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Abstract: In this paper, we propose a breakthrough single-trial P300 detector that maximizes the
information translate rate (ITR) of the brain–computer interface (BCI), keeping high recognition
accuracy performance. The architecture, designed to improve the portability of the algorithm,
demonstrated full implementability on a dedicated embedded platform. The proposed P300 detector
is based on the combination of a novel pre-processing stage based on the EEG signals symbolization
and an autoencoded convolutional neural network (CNN). The proposed system acquires data from
only six EEG channels; thus, it treats them with a low-complexity preprocessing stage including
baseline correction, windsorizing and symbolization. The symbolized EEG signals are then sent to an
autoencoder model to emphasize those temporal features that can be meaningful for the following
CNN stage. This latter consists of a seven-layer CNN, including a 1D convolutional layer and three
dense ones. Two datasets have been analyzed to assess the algorithm performance: one from a
P300 speller application in BCI competition III data and one from self-collected data during a fluid
prototype car driving experiment. Experimental results on the P300 speller dataset showed that the
proposed method achieves an average ITR (on two subjects) of 16.83 bits/min, outperforming by
+5.75 bits/min the state-of-the-art for this parameter. Jointly with the speed increase, the recognition
performance returned disruptive results in terms of the harmonic mean of precision and recall
(F1-Score), which achieve 51.78 ± 6.24%. The same method used in the prototype car driving led to
an ITR of ~33 bit/min with an F1-Score of 70.00% in a single-trial P300 detection context, allowing
fluid usage of the BCI for driving purposes. The realized network has been validated on an STM32L4
microcontroller target, for complexity and implementation assessment. The implementation showed
an overall resource occupation of 5.57% of the total available ROM, ~3% of the available RAM,
requiring less than 3.5 ms to provide the classification outcome.

Keywords: brain–computer interface (BCI); P300; single-trial detection; autoencoder; CNN

1. Introduction

Brain–computer interfaces (BCIs) are platforms able to integrate straightforward inter-
actions between the human brain and the external world, “bridging” users’ brain signals
directly to a mechatronic device without the need of any physical interaction [1]. BCIs were
initially developed to help locked-in patients in formalizing specific requests [1]; neverthe-
less, in recent years, the BCIs’ versatility has also spread their use among healthy subjects
in areas such as entertainment [2], car driving [3], smart homes [4], speller systems [5],
mental state monitoring [6], Internet of Things applications [7], etc.

For these kind of applications, electroencephalogram (EEG)-based BCIs are the most
diffused type due to their noninvasive nature, safety, and the inexpensiveness of the dedi-
cated acquisition devices, compared with BCIs that exploit, for instance, electrocorticogram
(ECoG) or functional near-infrared spectroscopy (fNIRS) [1,8–11].

There are several types of EEG patterns used in BCI applications, such as event-related
potentials (ERPs), steady-state visual evoked potentials (SSVEPs) and motor imagery (MI).

Sensors 2021, 21, 3961. https://doi.org/10.3390/s21123961 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4563-7614
https://orcid.org/0000-0003-3927-8686
https://doi.org/10.3390/s21123961
https://doi.org/10.3390/s21123961
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21123961
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21123961?type=check_update&version=3


Sensors 2021, 21, 3961 2 of 24

Specifically, the first type (i.e., ERPs) is the most used because of the simplicity of the
elicitation paradigms implementation [8,11]. Moreover, since these potentials are time-
locked with respect to the stimulation onset, they are optimal candidates for repetitive
and reliable practical BCIs [11]. ERPs are characterized by positive and negative signal
deflections, namely components, with each one being linked to different cognitive processes
and elicitable with different paradigms. A particular ERP component that has found large
use in the BCI area is the P300. Compared with other potentials, the P300 is simple to
be elicited and measured, requires low training time with no complex paradigm and is
suitable for most subjects, including those with severe neuromuscular diseases [1].

This work is focused on the P300 signal elicited during a classic odd-ball paradigm [8],
in which a series of stimuli are presented to the subject. In general, these stimuli can be
categorized into two types: frequent and rare ones. The occurrence of a rare stimulus
causes the elicitation of the P300 component [8].

P300 ERPs typically present a very low signal-to-noise ratio (SNR) if considered in
a single trial [9]. For this reason, in most BCI applications, several trials are stored and
averaged over an increasing number of repetitions, in order to emphasize the time-locked
components (e.g., P300) and minimize the background noise [10]. This grand-average
method improves the robustness of the system but, at the same time, it drastically reduces
the BCI speed in terms of information translate rate (ITR). For instance, considering a widely
diffused P300 speller problem, ITR moves from an average value of ~11 bits/min [10–13]
in a single repetition context, to ~8 bits/min after accumulating the 15 repetitions con-
stituting the character epoch [8]. The issue can be mitigated by adaptive flashing times
techniques [14]. However, the correct classification of the P300 response in a few repetitions
is a crucial target for the design of fast BCI systems.

Several solutions have been proposed in the literature to address the single-trial
P300 recognition problem. Most of them use traditional shallow learning for the P300
classification purpose. In this context, the authors in [13] filtered the EEG signals in the
interval 0.1–20 Hz. The filtered signal is then decimated according to the high cut-off
frequency. At this point, each signal from a given channel is characterized by 14 samples.
Next, they divided the EEG trials into several data subsets, each one connected to a
dedicated support vector machine (SVM), for a total of 17 SVMs. To work properly, the
implemented algorithm requires a first channel selection stage based on a recursive channel
elimination. The proposed system was demonstrated to achieve a P300 detection accuracy
of 25.5% after a single repetition and 96% after 15 repetitions in the BCI competition
III speller problem (i.e., selection among 36 characters). Authors in [15] also achieved
similar results by implementing a Bayesian P300 detection method based on the maximum
regression target probability value. Despite the good results, the method suffers from a
very long computation time. Indeed, the method requires, on average, 7 min to complete
the proposed task (four six-character words and a random number), against about 2.5 min
required by most of the equivalent approaches [15]. A processing chain made up of a
continuous wavelet transform (CWT), scalogram peak detection, and linear discriminant
analysis (LDA) was used for this purpose by the authors in [16]. A misclassification
error of 45% was reached by the method, which won the BCI competition II [16]. In the
same shallow learning application context, authors in [17] investigated the possibility of
exploiting (temporal) attention processing, widely adopted in SSVEP-based BCIs [18] and
in EEG-based emotion recognition [19], to improve P300-based brain–computer interface
(BCI) performance. Their study, typically oriented to amyotrophic lateral sclerosis (ALS)
patients, demonstrated the investigation of those cognitive processes and using a stepwise
linear discriminant analysis (SWLDA) for the offline classifier coefficient calibration and the
identification of the character as the intersection between the row and the column exhibiting
the maximum of the sum of scored features. In P300 speller context, by averaging all the
waveforms from target and non-target trials composing each run (i.e., 15), the system
in [17] demonstrated the ability to approach P300 state-of-the-art accuracy (i.e., 98%) by
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using only six channels. Nevertheless, the authors did not test the same system on the BCI
competition Dataset III [13], making a possible comparison unsatisfying.

In the recent past, a growing interest has been dedicated to the deep learning appli-
cation in P300 detection. Deep learning approaches strongly impacted natural language
and computer vision processing, allowing the resolution of up to that moment still un-
solved real-world problems [11]. Deep learning application for P300 detection is still in an
evolving stage, far from a consolidated methodology [10].

The first authors who exploited the deep learning capability of capturing hierarchical
features from EEG signals were Cecotti and Graser in their work [12]. Here, they imple-
mented a four-layer convolutional neural network (CNN) to capture spatial and temporal
features from the raw EEG signals in input. Seven different CNN architectures were pro-
posed with three ensemble models. The most performant among the proposed methods
was shown in the results reached by the authors in [13], i.e., 25.5% after a single repetition
and ~95% after 15 repetitions in the speller problem. This approach was exploited by the
authors in [10], which extended the model by introducing a batch normalization layer to
prevent CNN overfitting. The proposed method, named BN3, analyzed EEG data as a bidi-
mensional matrix with the {channels × time} shape, acting on it as an image structure and
reaching the same results of the authors in [13] after 15 repetitions, with an improvement of
+10% of character accuracy on a single repetition. A similar approach was adopted by the
authors in [20], who—differently from [10]—analyzed an EEG trial as a 3D matrix. Their
work exploits spectral features from three different frequency bands (i.e., θ, α, β) creating
from each time instant an RGB image given by the linked spectrogram. Then, they stacked
convolutional layers with a long short-term memory (LSTM) neural network, increasing
the system complexity without any substantial improvements against the above-listed
state-of-the-art results. Similar results were achieved in [21], where a 3D recurrent neural
network (3DRNN) was used to detect a P300 signal in a single trial. Finally, authors in [22]
proposed the introduction of a preprocessing stage based on principal component analysis
(PCA) to improve the CNN results. The proposed system demonstrated a slight improve-
ment of the results, starting from eight repetitions up to 15. Recently, autoencoder neural
networks are also approaching the brain activity analysis field thanks to their capabilities
in denoising the EEG signal. Autoencoders impacted on the seizure detection field [23]
realizing a useful feature extractor step, if empowered with CNNs and LSTMs in the
encoder–decoder setup. Authors in [24] exploited this concept, proposing an event-related
potential encoder network (ERPENet) that incorporates four 2D CNNs and two 512-units
LSTMs in the autoencoder setup structure, trying to simultaneously compress the input
EEG signal and extract-related P300 features into a latent vector. This vector was sent to a
single one-unit fully connected layer for classification. The model provided a single-trial
accuracy of 83.54% (with an area under curve of 69%) on the P300 speller problem included
in the BCI competition III dataset, analyzing 35 channels from the central-parietal lobe.

