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Abstract: This work is concerned with an original ball-on-plate laboratory process. First, a simplified
process model based on state–space process description is derived. Next, a fast state–space MPC
algorithm is discussed. Its main advantage is computational simplicity: the manipulated variables are
found on-line using explicit formulas with parameters calculated off-line; no real-time optimization
is necessary. Software and hardware implementation details of the considered MPC algorithm using
the STM32 microcontroller are presented. Tuning of the fast MPC algorithm is discussed. To show
the efficacy of the MPC algorithm, it is compared with the classical PID and LQR controllers.
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1. Introduction

Laboratories have a very important role in the successful education of engineering
students. As far as automatic control is concerned, students use the classical laboratory
processes such as the water tanks, the inverted pendulum, the magnetic levitation system
and the ball-on-plate benchmark. In particular, the ball-on-plate process is very inter-
esting in undergraduate and graduate courses since it requires multivariable stabilizing
control [1–3]. Furthermore, it is a fast dynamical system that requires short sampling
times of the controller. Because control of fast, unstable and multivariable systems is very
important in different practical applications, the ball-on-plate process may be successfully
used in control courses.

Since the ball-on-plate process may be described by state equations, Linear Quadratic
Regulator (LQR) is frequently used [4–6]. Similarly, applications of the Sliding Mode
Control (SMC) [5,7–9] and adaptive SMC [8,9] are reported. Furthermore, one may also
try to use simple PD [2] or PID controllers [3,5,9,10]. More advanced solutions include
fuzzy controllers [5,9,10], neuro-controllers [11], feedback linearization controllers [12]
and disturbance-observer-based friction compensation schemes [13]. Finally, some works
consider advanced Model Predictive Control (MPC) [14]. Historically, MPC algorithms
have been used for industrial process control; example processes are chemical reactors [15],
distillation columns [16], pasteurization plants [17] and fermentation systems [18]. Cur-
rently, MPC algorithms are also used for numerous other processes; example applications
are: heating, ventilation and air conditioning systems [19], robotic manipulators [20],
electromagnetic mills [21], servomotors [22], quadrotors [23], autonomous vehicles [24],
unmanned aerial vehicles [25] and stochastic systems [26]. MPC algorithms have also
been used for the considered ball-on-plate process. Unfortunately, the solutions presented
in the literature are computationally demanding as they require on-line optimization car-
ried out at each sampling instant. The MPC algorithm in which a nonlinear model is
used for prediction and a nonlinear optimization task must be solved at each sampling
instant on-line is presented in [27] (only simulations are shown). The MPC method based
on a linearized model and quadratic optimization used on-line to calculate the manipu-
lated variables is discussed in [28,29]. The objective of this work is to develop a fast MPC
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algorithm for the ball-on-plate process which does not need any on-line optimization and
compare its performance with the classical PID and LQR controllers very frequently used
for the considered process.

When the sampling time is short, e.g., of millisecond order, computational efficiency
of MPC is an important issue [30]. The time required to perform calculations at every execu-
tion of the MPC algorithm must be shorter than the sampling time. There are a few methods
that may be used to obtain short calculation time of MPC algorithms. First, specialized fast
on-line optimization methods may be used, especially tailored for MPC applications [31].
Secondly, in the constrained explicit MPC algorithms [32], on-line optimization is not used,
but a number of local explicit controllers are used. Successful implementation of the explicit
MPC is reported [33], even when the available memory is limited [34]. Thirdly, the numer-
ical optimization procedure used in the MPC algorithm may be replaced by a specially
designed neural network which acts as a neural optimizer [35]. Fast explicit (analytical)
MPC is possible in which the manipulated variables are calculated analytically using ex-
plicit formulas and next projected onto the admissible set determined by the constraints [36].
As a result, on-line optimization is not required. A practical application of this approach is
described in [37], but only for processes described by simple step-response models and by
discrete transfer functions (i.e., difference equations). This work follows the idea presented
in [36,37] for state–space models. Finally, some specialized methods have been developed
to handle constraints in on-line MPC optimization that make it possible to use sampling
times of the order of milliseconds [16,38].

This work is concerned with an original ball-on-plate laboratory process. The contri-
bution of this work is three-fold:

1. Simplified process modeling based on state–space process description is derived.
2. A fast state–space MPC algorithm is discussed and next applied to the considered ball-

on-plate system. Its main advantage is computational simplicity: the manipulated
variables are computed on-line using explicit formulas with parameters calculated
off-line, no on-line optimization is necessary (nonlinear or quadratic). The presented
state–space MPC algorithm uses a simple, yet very efficient state and output distur-
bance estimation necessary for prediction in state–space MPC [39].

