 × 24 bottleneck 6 32 3 2
282 × 32 bottleneck 6 64 4 2
142 × 64 bottleneck 6 96 3 1
142 × 96 bottleneck 6 160 3 2
72 × 160 bottleneck 6 320 1 1
72 × 320 conv2d 1 ×1 - 1280 1 1
72 × 1280 avgpool 7 ×7 - - 1 -

1× 1× 1280 conv2d 1 ×1 - K -

3.3. Back Projection Module (BPM)

After generating the heat map h from the DLM, postprocessing is required to extract
2D rectangles from the generated heat map and lift those 2D rectangles into 3D bounding
volumes in the LiDAR frame. In Equation (8) Canny edge detector [35] has been used for
thresholding to translate the generated heat map into 2D rectangles. The output image
h(x, y) was obtained from the original image bt(x, y) as:{

1 i f bt(x, y) 6 Th
0 i f bt(x, y) > Th

(8)

where (x, y) is the coordinate of threshold Th.
Then contour has been used for the respective binary masks and the minimal bounding

rectangles of those contours. These 2D bounding boxes provide us the basis for 3D
bounding volumes. After getting the 2D bounding rectangles, five of the seven parameters
that define the 3D bounding box have been extracted. The estimated parameters are the
obx, oby, Pz location, and rotation on the image plane.

The proposed framework estimates the height information directly without regression
to convert the 2D rectangle into 3D bounding volumes. The model runs with a fixed height
location extracted from the ground truth. It is assumed that objects are on the ground,
and this assumption is reasonable in the autonomous driving scenario as vehicles do not
fly [36].

The back projection module (BPM) is used to project 2D information from the heat
map coordinate hxyz into the LiDAR coordinate lxyz as follows:

lx = −obx/γ (9)

ly = −oby/γ (10)

lz = Pz ∗ (maxz −minz/255) + minz + 1.8 (11)

where obx, oby are the detected position of the objects in hxy heat map frame, and Pz is
the normalized pixel value of image bt. lx, ly, and lz are the estimated object position in
the LiDAR frame. A constant value of 1.8 has been added in Equation (9) considering the
LiDAR position on the top of the car. Finally, to estimate the distance from the detected
object, the Euclidean distance formulae has been used as:

d =
√

l2
x + l2

y (12)

A complete workflow for the presented approach is shown below in Algorithm 1.
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Algorithm 1 Transfer learning based semantic segmentation for 3D object detection.
preprocessing module (PPM) :
- Specify the field of view FOV in x, y, z axis
- Apply the filter to FOV
- Generate the birds-eye-view RGB map bt
deep learning module (DLM) :
- Apply the transfer learning based semantic segmentation to the bt and get the

heat map h
- Apply the Canny edge detector on the heat map h
- Detect the all counters C as 2D rectangles
for C = 1,2,3 . . ., M - Get the pixel position (obx, oby) of each object
back projection module (BPM) :
- Project the obx, oby to the LiDAR frame (lx, ly, lz) by following the equations

9→ 11
- Calculate the distance d from each object

4. Experiments

This section assesses the performance of the proposed algorithm. The experiment is
carried out as follows: First, we describe the proposed architecture experimental setup.
Second, segmentation results are compared before and after implementing transfer learning,
and finally, a m odel efficiency comparison is made against mean average precision (mAP)
with conventional methods in the LiDAR frame.

4.1. Experiment Setup
4.1.1. Real-Time Validation Using the Ouster LiDAR-64

The 3D laser scanner used in this experiment is Ouster LiDAR-64. The operating
system used for data collection, training, and evaluation is Ubuntu-16. The robot operating
system (ROS) Kinetic environment has been used for experimenting. The central processing
unit i5-6500 and the graphic processing unit 1050ti are used for training. For data collection
and evaluation, a dedicated Intel mini-pc (NUC-10i7) has been used. The data for the
experiment was gathered around the campus of Kunsan National University.

4.1.2. Real-Time Validation Using KITTI Dataset

For training and evaluating the proposed architecture, another dataset used is the
famous KITTI object detection dataset. The public KITTI dataset provides 7481 point cloud
samples for training and 7518 for evaluation using Velodyne-64. Unlike existing methods
for 3D object detection, the proposed model used only 824 samples for training and
256 frames for validation, as shown in Table 2. The model has been trained for 40 epochs
with a learning rate of 0.0003. The learning rate is kept smaller to avoid losing previously
learned knowledge, and it also will ensure that CNN weights do not distort too early.

Table 2. Comparison between the existing methods and proposed method in terms of data requirements and training time.

Model Modality FPS No.Frmaes (Training) Avg.Training Iterations

F-PointNET [16] LiDAR + RGB 5.9 7518 200
VoxelNet [18] LiDAR 4.3 7518 150
FA3OD [22] LiDAR + RGB 17.8 7518 80
MV3D [37] LiDAR + RGB 2.8 7518 20 K
AVOD [38] LiDAR + RGB 12.5 7518 30 K

Ours LiDAR 30.6 824 40
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4.2. Experimental Results
4.2.1. Transfer Learning vs. Scratch Training

The proposed model is trained first from scratch, without using any pretrained weights.
However, it is hard to train a significant architecture such as MobileNet-v2 and accompa-
nying decoder robustly on a minimal dataset. As a result, training from scratch leads to
very strong overfitting, as shown in Figure 5. The architecture is highly parameterized, and
it is challenging for a model to learn with a few examples without prior knowledge.