In this framework, this paper proposes the design, implementation and test of a
novel architecture for single-trial P300 detection with two main aims: (i) maximizing the
ITR, while keeping high recognition accuracy for a low number of stimuli repetition and
(ii) ensuring the full system implementability on a low-cost dedicated microcontroller-
based platform. The first design focus allows the BCI, which exploits the here presented
P300 detector, to increase its speed, ensuring a human–machine interaction that is as fluid
as possible. It represents a critical constraint for those BCI in which the neural interface
speed can strongly impact on the safety of the system, such as in P300-based car driving [3],
or in which a BCI becomes an important enabling technology, such as in the case of
P300-based word speller for people with disabilities [10,11]. To ensure this condition,
in this paper, a punctual inference timing analysis has been carried out. It permitted
the identification and the correction of all the time-critical parts in the architecture. The
second design focus, which represent a novelty in the NN architecture design workflow,
concerns the architecture implementability analysis on a widely diffused family of low-cost
microcontrollers. This analysis provides a good starting point for the conceptualization
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and the realization of a dedicated low-cost and mobile P300-based BCI. In particular, by
keeping the consumption of resources of the microcontroller far below their availability,
the design of a dedicated P300-based BCI board is also considerably simplified, with
positive consequences on board footprint (e.g., external memories and related circuitry
no longer needed) and power consumption (e.g., no external read/write operations, only
microcontroller static/dynamic consumption).

Keeping in mind the above, the here-proposed P300 detector bases its working on the
combination of a novel pre-processing stage based on the EEG signals’ symbolization and
a first parallel autoencoding stage followed by batch-normalized CNN for the temporal
filtering. We refer to this architecture as an autoencoded CNN in the following. Specifically,
the proposed system acquires data by six EEG electrodes from central and parietal brain
lobes. Next, it submits EEG signals to a first low-complexity preprocessing stage including
low pass filtering, baseline correction, windsorizing and symbolization. The symbolized
EEG signals are then sent to an autoencoder model to emphasize those temporal features
that can be meaningful for the following CNN stage. Autoencoded EEGs are then concate-
nated and used to feed a seven-layer network, which includes a 1D convolutional layer and
three fully connected layers. Inputs, convolutional and fully connected layers are preceded
by a batch normalization. The realized network is then validated on an STM32L4 micro-
controller target, for complexity and implementation assessment. Since all of the analyzed
state-of-the-art studies use the Farwell and Dochin P300-based speller as a testbench [8]
to compare among each other their system capabilities, in this paper, two datasets are
analyzed to assess the algorithm performance: (i) BCI competition III data from a P300
speller testbench and (ii) self-collected data from a prototype car driving experiment.

Experimental results from the first dataset, i.e., P300 speller one, showed that the
system is able to outperform the state of the art in terms of harmonic mean of precision and
recall (F1-Score = 51.78 ± 6.24%), ensuring a +5 bits/min of average ITR if compared with
other state-of-the-art solutions. The same method, applied to the prototype car driving
experiment, provided an F1-score of 70.00% and an ITR > 30 bit/min, allowing a car
direction change every 1.8 s. The implementation feasibility assessment on an STM32L4
microcontroller showed that the overall system occupies 5.57% of the total available ROM,
~3% of the available RAM.

The paper is organized as follows: Section 2 describes the P300 paradigms, detailing
the considered datasets, the preprocessing stages and the model architecture. Sections 3
and 4 are dedicated to the experimental results and their discussion, respectively, while
Section 5 concludes the paper, underlining the achievements and perspectives.

2. The Method
2.1. Datasets and Stimulation Protocols

Datasets. Two datasets were investigated and described in the following. Both of them
shared the same processing chain but differed among each other for the final application
and the acquisition device. One dataset, namely Dataset 1 in the following, was related to
data collected by the team of the DEISLab (Politecnico di Bari, Italy) on voluntary subjects
in the context of prototype car driving [3]. The subjects group was composed of four
students (healthy subjects) recruited to participate in this BCI experiment. The second
dataset, chosen for comparison purposes and named Dataset 2 in the following, was a
dataset provided by the Wadsworth Research Center NYS Department of Health for the
international BCI competition III [25]. This dataset collected EEG data from two subjects
who participated in the competition.

More in detail, Dataset 1 contained trials acquired by a 32-channel wireless EEG
headset by g.Tec (i.e., g.Nautilus Research), considering AFz as a reference channel and
A2 (right ear lobe) as a ground lead. Specifically, the monitoring for this application was
focused on 6 specific channels, i.e., Fz, Cz, Pz, PO7, Oz, PO8, resulting from a statistical
offline recursive channel elimination routine all over the four subjects, as better explained in
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Section 2.3, and confirmed by the best electrodes configuration for P300 speller applications,
found by the authors in [26].

EEG data were acquired with a resolution of 24 bits and transmitted at 250 Sa/s,
reduced to match the 240 Sa/s from Dataset 2. The EEG signals were band passed in the
interval 0.1–20 Hz before the transmission.

The second dataset [25] was composed of EEG trials collected by 64 channels using the
BCI2000 system [25]. The monitoring was focused, also in this case, on 6 selected channels
to match the architecture input size. Differently from the Dataset 1, the analyzed EEG
channels from the two involved subjects statistically answered in different ways to the
recursive channel elimination routine (Section 2.3). For the first involved subject (namely
subject A in the following), the six selected channels were: FCz, C2, CP5, CPz, P6 and PO7,
while for the second subject, similarly named subject B, the electrodes CPz, PO7, POz, PO4,
PO1, O1 were chosen. Signals from the selected channels were sampled at 240 Hz and
bandpass filtered into 0.1–60 Hz.

Stimulation Protocols. For Dataset 1 data collection, the subjects underwent the
4-choice paradigm, already proposed in our previous works [3,23] and reported in Figure 1a.
The protocol, designed according to the odd-ball paradigm, consisted of four visual stimuli,
individually and randomly flashing on a display (25% occurrence probability) with an
inter-stimuli time (ISI) of 200 ms. Each stimulus persisted on the screen for 100 ms.
When the user focused their attention on a particular stimulus (so they are expressing a
direction), the stimulation could be considered a classical binary discrimination problem.
As reported in [3], the above-described protocol can be easily used to drive a prototype
car. A snapshot of the experimental setup for the protocol is shown in Figure 1b. For
the training set, a total of 1520 target trials (with elicited P300) and 4560 non-target trials
(without P300 contributions) were considered per each involved subject. The test set
was, instead, composed of 500 target trials and 1500 non-target trials per subject. The
subjects involved in the BCI experiments are numbered from 1 to 4 in the following. The
composition of the presented dataset is summarized in Table 1.
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Table 1. Training and test datasets composition.

Dataset Sub.
Training Set 1 Test Set 1

P300 non-P300 P300 non-P300

Dataset 1 1 . . . 4 1520 4560 500 1500
Dataset 2 A, B 2550 12,750 3000 15,000

1 Data expressed in trials per subject.

Data composing Dataset 2 were collected considering—as stimulation paradigm—the
6 × 6 characters matrix in Figure 1b. During the competition experiments, each of the
12 between rows and columns flashed randomly with an ISI of 175 ms and a flashing
duration of 100 ms. The subjects were asked to focus on a specific character. Each row
and column were flashed 15 times, constituting a character epoch. The selected character
prediction was typically generated at the end of each character epoch. For the training
set, 85 characters per subject were considered, for a total (per subject) of 2550 target trials
and 12,750 non-target trials. The test set was composed of 100 characters for a total of
3000 target trials and 15,000 non-target ones. The subjects involved in the BCI experiments
are identified by A and B in the following, according to the BCI competition nomenclature.
Table 1 summarizes the training and test datasets composition.

2.2. The Architecture

The network architecture of the proposed single-trial P300 detector is schematically
depicted in Figure 2. The BCI workflow, shown in Figure 2, can be summarized as fol-
lows. First, the EEG signals from the acquisition device (or from the offline test dataset
in Dataset 2) underwent a preprocessing stage. This stage consisted of three main steps:
(i) baseline correction, (ii) windsorizing and (iii) local binary patterning (LBP) symbol-
ization. An optional additive bandpass filtering stage should be included before all the
above-listed ones, if not already embedded in the acquisition device (e.g., g.Nautilus
Research signal conditioner includes this stage before the transmission).
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The first optional stage required a bandpass filter with high and low pass cutoff
frequencies of 0.1 Hz and 20 Hz, respectively. For the sake of repeatability, the filter utilized
for the Dataset 2 corresponded to the 8th order Butterworth included in the g.Nautilus
Research device. The filtered EEGs were then submitted to a trial extraction stage in which a
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specific time window after the stimulus onset was selected. Next, the trials were treated by
a local baseline correction routine, which consisted of aligning each trial around a “zeroed”
initial point. The corrected EEG trials were analyzed by a windsorizing procedure that
truncated signal outliers, giving them a predefined value. Finally, the windsorized signals
went through a last step preprocessing step: the LBP symbolization. This routine, widely
known in the image-processing field, permitted one to analytically transform experimental
measurements such as 1D-time-series into a series of binary strings. As it will become
clearer shortly, this step generated a signal per channel that ranged between 0 and 8 with
single unit discrete steps [27].