3. Software and hardware implementation details of the MPC algorithm are presented.

The article is organized in the following way. Section 2 shortly describes the laboratory
ball-on-plate process and introduces its model. The MPC algorithm is detailed in Section 3
while Section 4 deals with software and hardware implementation of the MPC algorithm
using the STM32 microcontroller. Section 5 reports tuning of MPC and discusses results
of experiments in which the discussed MPC scheme is compared with the classical PID
and LQR controllers. Finally, Section 6 summarizes the whole article.

2. Ball-on-Plate Process

This work is concerned with an original ball-on-plate laboratory system built at the War-
saw University of Technology and shown in Figure 1. Its construction details are given
in [40]. In short, it includes: the touch pad, two digital servomotors, two servo arms and
two servo rods, the microcontroller development board and some additional elements.
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Figure 1. The ball-on-plate process

The process has two manipulated and two controlled variables. The Pulse Width
Modulation (PWM) signals are used to control the digital servomotors. The plate rotates
around the X and Y axes. Two signals that define the ball position on the top panel are
the controlled variables. The actual ball position on the resistive touch panel is determined
by two Analog to Digital Converters (ADCs). The STM32 F401C Disco microcontroller
development board is used for implementation of control algorithms and communication
with the PC computer (it is only used for saving the data and plotting the results).

Provided that friction and air resistance forces are neglected as well as angular veloci-
ties of the surface plate are low, the balance of the forces on the X axis is

Ftx(t) + Frx(t) = Fgx(t). (1)

Translation, rotation and gravity forces for the X axis are

Ftx(t) = mẍball(t), (2)

Frx(t) = 2
5 mẍball(t), (3)

Fgx(t) = mg sin Φ(t), (4)

where xball denotes the ball position along the X axis and Φ denotes the tilt angle of the plate
in relation to the X axis. Similarly, for the Y axis, we have

Fty(t) + Fry(t) = Fgy(t), (5)

where the forces are

Fty(t) = mÿball(t), (6)

Fry(t) = 2
5 mÿball(t), (7)

Fgy(t) = mg sin Θ(t), (8)

where yball denotes the ball position along the Y axis and Θ denotes the tilt angle of the plate
in relation to the Y axis. Using the forces (2)–(4) and (6)–(8), the model
Equations (1) and (5) become

ẍball(t) = 5
7 g sin Φ(t), (9)

ÿball(t) = 5
7 g sin Θ(t). (10)
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Let φ and θ denote rotation angles of the servo arm related to the Φ and Θ plate tilts,
respectively. The relations are

sin Φ(t) = d
Lx

sin φ(t), (11)

sin Θ(t) = d
Ly

sin θ(t), (12)

where d = 0.024 m is the servo arm length, Lx = 0.165 m and Ly = 0.135 m stand for distances
between the point of attachment of the servo rod to the plate and the cross joint for X and
Y axes, respectively. The values of d, Lx and Ly are constant and do not change in time. To
remove nonlinearity, we use the approximations sin φ ≈ φ, sin θ ≈ θ. It may be easily verified
that for the angles −20◦ ≤ θ ≤ 20◦ and −20◦ ≤ φ ≤ 20◦, accuracy of the approximation
used is very good. Using Equations (11) and (12), the model (9) and (10) becomes

ẍball(t) = Cxφ(t), (13)

ÿball(t) = Cyθ(t), (14)

where Cx = 5
7 g d

Lx
= 1.0189, Cy = 5

7 g d
Ly

= 1.2453. Equations (13) and (14) are expressed
in the form of the classical linear continuous-time state–space model

ẋ(t) = Acx(t) + Bcu(t), (15)

y(t) = Ccx(t), (16)

where the state, input and output vectors are

x =


xball
ẋball
yball
ẏball

, u =

[
φ
θ

]
, y =

[
xball
yball

]
. (17)

The model matrices are

Ac =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

, Bc =


0 0

Cx 0
0 0
0 Cy

, Cc =

[
1 0 0 0
0 0 1 0

]
. (18)

The discrete-time version of the model (15) and (16) is

x(k + 1) = Ax(k) + Bu(k), (19)

y(k) = Cx(k), (20)

where the model matrices are

A =


1 Ts 0 0
0 1 0 0
0 0 1 Ts
0 0 0 1

, B =


0 0

TsCx 0
0 0
0 TsCy

, C = Cc, (21)

and Ts denotes the sampling time.
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3. Fast Model Predictive Control

Let u = [u1 . . . unu ]
T, x = [x1 . . . xnx ]

T and y =
[
y1 . . . yny

]T
be the vector of process

inputs (manipulated variables), the vector of states and the vector of outputs (controlled
variables), respectively. For the considered process, nu = ny = 2, nx = 4. At each sampling
instant k of MPC, the following vector of increments is calculated [14]

4u(k) =

 4u(k|k)
...

