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Abstract: Digital video forensics plays a vital role in judicial forensics, media reports, e-commerce,
finance, and public security. Although many methods have been developed, there is currently no
efficient solution to real-life videos with illumination noises and jitter noises. To solve this issue,
we propose a detection method that adapts to brightness and jitter for video inter-frame forgery.
For videos with severe brightness changes, we relax the brightness constancy constraint and adopt
intensity normalization to propose a new optical flow algorithm. For videos with large jitter noises,
we introduce motion entropy to detect the jitter and extract the stable feature of texture changes
fraction for double-checking. Experimental results show that, compared with previous algorithms,
the proposed method is more accurate and robust for videos with significant brightness variance or
videos with heavy jitter on public benchmark datasets.

Keywords: brightness-adaptive; robust optical flow algorithm; relax the brightness constancy as-
sumption; texture changes fraction feature

1. Introduction

The rapid development and spread of low-cost and easy-to-use video editing software,
such as Adobe Premiere, Photoshop, and Lightworks, makes it easier to tamper with digital
video without efforts. Inter-frame forgery happens quite often. It includes inserting frames
into a video sequence or removing frames from a video sequence [1]. These tampered
videos may be indistinguishable to the naked eye. Thus, they may harm judicial forensics,
media reports, e-commerce, finance, and public security. Therefore, it is necessary to
develop methods to help human eyes identify tampered videos [1].

A considerable amount of effort has been devoted to inter-frame forgery detection.
Most of these approaches are based on the successful extraction of some characteristics of
the video. For example, some recent works detected tampered video by calculating the
optical flow between frames [2–6]. However, this process could be severely interrupted
by illumination noises, which invalidates the extraction of optical flow features [7,8].
Besides, jitter noise may also affect correlation consistency between adjacent frames in the
video [9,10], causing many false detections.

For the forgery detection of the videos with noises, a few methods have been devel-
oped, including low-rank theory for video with blur noise [11], the coarse-to-fine approach
under the condition of regular attacks, including additive noise and filtering [12]. However,
these works did not consider brightness and jitter noises. Videos with brightness changes
and jitter videos are common in real life—e.g., most of the videos are shot by cell phones.
Although the motion-adaptive method [13] considered both brightness and jitter noises, it
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was not suitable for the lowest motion video with minor changes between adjacent frames,
which is quite popular. Moreover, these methods also do not consider or validate the effect
of multi-tamper.

We propose a novel framework that not only takes into account both brightness
and jitter noises, but also considers the lowest motion video. To deal with considerable
illumination noise, we introduce the relaxing brightness constancy assumption [14] and
develop a linear model to present the physical intensity change. To deal with subtle
illumination noises, we introduce intensity normalization [15]. To deal with the false
detection caused by video jitter, we propose motion entropy and stable texture changes
fraction features of the video for double-checking. In addition, the improved robust
optical flow is insensitive to the motion level of the video. Moreover, the texture changes
fraction feature can also describe the subtle inter-frame differences of the lowest motion
video. Therefore, our method is also suitable for the lowest motion video. Experimental
results on three public video databases show that our method can be applied to the videos
with brightness variance, the videos with significant jitter, and the lowest motion videos.
Furthermore, our approach can not only locate the forgery precisely, but it can also estimate
the way of multi-forgery on tampered positions.

The rest of this paper is organized as follows. In Section 2, we briefly introduce
the related work for inter-frame forgery detection. In Section 3, we briefly describe the
preliminaries in this paper. Section 4 describes the proposed scheme in detail. We provide
the evaluation of optical flow computation in Section 5. Experimental results and analysis
are presented in Section 6, and we draw a conclusion and discuss future works in Section 7.

2. Related Work

Most of the prior works detected forgeries based on the analysis of correlations
between frames, which relies on features extracted from videos. As noises in videos
could significantly affect feature extraction and correlation analysis, we classify the existing
methods into two categories: methods without considering noises and methods considering
noises.