The symbolized EEG signals (sEEG in Figure 2) became the input for the proposed
autoencoded CNN. The proposed neural network, expanded at the bottom of Figure 2,
consists of a total of 13 layers, namely L0~13 in the following.

The NN embedded a first batch normalization (limited to the training activity adap-
tion), then it implemented a first tensor slice on the six selected EEG channels (Lambda in
Figure 2). Each sliced channel went through an autoencoder based on 3 fully connected
layers, with rectified linear unit (ReLU) activation function, which represented—in the
order—the encoder, the code, and the decoder of the autoencoder architecture. The last
layer consisted of a dense layer with the same size as the sliced channel in input, with a
linear activation function (not explicitly reported in the model).

The six outcomes were then concatenated in a tensor with size {timesteps, channels}.
Next, the tensor fed a 1D convolutional and subsampling layer for temporal feature
extraction. ReLU activation was also used in this case. The convolutional layer outcome
was then flattened and sent to a deep network made up of 2 dense layers, preceded
by a batch normalization step to avoid distribution shift, which led to signal saturation,
decelerating the learning [28]. During the training, both the dense layers composing the
deep NN were supported by a dropout operation to reduce the overfitting phenomenon
and favor the system generalization. The architecture ended with a single-unit dense layer
and a sigmoid activation that returned a value between 0 and 1. It returned the probability
that the specific sample is related to a P300 trial or a non-P300 one. A threshold system
ensured the binary classification.

2.3. Recursive Channels Elimination

Aiming to reduce the memory usage and to favor the overall system implementability,
a first dimensionality reduction problem on the input size was needed. Considering—for
instance—the g.Nautilus Research solution presented in Section 2.1 for the Dataset 1 data
collection, an input matrix of 24 bits/sample × 32 channels × 250 samples/s should be
analyzed every second (for a total of 24 kB). In a similar way, considering the BCI2000
system used for the Dataset 2 composition, an input matrix of 24 bits/sample× 64 channels
× 240 samples/s, for a total of 46.08 kB, would become the input matrix for the overall
system. Considering a parallel autoencoded CNN implementation as the one proposed in
the Section 2.2, it would result in a strong increment of the network complexity and, thus,
of resources usage. For this reason, an offline recursive channels elimination step preceded
the nominal working of the architecture. This processing step’s role was to find a 6-channel
combination (24 bits/sample × 7 channels × 250 samples/s for an input flow of 5.25 kB/s)
able to ensure the best channel selection criterion value proposed by the authors in [13]. It
is mathematically defined as:

Criterion =
TP

TP + FP + FN
(1)

where TP is the number of P300 trials correctly classified, TN is the number of non-P300
trials correctly classified, FP is the number of non-P300 trials misclassified (classified as
P300 trials) and, similarly, FN is the number of P300 trials misclassified.

For the recursive channel elimination purpose, a provisional NN architecture model
was instantiated. This provisional NN was inspired by the BN3 one proposed in [10] but
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discarded the spatial filtering layer (i.e., the first one). This architecture was chosen because
of its capability to return promising results only by analyzing raw EEG signals. All the
combinations were tested on the provisional neural network considering the training set.
Specifically, a validation split on 30% of the training dataset was considered in a holdout
validation setting and the validation criterion value for each combination was extracted.

Firstly, the routine started with all the 32 (Dataset 1) or 64 channels (Dataset 2); then,
each channel was eliminated, and the criterion score was computed on the remaining 31
(Dataset 1) or 63 (Dataset 1) channels. The procedure was repeated for all the involved
channels. The channel, whose elimination led to the highest criterion score, was discarded.
Next, the procedure was repeated up to finding the best 10 channels per subject. A
statistical analysis was thus carried out to find the channels that are mostly shared among
the involved subjects, aiming to favor the application generalization. Considering Dataset 1,
the six channels that fell within the best ten per all the subjects were Fz, Cz, Pz, PO7, Oz,
PO8. Differently, on the Dataset 2 training set, only the CPz and PO7 channel resulted in
being shared among the two subjects. The remaining best channels for subject A resulted
to be FCz, C2, CP5 and P6, while for the subject B, POz, PO4, PO1, O1.

2.4. Data Preprocessing

Once the stimulation occurred (i.e., row/column or direction flash), the acquisition
device started streaming data to a dedicated parametrizable depth buffer. This buffer depth
defined the time window composing the trial. As introduced in Section 2.2, each trial
underwent three main pre-processing steps: (i) baseline correction, (ii) windsorizing and
(iii) LBP symbolization. This section discusses them in more detail, providing experimental
hyperparameters choice.

Baseline correction. For the proper window definition of the local baseline correction,
firstly, the same provisional NN architecture model presented in Section 2.3 was instan-
tiated. Three different time windows for trials were then analyzed, changing the buffer
size: (i) [0 s, 1 s]; (ii) [0 s, 0.8 s]; (iii) [0.1 s, 0.8 s]. For each of these time windows, two kinds
of baseline extraction approaches were tried: (i) baseline calculated as the average of the
first 50 ms of the time window or (ii) baseline calculated as the average of the first 100 ms
of the time window. In an analog way to the procedure described in Section 2.2, all the
combinations were tested on the provisional neural network considering the training set.
Specifically, a validation split on 30% of the training dataset was considered in a holdout
validation setting. The chosen assessment criterion was the harmonic mean of precision
and recall, the F1-Score, which is defined as:

F1 =
2TP

2TP + TN + FP + FN
(2)

A grid search routine among the analyzed combinations returned that the best window
and, thus, the selected one was the range [0.1 s, 0.8 s] for a total of 168 samples, while the
chosen baseline correction consisted of extracting the average in the interval [0.1 s, 0.15 s]
for a total of 12 samples. The average value was then subtracted for all the trial values.

Windsorizing. Subject movements, eye movement, eye blinking, and muscle activity
can cause large amplitude outliers in the EEG. To reduce the effect of these outliers, the
data from each channel should be windsorized according to the preprocessing guidelines
proposed for a P300-based BCI provided by the authors in [29]. As the first step, for each
channel, the 1st and the 99th percentile, all over the training set, were computed. Next,
all those amplitudes lower than the 1st percentile were replaced with the 1st percentile
value. Similarly, all those amplitude values higher than the 90th percentile were assigned
to the 99th percentile fixed value. the known percentile presence, in terms of trial length
percentage, can represent a useful indicator for the most informative channels. For instance,
it was observed that several trials (~100 P300 trials, ~200 non-P300 trials) in Dataset 2
were affected on the Fz channel by more than the 40% of winsorizing values. Optical
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inspection confirmed the presence of physiological and non-physiological artifacts on this
channel [30].

LBP symbolization. The LBP operator was introduced in [31] as a powerful tool
for the texture description and defined as a gray-scale invariant texture measure. In that
application, for each pixel in a 2D image, a binary code is produced by considering a
central pixel as a threshold and analyzing 8 neighbor pixels. This approach also found
large application in treating experiments based on 1D-time series such as EEG analysis,
especially in seizure detection [27]. In this paper, we propose the application of a custom
LBP symbolization routine aiming to improve the network performance. The 1D-LBP
method is described step-by-step by considering a segment of 40 samples from 168 sample
EEG trial, as per Figure 3a. The LBP routine starts identifying all the onset points for the
binary code assessment, namely P1, . . . 54 in Figure 3a. These P samples have a range that
goes from 1 to 160 (8 samples are left on the right of P54 to avoid index overflow) with
step 3. Considering a comparison window of n = 8 samples, as shown in Figure 3a, the
amplitude value related to the jth sample (Pj) is set as a local threshold and the following
8 samples are compared with it. The resulting LBP code is given by:

sEEG(k) = ∑
Pj+n
i=Pj+1

((
EEG(i)− EEG

(
Pj
))

> 0
)

with Pj = 1 : 3 : 160 (3)

where sEEG(j) is the kth sample of the sEEG signal in Figure 3b,
(
EEG(i)− EEG

(
Pj
))

> 0
is a logic condition returning 1 if EEG(i) is higher than the EEG in the sample Pj, zero
otherwise. The resulting sEEG signals consisted of 54 samples ranging between 0 and 8.
The preprocessed data were then ready to be analyzed by the proposed autoencoded CNN.
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routine application on a 168 samples trial.

2.5. Autoencoded-CNN: Network Topology

The here proposed network consists of 6 parallel 5-layer autoencoder structures
followed by 6 sequential layers.

Specifically, the first layer L0 consists of a batch normalization layer. This layer aims
to normalize the input data with respect to the mean and the standard deviation of the
training batch. In the very first stage, it is necessary to feed the network with the proper
data format. The resulting tensor, with size (54,6), is used to feed 6 parallel autoencoders,
one per channel. The autoencoder network is the same for all 6 parallel branches and is
reported in Figure 4.
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Autoencoders are neural networks with the aim of generating new data by first
compressing the input into a space of latent variables and, subsequently, reconstructing
the output based on the acquired information. This type of network consists of two parts:
encoder and decoder. The code is placed in the middle of the coding–decoding procedure.

The encoder is the part of the network that compresses the input in a space of latent
variables, and which can be represented by the encoding function h = f (x). The decoder
is the part that deals with reconstructing the input based on the information previously
collected. It is represented by the decoding function r = g (h). The use of an autoencoder
in this P300 detector architecture lies in the fact that training the autoencoder to copy the
input, the space of latent variables h (code) can take on useful characteristics. This can be
achieved by imposing limits on the coding action, forcing the space h to dimensions smaller
than those of x. In this case, the autoencoder is known as undercomplete. By training the
undercomplete space, we bring the autoencoder to grasp the most relevant characteristics
of the training data [32].