4u(k + Nu − 1|k)

, (22)

where Nu is named the control horizon. The increments in Equation (22) are: 4u(k|k) =
u(k|k) − u(k − 1) and 4u(k + p|k) = u(k + p|k) − u(k + p − 1|k) for p = 1, . . . , Nu − 1.
The decision variables of MPC (22) are computed on-line as the result of minimization
of the performance cost-function

J(k) =
N

∑
p=1
‖ysp(k + p|k)− ŷ(k + p|k)‖2

Ψp
+

Nu−1

∑
p=0
‖4u(k + p|k)‖2

Λp
. (23)

The first part of the cost-function measures predicted control errors over the predic-
tion horizon N. The vectors ysp(k + p|k) and ŷ(k + p|k) denote the required set-point
of the controlled variables and the predicted vector, respectively, both for the sampling
instant k + p and calculated at the instant k. The second part of the cost-function measures
changes of the manipulated variables, which usually should be penalized. The weighting
matrices Ψp = diag(ψp,1, . . . , ψp,ny) and Λp = diag(λp,1, . . . , λp,nu) are of dimensionality
ny × ny and nu × nu, respectively. Having computed the vector (22), only the increments
for the current instant are applied to the process. The state and output process variables
are then measured (or estimated) and the whole computational task is repeated at the next
sampling instant.

As proved in [14], when the state–space linear model (19) and (20) is used for prediction,
the predicted trajectory of the controlled variables, which is a vector of length nyN

ŷ(k) =

 ŷ(k + 1|k)
...

ŷ(k + N|k)

, (24)

is given by the the following formula

ŷ(k) = C̃Mx4u(k) + Ĩyd(k) + C̃(Ãx(k) + V(Bu(k− 1) + ν(k))), (25)

where C̃ = diag(C, . . . , C) is the matrix of dimensionality nyN× nxN, the matrix of dimen-
sionality nxN × nxNu is

Mx =


B . . . 0nx×nu

(A + Inx×nx)B . . . 0nx×nu
...

. . .
...(

∑N−1
i=1 Ai + Inx×nx

)
B . . .

(
∑N−Nu

i=1 Ai + Inx×nx

)
B

, (26)

and the matrices of dimensionality nxN × nx are

Ã =

 A
...

AN

, V =

 Inx×nx
...

∑N−1
i=1 Ai + Inx×nx

. (27)
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In this work, a very efficient state and output disturbance model introduced in [14]
and thoroughly discussed in [39] is used. Conversely to the classical augmented state
approach [41–43], it does not require an extension of the state vector. The state disturbance
vector is computed as the difference between the measured or observed state vector, x(k),
and the state variables calculated from the state model (19)

ν(k) = x(k)− A(k)x(k− 1)− B(k)u(k− 1). (28)

The output disturbance vector is computed as the difference between the measured
output vector, y(k), and the corresponding values calculated from the output model (20)

d(k) = y(k)− Cx(k). (29)

The matrix Ĩy = [Iy . . . Iy]T, where Iy is the matrix of dimensionality nyN× ny whose
all entries are 1. Using the predicted trajectory (25), the minimized MPC cost-function (23)
may be rewritten in the following vector-matrix form

J(k) = ‖ysp(k)− C̃Mx4u(k)− Ĩyd(k)− C̃(Ãx(k) + V(Bu(k− 1) + ν(k)))‖2
Ψ

+ ‖4u(k)‖2
Λ, (30)

where the set-point trajectory is the vector of length nyN

ysp(k) =

 ysp(k + 1|k)
...

ysp(k + N|k)

. (31)

Typically, minimization of the MPC cost-function (30) is performed subject to con-
straints. The most useful ones include magnitude and rate of change of the manipulated
variables

umin ≤ u(k|k) ≤ umax, (32)

4umin ≤ 4u(k|k) ≤ 4umax, (33)

where umin, umax,4umin and4umax are vectors of length nu.
In this work, we derive a fast version of the state–space MPC controller [14]. A similar

approach is discussed in [37] for processes described by simple discrete step-response
models and difference equations. Minimization is performed without any constraints, but
they are taken into account afterwards. Considering that the cost-function (30) is quadratic
with respect to4u(k), the optimal increments of the manipulated variables for the current
sampling instant are calculated analytically, without on-line optimization

4u(k|k) = Knu(y
sp(k)− C̃(Ãx(k) + V(Bu(k− 1) + ν(k)))− Ĩyd(k)), (34)

where the matrix Knu of dimensionality nu × nyN is

Knu =
[

Inu×nu 0nu×(ny N−nu)

]
(MT

x C̃
T

ΨC̃Mx + Λ)−1MT
x C̃

T
Ψ. (35)
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Having calculated the unconstrained vector4u(k|k) from Equation (34), it is projected
on the admissible set determined by the constraints (32) and (33) and the results are applied
to the process. The projection procedure is

if4u(k|k) < 4umin(k|k) then4u(k|k) = 4umin,

if4u(k|k) > 4umax then u(k|k) = 4umax,

u(k|k) = 4u(k|k) + u(k− 1),

if u(k|k) < umin then un(k|k) = umin,

if u(k|k) > umax then un(k|k) = umax,

u(k) = u(k|k). (36)

for manipulated variables, i.e., for n = 1, . . . , nu.
Let us stress the fact that the vector Knu is calculated off-line for given model pa-

rameters and tuning coefficients of MPC. Hence, the explicit control law (34) depends
only on precalculated parameters, the current set-point vector, estimations of the state and
disturbance variables as well as on the value of the manipulated variables at the previous
sampling instant.