Figure 5. Comparison between model from scratch and model initialized with pretrained classifica-
tion weights.

In the second experiment, the same architecture is used but initialized with ImageNet
classification pretraining weights. As shown in Figure 5, the initial losses are considerably
lower and converge faster both in training and validation. The predicted heat maps in both
scenarios are shown in Figure 6, Figure 6a,b show the prediction result when the model is
initialized with pretrained weights, and Figure 6c,d show the prediction result when the
model is trained from scratch. Results verify that the model initialized with pretrained
weights shows higher accuracy than the model trained from scratch.
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Figure 6. Comparison between model from scratch and model initialized with classification pre-
trained weights: (a,b) shows prediction using pretrained weights, (c,d) shows prediction using the
model trained from scratch .

4.2.2. Trained Model Evaluation

The Intersection over Union (IoU) metric, also known as the Jaccard index, is essen-
tially a method to quantify the percent overlap between the target mask and the prediction
output. The metric range is defined between 0% and 100% with 0% indicating no overlap-
ping and 100% representing a perfect overlapping. Figure 7 shows the segmented ground
truth and the predicted output. Table 3 contains the IoU for the frames shown in the
Figure 7, where the model achieves an average IoU around 90%.

Figure 7. The visualization results on KITTI dataset using our proposed method. Subfigures (a–d)
shows the ground truth on the right-hand side, and the left-hand side shows the output results. The
images shows that the proposed model performs well in different scenarios.
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Table 3. The IoU metric measures the overlap percentage between the ground truth and prediction.

No.Frames IOU

frame (a) 0.921
frame (b) 0.953
frame (c) 0.972
frame (d) 0.876

In 3D point clouds, the sparsity increases as the distance between the LiDAR and
detected object increases. Therefore, the amount of points reduces for an object of a
similar class and the same size. The proposed architecture has been tested against different
distances. We designed different filters to cover different ranges and analyze their impact
on model performance. It is observed that the model performed well while covering objects
within ranges from −15 to 35 m in the longitudinal direction and −20 to 20 m in the lateral
direction around the vehicle, which is followed by experimental testing.

4.2.3. Object Detection Results

The proposed method has been validated using the KITTI dataset. Figure 8 shows
the obtained heat map results from the segmentation model. Thresholding and contours
techniques are used to extract the 2D bounding box coordinates in the birds-eye-view
image frame.

Figure 8. (a–d) shows samples of prediction on the left-hand side and extracted contours for the car
class on the right-hand side. Subfigures (a,b) shows the simple scenarios, and (c,d) shows the images
where the proposed model is able to achieve accurate results in more complex scenarios with rotated
bounding boxes.

Moreover, the obtained 2D coordinates have been used in the back projection module
(BPM) to extract the 3D obstacle information and display it as a 3D bounding volume
using Equations (9)–(11). Qualitative results of the proposed model are shown in the
figures below where Figure 9 shows 3D object detection results from the KITTI dataset and
Figure 10 shows 3D object detection results from the Ouster Lidar-64 dataset.
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Figure 9. Qualitative results of the proposed model using KITTI 3D object detection dataset in
LiDAR frame.

Figure 10. Qualitative results of the proposed model using the Ouster LiDAR-64 dataset in
LiDAR frame.

We compare our model with existing approaches for 3D object detection in terms of
efficiency, which are essential for autonomous vehicles and where most state-of-the-art
algorithms struggle. Figure 11 presents the comparison results. The proposed frame-
work runs at more than 30 frames per second (FPS) on a dedicated platform without a
GPU system.

Figure 11. Performance comparison. This plot shows the mean average precision (mAP) against the
run-time (FPS) in the LiDAR frame. We compare our proposed model with the existing model for
3D object detection and measured our architecture performance on a dedicated embedded platform
(Intel PC) with real-time efficiency.
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5. Conclusions

In this paper, we present a real-time 3D object detection that utilizes LiDAR point
cloud. The proposed method takes birds-eye-view representation as input for computation
efficiency. The overall pipeline is defined as an end-to-end manner in which the preprocess-
ing modules (PPM) take the LiDAR data and convert it into a birds-eye-view (BEV) image.
The deep learning module (DLM) takes the BEV and outputs a segmented heat map that
transforms into 3D bounding volumes in the postprocessing module (PPM). We highlight
the proposed approach results in terms of accuracy (Figure 11) with excellent efficiency of
more than 30 frames per second (FPS). We do not need a large and well-labeled dataset for
training, similar to most of the leading approaches. This breakthrough is achieved by the
introduction of the deep learning technique called transfer learning. Experiments demon-
strate that the proposed method can potentially reduce the need for a large, well-labeled
dataset and facilitate the implementation of 3D object detectors in new scenarios. Future
work is planned to develop a model that takes raw point cloud as input and uses the sensor
fusion to achieve breakthroughs in both accuracy and speed.
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