For this aim, the L1 of the autoencoder in Figure 4 consists of a slicing procedure,
aiming to singularly scorporate the 6 channels. The resulting tensor shape is (16,) according
to Tensorflow and Keras shape nomenclature. The encoder part is realized utilizing a
fully connected layer L2 with 16 units activated by the ReLU function. The ReLU activa-
tion function has been largely used in this architecture because the efficient computation
ReLu(x) = max(x,0) permits a faster convergence during training [33]. Moreover, used in
deep networks, ReLU does not saturate, avoiding the vanishing gradients problem [34].
L3 serves as code layer and is composed of an 8-unit dense layer with ReLU activation. It
allows one to compress the initial tensor extracting only meaningful features. L4 acts as
a decoder and is a mirrored version of L2. The output layer, the L5, is a fully connected
layer with the same size as the input tensor. It does not have an activation function to
properly reconstruct the input in a more useful way. The autoencoder structure has been
distinctly compiled with respect to the remaining architecture. Specifically, the model fit
was based on a mean squared error (MSE) loss function, a root mean square propagation
(RMSprop) optimizer and monitoring the mean absolute error (MAE) as a metric for the
weights update. A minibatch size of 32 samples was selected for the application. The fit
resulted in 2144 parameters properly freezing for the implementation in the overall archi-
tecture. Table 2 summarizes the autoencoder characteristics focusing on the distribution of
the parameters.
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Table 2. Autoencoder layers’ characteristics.

Layer Input Type Output # Parameters

L1 (54,6) tf.Slice (54,) 0
L2 (54,) Dense(16)+ReLU (16,) 912
L3 (16,) Dense(8)+ReLU (8,) 136
L4 (8,) Dense(16)+ReLU (16,) 144
L5 (16,) Dense(54) (54,1) 952

The tensors resulting from the parallel autoencoding were then concatenated along
the 3rd dimension resulting in the initial size (54,6). The resulting tensor is then sent to
the 8-layers CNN presented in Figure 5. Since the batch normalization step can reduce the
covariate shift in neural network training, another batch normalization was added in the
beginning of the CNN following the guidelines in [35]. It constitutes the L7.
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The normalized tensor was sent to a 1D convolutional layer, the L8, for temporal
feature extraction and subsampling. The convolutional kernels had size 16 × 1 with ReLU
activation and a stride of 8 samples. For this reason, the time series was subsampled,
reaching a length of only 6 samples. The resulting tensor of shape (6,16) was flattened by
L9, realizing a (96,) size feature vector. The subsampling rate of 8 led to a temporal filter
length of about 100 ms. Notably, the temporal convolution over L8 was not overlapped to
save a lot of computational effort and avoid redundant features for the following layers.

The normalized vector from L10 went through 2 sequential dense layers, L11 and L12,
with the same characteristics: 64 units and ReLU activation. Both the layers included a
dropout stage with a dropout rate of 0.4 from a trial-and-error application. The dropout
step was necessary to reduce coadaptions between neurons [36]. It forced the neuron to
learn more robust features, limiting, in this way, the overfitting phenomenon. Only during
the forward propagation training, with a dropout rate of 0.4, as in our application, every
neuron of the layer has the 0.6 probability of being set to 0. During the test, every neuron is
preserved. The outer layer, L12 consists of a single unit layer (binary classification) with
a sigmoid activation function. This activation function returns a number in the range
[0, 1] that represents the probability of a trial to be a P300 trials. Setting a threshold to
0.5 makes it possible to discriminate if there is a P300 or not. Table 3 summarizes the
network characteristics, focusing on the distribution of the parameters.
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Table 3. Autoencoded CNN Layers’ characteristics.

Layer Input Type Output # Parameters

L6 (54,6) Concatenate (54,6) 0
L7 (54,6) BatchNormalization (54,6) 24
L8 (54,6) Conv1D+ReLU (6,16) 784
L9 (6,16) Flatten (96,) 0
L10 (96,) BatchNormalization (96,) 448
L11 (96,) Dense(64)+ReLU (64,) 7232

Dout1 Dropout (0.4) 0
L12 (64,) Dense(64)+ReLU (64,) 4160

Dout2 Dropout (0.4) 0
L13 (64,) Dense(1)+Sigmoid (1,) 65

The compiling settings for the overall neural network training included a binary cross-
entropy loss function and an Adam gradient descendent optimizer. Specifically, the Adam
optimizer learning rate was set to 10−4 with no decay, while its parameters β1, β2, and ε
were set, respectively, to 0.9, 0.999, and 10−8 as per [37]. The batch size for the stochastic
gradient descendent was set to 64.

The proposed model has a total of 14,857 parameters, of which only 12,477 have been
trained, since 2380 came from the freezed autoencoder section.

The whole neural network described above was realized in Python by using the Keras
library. Next, the model was then saved and imported in the STM32CubeMX environment
for code migration (Python→ C), quantization cross-check, and on-board validation.

2.6. Output Management

The outputs provided by the classifier were managed differently for each analyzed
dataset. Considering Dataset 1, each selection of direction to be taken consisted of 2 direc-
tions scintillations. Ideally, every 8 flashes (2 per each target), the decision was taken as
the target that returns the maximum occurrence. Eight flashes corresponded to a decision
every 1.4 s considering an ISI of 175 ms.

In similar way, the flashing of 6 rows and 6 columns in the experiment was repeated
15 times per character epoch [8]. Initially, this procedure was chosen because the P300 detec-
tion in a single trial over 36 characters was very low. The probability values corresponding
to multiple row/column flashing could then be accumulated (repetitions number). Thus,
the target character can be defined as that character that corresponds to the row and column
with the highest occurrence value.

3. Results

Section 3.1 is dedicated to the system performance extraction with respect to both the
datasets. For this purpose, four metrics are monitored: precision, recall, binary accuracy
ad F1 score as defined in Equation (1). Section 3.2 analyzes the BCI performance in terms
of character recognition accuracy providing comparison graphs with respect to the state
of the art. In Section 3.3, the ITR is analyzed for both the proposed applications, in order
to evaluate the system speed. Section 3.4 outlines the LBP routine impact on the P300
detection accuracy metrics by considering several neural network architectures. Finally,
Section 3.5 is dedicated to the architecture implementation on a dedicated microcontroller.

3.1. BCI Performance: Single-Trial Classification Metrics

The performance of the single-trial P300 detection is analyzed in the following by means
of four metrics: precision, recall, binary accuracy ad F1 score as defined in Equation (2).

These metrics are defined as:

Precision (%) = 100 ∗ TP
TP + FP

(4)
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Recall (%) = 100 ∗ TP
TP + TN

(5)

Acc. (%) = 100 ∗ TP + TN
TP + TN + FP + FN

(6)

where TP is the number of P300 trials correctly classified, TN is the number of non-P300
trials correctly classified, FP is the number of non-P300 trials misclassified (classified as
P300 trials) and, similarly, FN is the number of P300 trials misclassified.

Among the above-mentioned metrics, the F1-score is well-correlated with the direction
or character recognition accuracy and, thus, generally considered the more reliable metrics
for imbalanced datasets such as P300-based ones. The other metrics suffer from the
imbalanced nature of the dataset [10].

To address the problem of imbalanced datasets, in this work, a mixed approach
undersampling/oversampling was adopted. Data from both datasets underwent a first
stage of dataset undersampling based on the NearMiss version 2 from imblearn Python
library and, secondarily, upsampling by the RandomOverSampler method from the same
library [38].

For the sake of a coherent comparison, the same metrics were extracted from other
state-of-the-art solutions which analyzed the same dataset: SVM-1 [13], CNN-1 [12],
BN3 [10], ConvLSTM [11], their ensemble provided by [11], PCA-NN [22], the ERPENet [24].
Table 4 reports the comparison results over the BCI competition dataset (Dataset 2). Only
the CNN-1 [12], BN3 [10], ConvLSTM [11], BN3+ConvLSTM [11] provided a complete
overview of these metrics in their works. ERPENet by [24] performs a general average
plus standard deviation value over both the subjects involved in the Dataset 2 composition
(i.e., 83.54 ± 1.53). However, no explicit reference is reported with respect to the accuracy
extraction modalities (e.g., validation or testing related accuracy). PCA-CNN [22] and
SVM-1 [13] do not provide the investigated metrics. Moreover, Table 4 reports two versions
of the here-proposed autoencoded CNN. A first version, named autoencoded CNN in
Table 4, is the here-presented method in all of its steps, while the second version, i.e.,
autoencoded CNN no LBP, consists of the same model without the LBP preprocessing
step but with an average based downsampling to match the LBP code length, leaving the
number of the model parameters unaltered.

Table 4. Performance of different models on test dataset from Dataset 2.

Subject Model TP FP TN FN Prec. (%) Recall (%) Acc. (%) F1-Score (%)

A

O
ur

W
or

k Autoencoded CNN 2017 3499 11,501 983 36.57 67.23 75.10 47.37
Autoencoded CNN

no LBP 1951 3419 11,581 1049 36.33 65.03 75.18 46.62

St
at

e-
of

-t
he

-A
rt

So
lu

ti
on

s

BN3 1910 3771 11,229 1090 33.62 63.67 72.99 44.00
ConvLSTM 1928 3418 11,582 1072 36.06 64.26 75.05 46.20

CNN-1 2021 4355 10,645 979 31.70 67.37 70.37 43.11
BN3+ConvLSTM 1919 3299 11,701 1081 36.78 63.97 75.67 46.70

ERPENet Data N.A. 83.54 * Data N.A.
PCA-CNN Data Not Available (N.A.)