4. Real-Time Implementation of MPC for Ball-on-Plate Process Using STM32
Microcontroller
4.1. Hardware Set-Up

In the experiments described below, the STM32 F401C Disco development board is
used as the hardware platform for implementation of control algorithms. The considered
development board offers all functionality required to develop a microprocessor-based
embedded control system. Therefore, no other circuit boards are used in the system.
The board uses the Cortex M4F core running at 84 MHz clocking and offers, among others:
the Floating Point Unit (FPU), 256 kB flash memory and 64 kB SRAM memory. The mi-
crocontroller has a sufficiently large amount of RAM and the hardware FPU. The memory
requirement is crucial since the MPC algorithm performs multiplication of matrices of large
dimensionality. The STM32 F401C Disco contains all the I/O pins needed for the project.

The STM32 F401C Disco microcontroller development board is also responsible
for communication with an external PC computer (using the serial port). This function
is used only to send data later used to create plots presented in this work. All the cal-
culations used in control algorithms are performed by the development board. Because
of it, the floating point unit and a significant amount of memory are important features
of the chosen microcontroller. The considered development board offers all necessary I/O
pins, i.e., two PWM outputs to control the servomotors and two ADCs to read the ball’s
position in two dimensions.

The digital Hi-tech HS 5485 HB [44] servomotors are used as the actuators. The choice
has been motivated by the fact that servos do not require the use of an additional control
loop for engine rotation. Additionally, their relatively low cost is also an essential advantage.
The servomotors are equipped with a proportional controller. The Pulse Width Modulation
(PWM) signal is used to control them, the pulse cycle is equal to 20 ms and pulse width is
in the 900–2100 µs range. Their rotational range is 60◦, the maximum speed is 0.2 s/60◦.

The Green Touch 15′ ′ 4-wire resistive screen pad is used [45] for detection of the ball lo-
cation. In general, there are a few methods that may be used for touch detection: capacitive,
infrared, surface acoustic wave and resistive. The resistive touch panel has been chosen
because of its advantages: the ball may be made of any material, resistance to water and
dust pollution and low cost. The main advantage, however, is the fact that the resistance
touch screen is very easily controlled via the microcontroller’s pins. The ADCs simply read
the current X and Y position of the ball. The ball position is determined by measuring
horizontal and vertical resistances of the plate. The main drawback of the used sensor is
the fact that the touch panel is very sensitive to disturbances. The pressure acting on it must
be sufficient. The ball’s mass should be not lower than 70 g. If the force is too small, two
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different effects can be observed: no touch is detected and the sensor returns Not a Number
(NaN) signal or the ball is temporarily detected in a different place, other than its actual
location. If the ball is lying on the plane without motion, both effects occur very rarely.
However, when the ball is constantly rolling on the surface of the plate, measurement
errors appear quite often, even for balls that have a weight 100 g or more. It is due to
the fact that ball sometimes bounces and breaks away from the plate surface for a short
moment. In other moments the tilt of the plate is large enough to reduce the component
of the gravity force perpendicular to the plate to a value that makes the pressure force
acting on the screen not sufficient. The following filters are used to reduce the effects
of the mentioned phenomena:

• A filter that finds out when the sensor stops detecting the ball. The touch panel then
returns position values zero or NaN. When the filter detects such a value, it is ignored
and the last meaningful number is taken as the current position value.

• A filter that finds out when the sensor detects an incorrect ball position. If the current
position change is greater than a certain threshold, it is ignored.

• An arithmetical filter that collects n measurements of the ball position and calculates
the ball position as:

x =
∑n

i xi

n
, y =

∑n
i yi

n
. (37)

The ADCs of the microcontroller operate with much higher frequency than the de-
veloped controllers. Therefore, it is possible to collect more than 100 measurements
in one control loop. The value n = 50 has been chosen experimentally, as the smallest
one that is able to eliminate all measurement errors. This filter is necessary for the sys-
tem to work properly. Without it, the measurement errors destabilize all control
algorithms.

• A median filter, which could be used as an alternative to arithmetical filter described
above.

• Additionally, a Kalman filter has been implemented in the system. Its main role
is to serve as an observer that estimates the unmeasured ball velocity value later
used in the MPC algorithm. However, during the experiments it was observed
that using Kalman filter’s estimates of the ball position instead of the true position
measurements, helps to improve the quality of control slightly, due to elimination
of small interferences that slipped through the arithmetical/median filter. In other
words, the estimated position signal is slightly smoother than the measured signal.

Width of the panel is 322 mm, its height is 247 mm, which determines the size
of the whole process.

The pins of the microcontroller used to connect it to sensors and actuators are:

• pin PB10 is configured as TIM3 timer’s channel 3 and used to send PWM control
signal to the X axis servomotor,

• pin PA1 is configured as TIM3 timer’s channel 2 and used to send PWM control signal
to the Y axis servomotor,

• pins PA2, PA3, PB0, PB1 are connected to the resistive touch panel, their configuration
change in time as described in Table 1.

Table 1. STM32 F401C Disco pins configuration for communication with the touch panel.

Function PA2 PA3 PB0 PB1

read x output 1 ADC2 output 0 input no pullup
read y ADC1 output 1 input no pullup output 0
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4.2. Software System

The software system offers implementation of three control algorithms: PID, LQR,
MPC. The code is written in the C programming language. Keli µVision 5.0 is used as a pro-
gramming environment. Additionally, other tools are used to simplify programming tasks:
STMCube MX to configure the microcontroller’s clocks frequencies and I/O pins, the STM-
Studio to transfer data between the microcontroller and an external PC, MATLAB to find
the controllers’ settings.

An external PC computer is used only to archive and visualize various signals and data.
All calculations are performed using the microcontroller. Matrix and vector multiplications
are the most computationally demanding. The size of the matrices in the MPC controller is
correlated with the sampling time. Therefore, it is important to choose an adequate sampling
period. A short sampling time provides theoretically better control but requires long horizons
and a lot of calculations whereas a longer one allows using shorter horizons and results
in a less computationally demanding solution, but the control quality may be insufficient.
Both prediction and control horizons have an impact on the dimensionality of vectors and
matrices, the latter one determines the number of calculated decision variables.

The structure of the real-time software system is depicted in Figure 2. It uses three
timers. Discrete-time control algorithms must work in a strict time regime. The sampling
time is 50 ms. Timer 3 is therefore set to work with the frequency of 20 Hz. As described
earlier, the ball position sensor tends to produce many measurement errors. At each cycle,
the timer routine begins with collecting n measurements of ball position from the touch panel
via the ADCs of the microcontroller. The converters are sampled with higher frequency;
therefore, during the 50 ms of the control loop, many measurements can be collected.
Depending on the user’s preference, the arithmetic filter or the median filter is then used
to generate the filtered current position of the ball as described by Equation (37). The best
results are achieved when n = 50. For lower values of n, measurement errors are frequent.
For larger values, the measurements take too much time and cannot be performed in one
control loop cycle.

Sometimes, the sensor is not pressed with force high enough and a false ball position
is obtained. An additional function checks if the current measurement does make sense
in relation to past measurements. Furthermore, the Kalman filter is used to generate
estimates of the ball position and velocity based on the filtered measurement as well as
the model (19) and (20). The control algorithm chosen by the user generates new control
values. Finally, the ball position measurements are updated.

The servomechanisms’ control signals have a specific frequency, typically 50 Hz.
Therefore, timer 2 is used. Its only purpose is to send the PWM signals from two of its
channels to servomechanisms with duty cycle calculated based upon the values generated
by the chosen control algorithm.

Timer 4 changes the set position of the ball. Its frequency varies depending on the refer-
ence trajectory chosen by the user. If the timer is disabled, the user can change the set-points
by pressing a button.
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Important variables

Ball position measurement on
X an Y axes

Ball position  and velocity
estimate on X an Y axes

Control settings

State space model parameters

Kalman filter parameters

Arithmetic and median filter
parameters

Set position of the ball on X an
Y axes

Timer 4; frequency depends on
chosen reference trajectory

Set point change.
Reference trajectory is

chosen by the user: series
of step changes, circular
and square trajectories.

Timer 2; f = 50 Hz

PWM signal generation.
Servomechanism control

Timer 3;  f = 20 Hz

A number of n measurements of the ball position on the
plate are collected. Best results achieved when n=50.

Which filter should 
be used?

Arithmetic filter Median filter

Current measurement of the ball position is generated by
the filter.

Check of the measurement 
correction.

Kalman filter generates estimates of the ball position and
velocity based on the position measurement and the ball

on plate space state model.

Which control algorithm 
should be used?

PI/PD/PID LQR MPCS

Control signal values are calculated by chosen algorithm.

Past measurement of the ball position are updated.

Button

If Timer 4 is
disabled a

button can be
used to change

the set point

NO

YES

Figure 2. The structure of the real-time software system.