SVM-1 Data N.A.

B

O
ur

W
or

k Autoencoded CNN 1996 2108 12,892 1004 48.64 66.53 82.71 56.19
Autoencoded CNN

no LBP 1988 2278 12,722 1012 46.60 66.27 81.72 54.72

St
at

e-
of

-t
he

-A
rt

So
lu

ti
on

s

BN3 2009 2671 12,329 991 42.93 66.97 79.66 52.32
ConvLSTM 2099 2670 12,330 901 44.01 69.97 80.16 54.04

CNN-1 2035 2961 12,039 965 40.73 67.83 78.19 50.90
BN3+ConvLSTM 1956 2136 12,864 1044 47.80 65.20 82.33 55.16

ERPENet Data N.A. 83.54 * Data N.A.
PCA-CNN Data N.A.

SVM-1 Data N.A.

* The work reports only the average value of accuracy considering both the subjects.
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The system performance has been also validated on the prototype car driving dataset,
where the decision is among four possible directions. Table 5 summarizes the results
obtained on the single-trial P300 detection all over the four analyzed subjects.

Table 5. Performance on test dataset from Dataset 1.

Subject TP FP TN FN Prec. Recall Acc. F1-Score

1 364 269 1231 136 0.5750 0.7280 0.7975 0.6425
2 351 176 1324 149 0.6660 0.7020 0.8375 0.6835
3 349 99 1401 151 0.7790 0.6980 0.8750 0.7363
4 364 135 1365 129 0.7332 0.7420 0.8680 0.7376

To provide a complete overview of the system workflow from the acquisition up to
the mechatronic actuation, a snapshot from the in vivo proof of concept validation on the
prototype car model designed in our previous work [3] is shown in Figure 6.
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Figure 6. Snapshot of an in vivo proof of concept validation on the acrylic prototype car system
designed in [3].

3.2. BCI Performance: Character Recognition Accuracy

Figure 7 shows the accuracy rate in recognizing among the 100 test characters provided
with Dataset 2 versus the number of considered repetitions. Figure 7 excludes from the
comparison the ConvLSTM and the ensemble model, because no results are provided in
the related articles [11]. It must be specified that no trial accumulation nor average have
been carried out concerning the here-proposed method. The values reported in Figure 8
are fully extracted from a single-trial occurrence over all the repetitions according to the
procedure reported in Section 2.6.
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3.3. BCI Performance: Information Translate Rate

Another metric widely used to characterize a BCI system in terms of speed is the
information translate rate or ITR. This parameter provides an idea of the number of
bit/minute that the BCI architecture can provide, taking into account the classification
accuracy. As per [19,39], ITR can be defined as:

ITR =
60(P∗ log2(P) + (1− P) log2

(
1−P
N−1

)
+ log2(N))

T
(7)

where N represents the number of recognizable classes (N = 36 in the speller problem, N = 4
in the prototype car application), P represents the accuracy rate in character/direction
recognition and T is the time needed for characters/directions recognition.

Concerning the T parameter, it assumes different values for the different recognition
problems. Considering the recognition of the direction for the prototype car driving
application, some considerations should be taken. Each direction scintillation lasts about
100 ms with a blank status of about 75 ms for a total of 4 directions* 175 ms × nrep =
700 ms × nrep, with nrep number of repetitions needed to provide the direction choice. A
pause of 500 ms follows the selection in order to ensure a driving fluidity. Considering
the above-mentioned timing constraints, the T value for this specific application can be
extracted by:

T = 0.5 + 0.7∗nrep with nrep = {1, 2} (8)

In a similar way, rows/columns scintillation lasts about 100 ms interspersed by a 75
ms pause for a total of 12 among rows and columns* 175 ms × nrep = 2100 ms × nrep, with
nrep number of repetitions needed to provide the character choice. A pause of 2.5 s follows
the selection. Considering the above-mentioned timing constraints, the T value for this
specific application can be extracted by:

T = 2.5 + 2.1∗nrep with nrep = {1 . . . 15} (9)

Figure 8 shows the ITR achieved by the proposed algorithm and the above analyzed
state-of-the-art solutions considering the accuracy rate from the Dataset 2.

Considering the Dataset 1, the ITR achieved by the autoencoded CNN on a single or on
a double repetition to decide the prototype car direction is 32.44 bit/min and 28.35 bit/min,
respectively.

3.4. Local Binary Patterning Impact on BCI Performance

To analyze the LBP impact on other neural network architectures used in the P300 recog-
nition analysis context, the CNN-1 [12], BN3 [10], ConvLSTM [11], BN3+ConvLSTM [11]
structure have been reproposed in Python by using the Keras library with Tensorflow
backend [40]. The implemented architectures have been realized according to the details
provided in the related works. Specifically, BN3 architecture has been implemented in two
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forms: (i) the original one, namely BN3 and (ii) a BN3 version without the first spatial filter-
ing stage, named BN3(ns) in the following. The above-mentioned architectures have been
tested on the 6-channels EEG setup defined by the recursive channel elimination procedure
provided in Section 2.3. Results concerning the LBP impact on the BCI performance are
shown in Table 6.

Table 6. LBP impact on different state-of-the-art neural network architectures.

Subject Model TP FP TN FN Prec. (%) Recall (%) Acc. (%) F1-Score (%)

A

O
ur

W
or

k

Autoencoded CNN 2017 3499 11,501 983 36.57 67.23 75.10 47.37

St
at

e-
of

-t
he

-A
rt

So
lu

ti
on

s

BN3 1096 3013 11,987 1904 26.67 36.53 72.68 30.83
BN3(ns) 1611 2462 12,538 1389 39.55 53.70 78.61 45.55

ConvLSTM 956 1998 13,002 2044 32.36 31.87 77.54 32.11
CNN-1 1312 2144 12,856 1688 37.96 43.73 78.71 40.64

BN3+ConvLSTM 1496 2464 12,536 1504 37.78 49.87 77.96 42.99
BN3(ns)+ConvLSTM 1515 2406 12,594 1485 38.64 50.50 78.38 43.78

B

O
ur

W
or

k

Autoencoded CNN 1996 2108 12,892 1004 48.64 66.53 82.71 56.19

St
at

e-
of

-t
he

-A
rt

So
lu

ti
on

s

BN3 1401 1975 13,025 1599 41.50 46.70 80.14 43.95
BN3(ns) 1812 2139 12,861 1188 45.86 60.40 81.52 52.14

ConvLSTM 1035 1105 13,895 1965 48.36 34.50 82.94 40.27
CNN-1 1735 2149 12,851 1265 44.67 57.83 81.03 50.41

BN3+ConvLSTM 1098 1989 13,011 1902 35.57 36.60 78.38 36.08
BN3(ns)+ConvLSTM 1523 2145 12,855 1477 41.52 50.77 79.88 45.68

* The work reports only the average value of accuracy considering both the subjects.

3.5. Microcontroller Implementation

One of the main focuses of the present paper has concerned the full compatibility of
the NN in a microcontroller implementation context.

For this aim, a first important comparison that should be carried out before starting the
implementation analysis, concerns the number of total parameters composing each model
analyzed up to now, as well as the amount of data request in input to permit the model
working properly. Figure 9 summarizes these parameters via histogram view, comparing
only those above-introduced methods that provided these metrics in their works [10–12].

Figure 9. Histogram plot of the number of NN model parameters and input data size (bytes) for the analyzed methods.
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For the complexity analysis, the proposed model was realized in Python by using
the Keras library with Tensorflow backend [40]. Next, the different NNs composing the
final autoencoded-CNN architecture were extracted as separate .h5 models for the C-code
generation and combination. The target hardware chosen for validation purposes is the
Nucleo board L476RG.

For this aim, the Nucleo board L476RG was instantiated by using the STM32CubeMX
peripheral initializer [41]. The STM32CubeMX extension, i.e., X-CUBE-AI, was used to
integrate the NN model for a real-time inference assessment. This package provides an
automatic and advanced NN mapping tool to generate and deploy optimized and robust
C-model implementation of a pretrained NN for embedded systems with limited and
constrained hardware resources. This package was chosen because of the possibility of
obtaining post-training quantization support for the Keras models, which allows the user
to check the error related to the quantization operated to translate the Keras model in a
C one.

A simple validation mechanism was implemented to check the accuracy of a C-
generated method and the uploaded pretrained model from Keras. The validation engine
procedure is schematized in Figure 10. It consists of sending a preprocessed dataset (or a
random number generator with mean and standard deviation from the input dataset) in
two dedicated branches: (i) the original model framework and (ii) a serial bridge toward the
Nucleo board that runs the translated C-model. Next, the labels from the model execution
block are used as a reference to be compared with the prediction from the COM bridge.
The comparison is then used to provide several complexity metrics. The metrics analyzed
in this section are RAM that indicates the size (in bytes) of the expected R/W memory
used to store the intermediate inference computing values and ROM/Flash, indicating the
size of the generated read only memory to store weight and bias parameters. Finally, the
complexity metric is provided by the Multiply and ACCumulate (MACC) operations that
universally define the functional complexity of the imported NN.
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Figure 10. Validation on target flow by X-CUBE-AI.

As a first step, we evaluate the implementation metrics for the first autoencoder
stage. Overall, it results in a complexity of 2184 MACC, a flash occupation of 8.38 kB
over 1024 kB available and a RAM occupation of 544 B, comprising a single branch input
and a single branch output vector (3.264 kB in total). RAM also comprises 96 B from
activation. The MACC parameter provides an estimation of the autoencoder operative
timing. Since with an STM32 Arm® Cortex ®—M4, each MACC corresponds to about nine
clock cycles and considering the system clock set to 80 MHz, the time needed to encode
and decode the symbolization code is ~246 µs. Validated on target, this timing request
resulted to be 307 µs. Details about the Flash utilization, MACC usage and validated
timing per layer are provided in Table 7, while the RAM occupation is shown layer by
layer in Figure 11. Finally, the quantization comparison returns an error on the prediction
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matching of 4.92 × 10−7, largely below the threshold of 0.01 that ensures a good model
match regardless of the quantization.

Table 7. Autoencoder layers’ ROM utilization and MACC.

Layer Type Flash (B) MACC Timing (ms)

L2,1 Dense(16) 3648 912 0.113
L2,2 ReLU - 16 0.007
L3,1 Dense(8) 544 136 0.024
L3,2 ReLU - 8 0.005
L4,1 Dense(16) 576 144 0.028
L4,2 ReLU - 16 0.007
L5 Dense(54) 3808 952 0.124
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As a second step, we evaluate the layers composing the remaining sequential structure.
Overall, it results in a complexity of 17,995 MACC, a flash occupation of 48.74 kB over
1024 kB available and a RAM occupation of 2.79 kB for the I/O management. RAM also
comprises 1.48 kB from activation layers. The MACC parameter allows one to estimate
an operation timing of about ~2.02 ms @ 80 MHz. Validated on target, this timing request
resulted to be 2.663 ms. Details about the Flash utilization, MACC usage, and validated
timing per layer are provided in Table 8, while the RAM occupation is shown layer by
layer in Figure 12. Finally, the quantization comparison returns an error on the prediction
matching of 8.98 × 10−7, largely below the threshold of 0.01.

Table 8. CNN layers’ ROM utilization and MACC.

Layer Type Flash (B) MACC Timing (ms)

L7 BatchNormalization 48 672 0.067
L8 Conv1D+ReLU 3136 5504 1.231
L10 BatchNormalization 896 224 0.028

L11,1 Dense(64) 28,928 7232 0.808
L11,2 ReLU - 64 0.016
L12,1 Dense(64) 16,640 4160 0.746
L13,2 ReLU - 64 0.016
L13,1 Dense(1) 260 65 0.014
L13,2 Sigmoid - 10 0.008
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4. Discussion

The proposed single-trial P300 detector based on an autoencoded CNN-like architec-
ture was designed with a first main goal of achieving the maximization of the ITR, while
keeping high recognition accuracy. As second goal, we investigated the full implementabil-
ity of the whole architecture on a low-cost dedicated microcontroller-based platform, the
STM32L476RG Nucleo board, minimizing the resources utilization.

Concerning the single-trial P300 detection framework, the experimental results on the
same dataset from the BCI competition III (i.e., Dataset 2), reported in Table 4, showed how
on subject A, the proposed autoencoded CNN model ensures a precision comparable with
the best model that is the ensemble one composed by BN3 and ConvLSTM. The best model
in terms of recall results to be CNN-1; however, the autoencoded CNN model achieved
a competitive recall (−0.14%) in the same application. The autoencoded CNN design
had a focus on a metric that results in a tradeoff among precision and recall, the F1-score.
Considering this metric, the autoencoded CNN ensures an F1 score of 47.37%, which is
+0.67% with respect to the ensemble model. On subject B, the proposed model performs
better than the other solutions in terms of precision, binary accuracy and F1 score, with
+0.84%, +0.38% and +1.03%, respectively. The model that presents the best recall is the
ConvLSTM.

To provide a complete overview of the multi-objective optimization achieved by the
proposed method, a bubble scatter plot reporting precision on y-axis, recall on x-axis and
F1-score on the bubble dimension is presented in Figure 13. All the parameters reported in
Figure 13 are extracted by averaging values from subjects A and B from Dataset 2.
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The red model names are related to the here-presented one as per the definition in
Table 4. Considering the scatter plot’s nature, the best single-trial P300 detector system
should lie in the top-right part of the plot, which means precision and recall are maximized.
The bubble should also be as large as possible to maximize the F1-score.

The scatter plot in Figure 13 shows how the autoencoded CNN outperforms on
average the other state-of-the-art solutions in terms of precision and F1-score, placing itself
in the highest top-right corner of the comparison plane. It demonstrates the capability of
the model in proper weighting imbalanced datasets such as P300-based ones, where the
target trials are largely below the not target ones (target: 16.67% of the total dataset, not
target: 83.33%). Moreover, results concerning (Table 5) the single-trial P300 recognition
in a prototype car driving experiment showed that the system performs better in a four-
choice BCI paradigm than a 36-character P300 speller [42,43]. Indeed, with an average
precision of 68.83 ± 8.86%, the system overcomes its own performance on the P300 speller
problem by about + 26.23%. In a similar way, an improvement of +4.87% has been recorded
(71.75 ± 2.10% versus 66.88% from P300 speller) in recall metric and +5.54% in the binary
accuracy context (84.45 ± 3.53% versus 78.91% from P300 speller). Finally, the F1-score
also returns an improvement of +18.22%, considering an average recall of 51.78% in the
P300 speller problem and 70.00 ± 4.58% recorded in the prototype car driving problem.
The F1-score improvement between the two datasets can be related to the lower number
of choices in the four-choice odd ball paradigm (Dataset 1) with respect to the 36-choice
paradigm of the P300 speller. Indeed, in the first case, the ratio between target and not
target stimulations is 1:4, making the dataset “less unbalanced” than the P300 speller
case (1:6), negatively influencing the harmonic mean between precision and recall [44].
Additionally, no explicit information has been provided by the Wadsworth Research Center
NYS Department of Health for data collection routines at the international BCI competition
III. EEG channels’ data have been provided with different SNRs, and a lot of outliers have
been recorded on the Fz channels, which is one of the most informational ones according
to the study conducted by authors in [22]. The data collection routine for the car prototype
fluid driving has been—instead—conducted in a controlled environment, by regulating
lights and minimizing distracting phenomena and with a real-time impedance check on
each electrode. It could result in a performance improvement.

This paper also presented the character recognition rate results in Figure 7. The exper-
iment conducted on the test set by Dataset 2 [21] showed how the proposed autoencoded
CNN model performs better than the other solutions for a few row–column repetitions
(considering the range going from 1 to 3 repetitions). Then, the number of FP starts to
become critical, reducing the accuracy in the comparison. Overall, the autoencoded CNN is
able to achieve an average character accuracy of the 42% after a single character repetition,
overcoming by about +7.5% the second-best architecture, the BN3 one. After 15 repetitions,
the accuracy reached, on average, is 90.5%, about−6.5% under the best model implemented
by the joint application of PCA and CNN.

Next to these accuracy values, we analyzed another metric widely used to characterize
a BCI system in terms of speed, the ITR, which constitutes one of the main constraints of
this design. In this context, results in Figure 8 show that the autoencoded CNN ITR is able
to reach on average 16.83 bit/min with a single repetition, performing better than other
solutions. The ITR performance after eight repetitions degrades proportionally with the
accuracy rate, losing—on average—1.64 bit/min if compared to the best solution realized
via the BN3 network. Considering subject B, the system achieves an ITR of 26 bits/min
that formally means one correctly brain digitized character every 2 s. In the same context,
with an ITR of 32.44 bit/min, the user can formalize and actuate a direction choice about
every 1.8 s.

Contextually, the paper also investigated the impact of the proposed LBP routine
as the preprocessing stage for several state-of-the-art neural networks. Specifically, the
CNN-1 [12], BN3 [10], ConvLSTM [11], BN3+ConvLSTM [11] structure have been repro-
posed and used as the final classification step, substituting the raw EEG signals from
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64 channels with the six-channel EEG setup defined by the recursive channel elimina-
tion procedure (Section 2.3). The BN3 architecture has been reproposed in two forms:
(i) the original one, BN3, and (ii) a BN3 version without the first spatial filtering stage (i.e.,
BN3(ns)).

According to the results in Table 6, a scatter plot reporting precision on the x-axis and
recall on the y-axis is depicted in Figure 14. As per Figure 13, all the parameters reported
in Figure 14 are extracted by averaging values from subjects A and B from Dataset 2.
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Considering the scatter plot (Figure 14), the best single-trial P300 detector system
should lie in the top-right part of the plot, which means precision and recall are maximized.

It is interesting to note that the LBP routine works better as a preprocessing stage
for those neural networks that implement a first 1D convolutional stage dedicated to the
temporal feature extraction (temporal convolution), as highlighted by the brown colored
models in Figure 14. For instance, by using the LBP as a preprocessing stage, the BN3
architecture without a spatial filtering layer (i.e., BN3(ns)) performs better (+7.46% on
F1-score) than its version with a first stage of spatial filtering (i.e., BN3). The problem
with these CNNs with the LBP routine seems to lie in the presence of the first spatial
convolutional operation that converts each column of spatial data from the input tensor in
an abstract feature map. This feature map is—thus—sent to a temporal convolution layer
that analyzes—in this way—an abstract temporal signal rather than a raw temporal one.
This problem has been also analyzed by the authors in [45], which demonstrated that the
introduction of a spatial convolution layer as a first stage in a P300 detector application
strongly increased the following CNN complexity to achieve good results. Since most of the
main P300 features have a temporal nature, the presence of this spatial filtering degrades
the LBP capabilities. The introduction of an autoencoder between the LBP and the first
temporal convolution stage also improves the neural network’s performance, leading to a
+4.21% on F1-score for the BN3(ns), +5.31% for the ensemble BN3(ns)+ConvLSTM and a
+1.24% for the CNN-1. The reason lies in the capabilities of the encoder–decoder process to
denoise the signal, while preserving the useful temporal information [32].