Listing 1 shows a fragment of the code in which the values of the manipulated variables
for the current sampling instant are calculated (Equation (34)). It is important that all
vectors and matrices related to the linear model are constant, they are calculated off-line,
i.e., Knu , C̃, Ã, V and B. Only the set-point vector, ysp(k), the current state estimation,
x(k), the manipulated variables at the previous sampling instant, u(k − 1), as well as
the output and state disturbance estimations, d(k) and ν(k), respectively, are updated on-
line. Next, the calculated decision variables are projected onto the admissible set, determined
by the constraints. For this purpose the procedure characterized by Equation (36) is used.

Listing 1: Fragment of the code: calculation of the control signal for the MPC controller.

1//ysp−y0=IyN* ysp ( k ) −(Ct * At * [ x1 ( k ) ; x2 ( k ) ]+ Ct *B*V*u ( k−1)+
2//+Ct *V*v ( : , k ) +d ( k ) * IyN )
3f o r ( i i =0 ; i i <80; i i ++)
4{
5Ysp_minus_Y0 [ i i ]= IyN_Yset [ i i ] −CtAtx [ i i ] −CtBVu [ i i ] −CtVv [ i i ] ;
6}
7//du ( k ) =Kc * ( yse t ( k ) −y0 ( k ) )
8f o r ( i i =0 ; i i <10; i i ++)
9{

10tmpMPC=0;
11f o r ( kk =0; kk <80; kk++)
12{
13tmpMPC=tmpMPC+Kc [ i i ] [ kk ] * Ysp_minus_Y0 [ kk ] ;
14}
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15du [ i i ]=tmpMPC;
16}
17// c o n s t r a i n t s on du
18i f ( du[0] <dumin [ 0 ] ) du[0 ] = dumin [ 0 ] ;
19i f ( du[1] <dumin [ 1 ] ) du[1 ] = dumin [ 1 ] ;
20i f ( du[0] >dumax [ 0 ] ) du[0 ] =dumax [ 0 ] ;
21i f ( du[1] >dumax [ 1 ] ) du[1 ] =dumax [ 1 ] ;
22// c a l c u l a t e the~ c o n t r o l s i g n a l s f o r ~the~moment k
23U[ 0 ] [ 0 ] =U[ 0 ] [ 1 ] + du [ 0 ] ;
24U[ 1 ] [ 0 ] =U[ 1 ] [ 1 ] + du [ 1 ] ;
25// c o n s t r a i n t s on u
26i f (U[ 0 ] [ 0 ] < umin [ 0 ] ) U[ 0 ] [ 0 ] = umin [ 0 ] ;
27i f (U[ 0 ] [ 0 ] >umax [ 0 ] ) U[ 0 ] [ 0 ] = umax [ 0 ] ;
28i f (U[ 1 ] [ 0 ] < umin [ 1 ] ) U[ 1 ] [ 0 ] = umin [ 1 ] ;
29i f (U[ 1 ] [ 0 ] >umax [ 1 ] ) U[ 1 ] [ 0 ] = umax [ 1 ]
30// s c a l i n g the~ s i g n a l and sending i t to servo
31i f (U[ 0 ] [ 0 ] * ( 1 0 . 0 f ) * 1 8 0 . 0 f /M_PI+1150.0 f >1300) {
32htim2 . Instance −>CCR3= 1 3 0 0 ; }
33e l s e {
34htim2 . Instance −>CCR3=U[ 0 ] [ 0 ] * ( 1 0 . 0 f ) * 1 8 0 . 0 f /M_PI+1150.0 f ;
35}
36i f (U[ 1 ] [ 0 ] * ( 1 0 . 0 f ) * 1 8 0 . 0 f /M_PI+1100.0 f >1300) {
37htim2 . Instance −>CCR2=1300;
38}
39e l s e {
40htim2 . Instance −>CCR2=U[ 1 ] [ 0 ] * ( 1 0 . 0 f ) * 1 8 0 . 0 f /M_PI+1100.0 f ;
41}

5. Results of Experiments

Three controllers have been implemented: MPC, PID and LQR. In all cases, the analyt-
ically calculated manipulated variables are projected onto the admissible set determined
by the constraints

− 20◦ ≤ θ ≤ 20◦, (38)

− 20◦ ≤ φ ≤ 20◦. (39)

Tuning of the MPC controller starts with the selection of the prediction horizon.
It should be long enough to cover the dynamic behavior of the process. However, if the hori-
zons are too long, the matrices sizes rapidly increase as shown in Table 2, which results in
longer computation time and memory requirement. The control horizon cannot be too short
since it gives insufficient control quality while its lengthening increases the computational
burden. The horizons N = 40 and Nu = 5 have been found experimentally. MATLAB
simulations have been performed and next the horizons have been verified in real process.
The process of tuning is the following:

• constant weighting coefficients λp,m = 1 are assumed,
• the same prediction horizon N and control horizon Nu are used; if the controller is

not working properly, both horizons are lengthened,
• the prediction horizon is gradually shortened, and its length is chosen (with the con-

dition Nu = N ),
• the effect of the changing the length of the control horizon on the resulting control

quality is assessed experimentally (e.g., assume successively Nu = 1, 2, 3, 4, 5, 10, ..., N).
The shortest possible control horizon is chosen.

Table 2. Size of matrices used in MPC for different prediction and control horizons.

N Nu C̃Ã C̃V B V Knu

20 3 40× 4 40× 2 80× 4 6× 40
40 5 80× 4 80× 2 160× 4 10× 80
80 10 160× 4 160× 2 320× 4 20× 160
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Next, the weighting coefficients must be tuned. Because the objective is precise control
in both X and Y axes, ψp,n = 1 for all p = 1, . . . , N, n = 1, . . . , ny. Hence, the penalties λp,n
for all p = 0, . . . , Nu − 1, n = 1, . . . , nu must be determined. Let us consider Figure 3 which
shows trajectories obtained for the MPC1 algorithm with relatively small values λp,1 = 0.35
and λp,2 = 1.1. The process outputs very quickly follow changes of the set-points, but there
are some small oscillations of the outputs and the manipulated variables change very rapidly.
Let us consider Figure 4 that shows trajectories obtained for the MPC2 algorithm with
relatively large values λp,1 = λp,2 = 500. As a result, changes of the manipulated variables
are very small, but control accuracy is insufficient, i.e., overshoot is high and the setting
time is long. It can be noticed that the ball tends to stop its movement a few millimeters
under or over the set-point. The mild changes in control signals are then unable to overcome
the static friction force affecting the ball for a few seconds. After that time, the ball moves
and stops on the other side of the set-point. This cycle then continues and as a result, the set
position is never reached. After tuning, the best results are achieved for λp,1 = 0.8 and
λp,2 = 5 in the MPC3 algorithm. The resulting process trajectories are depicted in Figure 5.
In this case, the setting time is short, there are no oscillations and no overshoot.
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Figure 3. Experimental results of the MPC1 algorithm.
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Figure 4. Experimental results of the MPC2 algorithm.
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Figure 5. Experimental results of the MPC3 algorithm.

It is an interesting question whether the simple PID controller can give the control
quality comparable with that possible when the well-tuned MPC3 scheme is used. The PID
control system structure is shown in Figure 6. It consists of two independent classical
single-loop PID controllers. The first of them controls the ball’s x position by manipulating
the PWM signal of the first servo. The second one controls the y position by the PWM
signal of the second servo. Two single-loop PID controllers may be used assuming that
the interaction between the plate rotation around X axis and ball position y is negligible.
The same applies for the rotation around Y axis and ball position x. For each sub-system,
an independent PID controller has been tuned using the Ziegler–Nichols method and
next readjusted experimentally. Let K, Ti and Td denote the proportional gain as well as
integration and derivation time constants, respectively.

X axis sub-model

Y axis sub-model

PID controlling x
position of the ball

PID controlling y
position of the bally set point

x set point
ux

uy

+

+

-

-
x

y

Figure 6. Diagram of the PID control structure for ball and plate system.

The P controller is unable to stabilize of the system. Regardless of the used parameter
K, the ball oscillates endlessly. Results for the PI controller are shown in Figure 7. Its tuning
parameters are: Kx = Ky = 0.06, Tix = Tiy = 5. It gives strong overshoot and slowly
fading huge oscillations. The required set-points are never reached. Results for the PD
controller are shown in Figure 8. Its parameters are: Kx = 0.09, Ky = 0.07, Tdx = Tdy = 0.6.
In comparison with the PI structure, it makes it possible to obtain smaller oscillations and
reduced overshoot, but the steady-state error is inevitable. Finally, the PID controller is
considered with the parameters: Kx = 0.09, Ky = 0.08, Tix = Tiy = 1.5, Tdx = Tdy = 0.6.
The obtained trajectories are shown in Figure 9. The PID controller makes it possible to
eliminate the steady-state error. Unfortunately, let us stress the fact that the PID controller
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gives much worse control than the MPC3 scheme (Figure 5). In particular, the setting time
is much longer, and significant overshoot is present.

PID and PD controllers give very rapidly changing control signals. If the calculations
are performed using the ball position measurement, the derivative part causes the whole
system to vibrate strongly, even when the ball reaches the set-points. This problem is
eliminated using an estimate generated by the Kalman filter instead of the measurements.

The PID controller turns out to be very sensitive to measurement errors. Let us
consider Figure 9 and t = 55 s. A small measurement error causes the ball to move
significantly away from the set-points, in particular for the yball output. Errors of the same
order do not affect the MPC and LQR controllers.
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Figure 7. Experimental results of the PI algorithm.
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Figure 8. Experimental results of the PD algorithm.
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Figure 9. Experimental results of the PID algorithm.