Beyond the ITR-accuracy tradeoff, the second main design goal for the here-presented
system was the architecture implementability on a low-cost microcontroller or dedicated
embedded platform. For this reason, Figure 9 summarizes the number of implemented
parameters and the memory usage for those above-introduced methods that provided these
metrics in their studies [10–12]. Results in Figure 9 show how with a total of 14,857 param-
eters, the here-proposed autoencoded CNN lies largely below most of the state-of-the-art
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solutions (about 21,140 parameters less than the CNN-1). Only the ConvLSTM by [11], with
11,213 parameters, slightly reduces the neural network complexity (−3644 parameters)
with respect to the here-proposed method; however, it requires the parallel analysis of
trials from 64 EEG channels strongly increasing the input data size (+37.12 kB w.r.t. the au-
toencoded CNN). It must be specified that all the compared models exploit a high amount
of data as input. Indeed, all of them consider data from all the 64 channels and different
trial lengths against a monitoring of only six channels proposed in the present work. Nev-
ertheless, assessing 64 channels in parallel with a minimum sampling rate of 240 Sa/s is
not practically applicable in mobile EEG applications equipped with microcontrollers due
to the overflow of RAM capabilities. For this aim, the present work uses only six properly
selected channels, which strongly reduce the memory resources consumption. Considering
this first complexity view and accuracy results, we can infer that the autoencoded CNN
provides the best tradeoff between accuracy, speed, and complexity.

Concerning the full architecture implementation, the autoencoded CNN was imple-
mented and validated on a Nucleo board L476RG placed in a COM bridge and in the
inference results with the realized Keras model. Overall, the whole system (Autoencoder +
CNN) results in a complexity of 20,179 MACC, a flash occupation of 57.11 kB over 1024 kB
available and a RAM occupation of 2.85 kB over 96 kB available on the board.

The MACC parameter allows one to estimate an operation timing for the overall
inference at about ~2.27 ms @ 80 MHz. Validated on target, this timing request resulted to
be 3.175 ms. The quantization comparison returns an error on the prediction matching of
4.61 × 10−6, below the threshold of 0.01.

It must be also specified that the here=proposed method, with a minimum flash
request of 57.11 kB and a minimum RAM of 2.85 kB (without compression process), resulted
to be easily implementable on all the STM32 microcontrollers family above the F3 one. It
leads to a low-cost solution for the realization of a potentially dedicated embedded platform
if we consider—for the sake of example—the use of an STM32F301C8 microcontroller with
a cost of USD 0.16 as a central computation core. The use of this low-cost microcontroller
ensures all the needed memory capabilities without any additive external memories need.
The proposed microcontroller also includes several communication protocols to interface
low-cost WiFi dongles such as an ESP8266 to interface the wireless EEG headset.

5. Conclusions

In this paper, a single-trial P300 detector that combines a novel pre-processing stage
based on the EEG signals symbolization and an autoencoded convolutional neural network
(CNN), maximizing the accuracy in single-trial P300 detection, for a low number of stimuli
repetition, enhancing—as a consequence—the BCI speed in terms ITR and ensuring the
full compatibility with microcontrollers implementation, has been presented. Specifically,
the proposed system exploited data from a small number of selected EEG channels to
address the memory consumption issue. Next, a preprocessing routine which includes:
(i) baseline correction, (ii) windsorizing and (iii) LBP symbolization was implemented and
studied. The symbolized EEG signals were then sent to an autoencoder model to emphasize
those temporal features that can be well comprised by the following sequential network
composed of seven layers. This latter sequential structure is made up of a combination
of a 1D convolutional layer for the temporal filtering, three fully connected layers, batch
normalization and dropout stages. The method was tested on two different datasets: one
from a P300 speller application in BCI competition III data and one from self-collected data
implementing a fluid prototype car driving. The experimental results showed that, in a
P300-speller application, the proposed method was able to outperform the state of the art in
terms of F1-Score = 51.78 ± 6.24%, ensuring a +5 bits/min of average ITR if compared with
other state-of-the-art solutions. The same method, applied to the prototype car driving ex-
periment, provided an F1-score of 70.00% and an ITR > 30 bit/min, allowing a car direction
change every 1.8 s. The implementation feasibility assessment on an STM32L4 microcon-
troller showed that the overall system occupies 5.57% of the total available ROM, ~3% of
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the available RAM. Considering this complexity assessment, the ITR and accuracy results,
it can be inferenced that the autoencoded CNN provides a good tradeoff between accuracy,
speed, and complexity to realize a single-trial P300 detector. Moreover, an example of
design conceptualization has also been proposed and discussed, demonstrating the P300
detector implementability on small footprint and low-cost dedicated microcontroller-based
boards. In a real-life scenarios application context, the here-proposed P300 detector was
demonstrated to be able to successfully expand the capabilities of autonomous driving
systems, while its application in brain-controlled assistive robotics provided promising
initial results.

Author Contributions: Conceptualization, D.D.V. and G.M.; methodology, D.D.V. and G.M.; soft-
ware, G.M.; validation, D.D.V. and G.M.; formal analysis, D.D.V. and G.M.; investigation, D.D.V. and
G.M.; data curation, G.M.; writing—original draft preparation, D.D.V. and G.M.; supervision, D.D.V.;
project administration, D.D.V.; funding acquisition, D.D.V. Both authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Institutional Review Board (or Ethics Committee) of
Politecnico di Bari (Prot. 0016364—8 June 2021).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Allison, B.Z.; Kübler, A.; Jin, J. 30+ years of P300 brain–computer interfaces. Psychophysiology 2020, 57, e13569. [CrossRef] [PubMed]
2. Li, M.; Li, F.; Pan, J.; Zhang, D.; Zhao, S.; Li, J.; Wang, F. The MindGomoku: An Online P300 BCI Game Based on Bayesian Deep

Learning. Sensors 2021, 21, 1613. [CrossRef] [PubMed]
3. De Venuto, D.; Annese, V.F.; Mezzina, G. An embedded system remotely driving mechanical devices by P300 brain activity. In

Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Lausanne, Switzerland, 27–31 March
2017; pp. 1014–1019. [CrossRef]

4. Kim, H.; Lee, M.; Lee, M. A BCI based smart home system combined with event-related potentials and speech imagery task. In
Proceedings of the 8th International Winter Conference on Brain-Computer Interface (BCI), Gangwon, Korea, 26–28 February 2020.

5. Abibullaev, B.; Zollanvari, A. A Systematic Deep Learning Model Selection for P300-Based Brain-Computer Interfaces. IEEE Trans.
Syst. Man Cybern. Syst. 2021. [CrossRef]

6. Zhang, Y.; Xu, H.; Zhao, Y.; Zhang, L.; Zhang, Y. Application of the P300 potential in cognitive impairment assessments after
transient ischemic attack or minor stroke. Neurol. Res. 2021, 43, 336–341. [CrossRef]

7. Chakraborty, D.; Ahona, G.; Sriparna, S. Chapter 2: A survey on Internet-of-Thing applications using electroencephalogram. In
Emergence of Pharmaceutical Industry Growth with Industrial IoT Approach; Academic Press: Cambridge, MA, USA, 2020; pp. 21–47.

8. Farwell, L.A.; Donchin, E. Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials.
Electroencephalogr. Clin. Neurophysiol. 1988, 70, 510–523. [CrossRef]

9. Fereshteh Salimian, R.; Abootalebi, V.; Taghi Sadeghi, M. Spatial and spatio-temporal filtering based on common spatial patterns
and Max-SNR for detection of P300 component. Biocybern. Biomed. Eng. 2017, 37, 365–372.

10. Liu, M.; Wu, W.; Gu, Z.; Yu, Z.; Qi, F.; Li, Y. Deep learning based on batch normalization for P300 signal detection. Neurocomputing
2018, 275, 288–297. [CrossRef]

11. Joshi, R.; Goel, P.; Sur, M.; Murthy, H.A. Single Trial P300 Classification Using Convolutional LSTM and Deep Learning Ensembles
Method. In Intelligent Human Computer Interaction. IHCI 2018. Lecture Notes in Computer Science; Tiwary, U., Ed.; Springer:
Berlin/Heidelberg, Germany, 2018; Volume 11278. [CrossRef]

12. Cecotti, H.; Graser, A. Convolutional neural networks for p300 detection with application to brain–computer interfaces. IEEE
Trans. Pattern Anal. Mach. Intell. 2011, 33, 433–445. [CrossRef]

13. Rakotomamonjy, A.; Guigue, V. BCI competition III: Dataset II-ensemble of SVMs for BCI P300 speller. IEEE Trans. Biomed. Eng.
2008, 55, 1147–1154. [CrossRef]

14. Jin, J.; Allison, B.Z.; Sellers, E.W.; Brunner, C.; Horki, P.; Wang, X.; Neuper, C. An adaptive P300-based control system. J. Neural
Eng. 2011, 8, 036006. [CrossRef]

15. Throckmorton, C.S.; Colwell, K.A.; Ryan, D.B.; Sellers, E.W.; Collins, L.M. Bayesian Approach to Dynamically Controlling Data
Collection in P300 Spellers. IEEE Trans. Neural Syst. Rehabil. Eng. 2013, 21, 508–517. [CrossRef]