Finally, the LQR controller is evaluated. Its settings are selected in two ways: (a)
chosen experimentally using the pole placement method, (b) optimized in MATLAB using
the DLGR function. For the poles 0.9404 − 0.0019i, 0.9404 + 0.0019i, 0.9404 − 0.0019i,
0.9404 + 0.0019i of the closed-loop system, the controller’s (LQR1) gain matrix is

K1 =

[
1.3960 2.3049 0 0

0 0 1.1422 1.8859

]
. (40)

In the first optimization approach (LQR2), the weighting matrices Q = diag(7, 0, 7, 0),
R = diag(1, 1) give

K2 =

[
2.4966 2.2137 0 0

0 0 2.4813 1.9963

]
. (41)

In the second optimization approach (LQR3), the weighting matrices
Q = diag(15, 0, 15, 0), R = diag(1, 1) give

K2 =

[
3.6104 2.6621 0 0

0 0 3.5837 2.3991

]
. (42)

The obtained trajectories are given in Figures 10–12 for the controllers LQR1, LQR2
and LQR3, respectively. In general, the manipulated variables change slowly. It is observed
especially for the LQR2 and LQR3 controllers. No overshoot in a ball position signal is
observed for those settings. However, the setting time is approximately two times longer
than for the MPC3 algorithm (Figure 5). The LQR1 controller allows a shortening of that
time, but overshoot appears. For the set-point tracking task, the LQR controllers perform
much better than P, PD, PI, and PID ones, but still, the results are worse than in the case
of the MPC3 scheme.

Let us compare all considered controllers numerically. Table 3 specifies control errors
(the sum of squared control errors) [46] for all algorithms. The obtained values confirm
observations possible on the basis on the process trajectories, i.e., the MPC3 algorithm
is the best one. Table 4 specify the average and maximal setting times for all algorithms.
Once again, the MPC3 algorithm gives the best results. Let us stress the fact that in the case
of PI, PD, LQR1 and MPC2 controllers, it is impossible to determine the setting times
for the assumed set-point changes, i.e., these control algorithms do not result is sufficiently
fast control for the used changes of the set-points.
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Figure 10. Experimental results of the LQR1 algorithm.
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Figure 11. Experimental results of the LQR2 algorithm.
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Figure 12. Experimental results of the LQR3 algorithm.
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Table 3. Control errors for all compared control algorithms (ISEx: the error for the X axis, ISEy:
the error for the Y axis).

Controller ISEx ISEy ISEx + ISEy

PI 7327.9 2759.2 10087.1
PD 1662.7 4420.9 6083.6
PID 483.9 837.9 1321.8

LQR1 692.3 825.6 1517.9
LQR2 684.3 793.7 1478.0
LQR3 676.0 849.9 1525.9
MPC1 881.5 498.0 1379.5
MPC2 1274.5 1378.6 2653.1
MPC3 373.7 760.0 1133.7

Table 4. Setting times for all compared control algorithms (Tavg
x , Tmax

x : the average and maximal
setting times for the X axis, respectively; Tavg

y , Tmax
y : the average and maximal setting times for the Y

axis, respectively).

Controller Tavg
x Tmax

x Tavg
y Tmax

y

PI Impossible to determine
PD Impossible to determine
PID 3.75 7 4.5 9

LQR1 Impossible to determine
LQR2 4 7 5.5 8
LQR3 4.83 6 5.83 8
MPC1 3.17 4 5.17 7
MPC2 Impossible to determine
MPC3 2.17 3 2 2

The calculation time for the explicit MPC control law (Equation (34)) and the projection
procedure (Equation (36)) is 4.86 ms. Although it is longer than the time required by PID
and LQR controllers, 0.29 ms and 0.27 ms, respectively, but it is important to point out that
the obtained value is very short when compared to the sampling time used (50 ms).

6. Conclusions

This work discusses an application of the fast state–space MPC algorithm to the ball-
on-plate laboratory process. Moreover, software and hardware implementation details
are discussed; the STM32 microcontroller is used for calculations. The considered MPC
algorithm is characterized by a very short calculation time (in comparison to the sampling
period). This is because the manipulated variables are found on-line using explicit formulas
with parameters calculated off-line, no real-time optimization is necessary. The simplicity
of calculations is possible because in MPC an approximate state–space linear model is
used, nonlinear terms are neglected. Secondly, the constraints are not taken into account
during calculation of the manipulated variables, but afterwards, i.e., the unconstrained
optimal solution is projected onto the admissible set determined by the constraints. When
applied to the ball-on-plate process, the considered MPC algorithm works much better
than the classical PID and LQR controllers. It is necessary to stress that all three controllers
compared in this work are linear. The MPC and LQR controllers are multivariable, i.e.,
the manipulated variables are calculated taking into account all interactions of process
variables and the same linear model is used for development of the control law. Conversely,
the PID control scheme is comprised of two classical single-loop controllers.

The discussed MPC algorithm uses for prediction a simplified linear model of the pro-
cess. In future, it is planned to develop nonlinear MPC approaches [47,48] and evaluate
their performance.
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