16. Bostanov, V. BCI competition 2003-data sets Ib and IIb: Feature extraction from event-related brain potentials with the continuous
wavelet transform and the t-value scalogram. IEEE Trans. Biomed. Eng. 2004, 51, 1057–1061. [CrossRef]

http://doi.org/10.1111/psyp.13569
http://www.ncbi.nlm.nih.gov/pubmed/32301143
http://doi.org/10.3390/s21051613
http://www.ncbi.nlm.nih.gov/pubmed/33668950
http://doi.org/10.23919/DATE.2017.7927139
http://doi.org/10.1109/TSMC.2021.3051136
http://doi.org/10.1080/01616412.2020.1866245
http://doi.org/10.1016/0013-4694(88)90149-6
http://doi.org/10.1016/j.neucom.2017.08.039
http://doi.org/10.1007/978-3-030-04021-5_1
http://doi.org/10.1109/TPAMI.2010.125
http://doi.org/10.1109/TBME.2008.915728
http://doi.org/10.1088/1741-2560/8/3/036006
http://doi.org/10.1109/TNSRE.2013.2253125
http://doi.org/10.1109/TBME.2004.826702


Sensors 2021, 21, 3961 24 of 24

17. Riccio, A.; Schettini, F.; Simione, L.; Pizzimenti, A.; Inghilleri, M.; Olivetti-Belardinelli, M.; Mattia, D.; Cincotti, F. On the
Relationship between Attention Processing and P300-Based Brain Computer Interface Control in Amyotrophic Lateral Sclerosis.
Front. Hum. Neurosci. 2018, 12, 165. [CrossRef] [PubMed]

18. Gao, Z.; Sun, X.; Liu, M.; Dang, W.; Ma, C.; Chen, G. Attention-based Parallel Multiscale Convolutional Neural Network for
Visual Evoked Potentials EEG Classification. IEEE J. Biomed. Health Inform. 2021. [CrossRef]

19. Tao, W.; Li, C.; Song, R.; Cheng, J.; Liu, Y.; Wan, F.; Chen, X. EEG-based Emotion Recognition via Channel-wise Attention and Self
Attention. IEEE Trans. Affect. Comput. 2020. [CrossRef]

20. Carabez, E.; Miho, S.; Nambu, I.; Yasuhiro, W. Convolutional Neural Networks with 3D Input for P300 Identification in Auditory
Brain-Computer Interfaces. Comput. Intell. Neurosci. 2017, 2017, 8163949. [CrossRef]

21. Maddula, R.; Stivers, J.; Mousavi, M.; Ravindran, S.; de Sa, V. Deep Recurrent Convolutional Neural Networks for Classifying
P300 BCI signals. In Proceedings of the 7th Graz Brain-Computer Interface Conference, GBCIC 2017, Gratz, Austria, 18–22
September 2017.

22. Li, F.; Li, X.; Wang, F.; Zhang, D.; Xia, Y.; He, F. A Novel P300 Classification Algorithm Based on a Principal Component
Analysis-Convolutional Neural Network. Appl. Sci. 2020, 10, 1546. [CrossRef]

23. Wen, T.; Zhang, Z. Deep Convolution Neural Network and Autoencoders-Based Unsupervised Feature Learning of EEG Signals.
IEEE Access 2018, 6, 25399–25410. [CrossRef]

24. Ditthapron, A.; Banluesombatkul, N.; Ketrat, S.; Chuangsuwanich, E.; Wilaiprasitporn, T. Universal joint feature extraction for
P300 EEG classification using multi-task autoencoder. IEEE Access 2019, 7, 68415–68428. [CrossRef]

25. Krusienski, D.J.; Schalk, G. Wadsworth BCI Dataset (P300 Evoked Potentials), BCI Competition III Challenge. Available online:
http://www.bbci.de/competition/iii/ (accessed on 11 May 2021).

26. Krusienski, D.J.; Sellers, E.W.; McFarland, D.J.; Vaughan, T.M.; Wolpaw, J.R. Toward enhanced P300 speller performance.
J. Neurosci. Methods 2008, 167, 15–21. [CrossRef]

27. Yılmaz, K.; Uyar, M.; Tekin, R.; Yildirım, S. 1D-local binary pattern-based feature extraction for classification of epileptic EEG
signals. Appl. Math. Comput. 2014, 243, 209–219. [CrossRef]

28. Santurkar, S.; Tsipras, D.; Ilyas, A.; Madry, A. How does batch normalization help optimization? arXiv 2018, arXiv:1805.11604.
29. Hoffmann, U.; Vesin, J.-M.; Ebrahimi, T.; Diserens, K. An efficient P300-based brain–computer interface for disabled subjects.

J. Neurosci. Methods 2008, 167, 115–125. [CrossRef] [PubMed]
30. De Venuto, D.; Annese, V.F.; Mezzina, G.; Defazio, G. FPGA-Based Embedded Cyber-Physical Platform to Assess Gait and

Postural Stability in Parkinson’s Disease. IEEE Trans. Compon. Packag. Manuf. Technol. 2018, 8, 1167–1179. [CrossRef]
31. Ojala, T.; Pietikäinen, M.; Harwood, D. A comparative study of texture measures with classification based on featured distributions.

Pattern Recognit. 1996, 29, 51–59. [CrossRef]
32. Wang, W.; Huang, Y.; Wang, Y.; Wang, L. Generalized autoencoder: A neural network framework for dimensionality reduction.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, USA, 23–28
June 2014.

33. Zou, D.; Cao, Y.; Zhou, D.; Gu, Q. Gradient descent optimizes over-parameterized deep ReLU networks. Mach. Learn. 2020, 109,
467–492. [CrossRef]

34. Hidenori, I.; Kurita, T. Improvement of learning for CNN with ReLU activation by sparse regularization. In Proceedings of the
International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017.

35. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings
of the 32nd International Conference on Machine Learning, Lille, France, 7–9 July 2015; pp. 448–456.

36. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

37. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
38. Ashraf, S.; Ahmed, T. Machine learning shrewd approach for an imbalanced dataset conversion samples. J. Eng. Technol. (JET)

2020, 11, 1–9.
39. Obermaier, B.; Neuper, C.; Guger, C.; Pfurtscheller, G. Information transfer rate in a five-classes brain–computer interface. IEEE

Trans. Neural Syst. Rehabil. Eng. 2001, 9, 283–288. [CrossRef]
40. Manaswi, N.K. Understanding and working with Keras. In Deep Learning with Applications Using Python; Apress: Berkeley, CA,

USA, 2018; pp. 31–43.
41. Sakr, F.; Bellotti, F.; Berta, R.; De Gloria, A. Machine Learning on Mainstream Microcontrollers. Sensors 2020, 20, 2638.

[CrossRef] [PubMed]
42. De Venuto, D.; Ohletz, M.J. On-Chip Test for Mixed-Signal ASICs using Two-Mode Comparators with Bias-Programmable

Reference Voltages. J. Electron. Test. 2001, 17, 243–253. [CrossRef]
43. De Venuto, D.; Rabaey, J. RFID transceiver for wireless powering brain implanted microelectrodes and backscattered neural data

collection. Microelectron. J. 2014, 45, 1585–1594. [CrossRef]
44. Johnson, J.M.; Khoshgoftaar, T.M. Survey on deep learning with class imbalance. J. Big. Data 2019, 6, 27. [CrossRef]
45. Hongchang, S.; Liu, Y.; Stefanov, T. A Simple Convolutional Neural Network for Accurate P300 Detection and Character Spelling

in Brain Computer Interface. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence IJCAI
2018, Stockholm, Sweden, 13–19 July 2018.

http://doi.org/10.3389/fnhum.2018.00165
http://www.ncbi.nlm.nih.gov/pubmed/29892218
http://doi.org/10.1109/JBHI.2021.3059686
http://doi.org/10.1109/TAFFC.2020.3025777
http://doi.org/10.1155/2017/8163949
http://doi.org/10.3390/app10041546
http://doi.org/10.1109/ACCESS.2018.2833746
http://doi.org/10.1109/ACCESS.2019.2919143
http://www.bbci.de/competition/iii/
http://doi.org/10.1016/j.jneumeth.2007.07.017
http://doi.org/10.1016/j.amc.2014.05.128
http://doi.org/10.1016/j.jneumeth.2007.03.005
http://www.ncbi.nlm.nih.gov/pubmed/17445904
http://doi.org/10.1109/TCPMT.2018.2810103
http://doi.org/10.1016/0031-3203(95)00067-4
http://doi.org/10.1007/s10994-019-05839-6
http://doi.org/10.1109/7333.948456
http://doi.org/10.3390/s20092638
http://www.ncbi.nlm.nih.gov/pubmed/32380766
http://doi.org/10.1023/A:1013377811693
http://doi.org/10.1016/j.mejo.2014.08.007
http://doi.org/10.1186/s40537-019-0192-5

	Introduction 
	The Method 
	Datasets and Stimulation Protocols 
	The Architecture 
	Recursive Channels Elimination 
	Data Preprocessing 
	Autoencoded-CNN: Network Topology 
	Output Management 

	Results 
	BCI Performance: Single-Trial Classification Metrics 
	BCI Performance: Character Recognition Accuracy 
	BCI Performance: Information Translate Rate 
	Local Binary Patterning Impact on BCI Performance 
	Microcontroller Implementation 

	Discussion 
	Conclusions 
	References