2.1. Methods without Considering Noises

In terms of the type of features, previous methods could be divided into two categories:
image-features-based and video-features-based. Methods in the first category usually ex-
tracted image features of each frame, such as texture features [9], color characteristics [9,16],
histogram features [16], structural features [17], etc. Methods in the second category mainly
utilized the impact of tampering on video features, including video encoding characteris-
tic [18–20], double compression [21], motion features such as errors in motion estimation [10],
optical flow, predict residual gradients [19], and brightness features such as segmented
brightness variance descriptor (BBVD) [2], illumination information [4], etc.

Although these methods have been validated on videos from public data sets, they
generally did not consider noises. They could probably generate incorrect results on real-
life videos containing various noises. For example, the performance of methods [2,4,19]
declines due to illumination noise, and the methods [9,18] are susceptible to jitter noises in
real-life videos.

2.2. Methods Considering Noises

To address the issue of feature extraction in the blurry video, Lin et al. [11] adopted
low-rank theory to deblur video, fusing multiple fuzzy kernels of keyframes by low-rank
decomposition. Jia et al. [12] proposed a video copy-move detection method based on
robust optical flow features. Furthermore, they also adopt adaptive or stable parameters
to detect the tamper under the condition of regular attacks, including additive noise and
filtering. The method [12] is limited or only validated by copy-move forgery. However, our
proposed approach applies to all tampering operations, including frame insertion, frame
copy-move, frame replication, and frame deletion. Feng et al. [13] adopted a frame deletion
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detection method based on the motion residuals feature. They embrace the postprocess-
ing forensic tools, including the automatic color equalization (ACE) forensics and mean
gradient evaluation, to eliminate the detection interference caused by illumination and
jitter noises.

Illumination noises and jitter noises have side effects on the detection result. How-
ever, few works take both brightness and jitter noises into account at the same time.
Although [13] has considered both noise factors, it does not fit the lowest motion strength
video. While our work takes both brightness and jitter into account at the same time, it is
also suitable for the lowest motion videos.

3. Preliminaries
3.1. Horn and Schunck (H&S) Method

When a moving object in the three-dimensional world is projected onto a two-
dimensional plane, optical flow (OF) is the relative displacement of the pixels of the image
pairs [8]. Specifically, the optical flow method uses the information difference between
adjacent frames to describe the movement of objects in a three-dimensional world [7]. OF
has been widely applied in various scenes, such as object segmentation, target tracking,
and video stabilization [22].

Horn and Schunck (H&S) method [8] is a classical OF estimation algorithm, which is
based on three major premise assumptions: brightness consistency, the spatial coherence of
neighboring pixels, and small motion of the pixel [23]. Given a video sequence, the pixel
intensity at the position (x, y) of t-th frame is I(x, y, t) , the brightness consistency can be
described by the Equation

I(x + dx, y + dy, t + dt) = I(x, y, t) (1)

where dx and dy correspond to the slight change of the movement over dt, then Equation (1)
can be expanded by the first-order Taylor series

I(x + dx, y + dy, t + dt) ≈ I(x, y, t) +
∂I
∂x

dx +
∂I
∂y

dy +
∂I
∂t

dt (2)

Let Ix = ∂I/∂x, Iy = ∂I/∂y, It = ∂I/∂t, then Ix, Iy, It represents the change rate
of the grey value of the pixel along the x, y, and t directions, respectively. Combining
Equations (1) and (2), we can get the Equation

∂I/∂xdx + ∂I/∂ydy + ∂I/∂tdt = Ixdx + Iydy + Itdt = 0 (3)

According to the definition of speed Equation u = dx/dt and v = dy/dt, we obtain

Ixu + Iyv + It = 0 (4)

Equation (4) is the OF constraint equation, then we constrain the OF calculation
problem to the minimum optimization problem of Equation (5), Ed is the sum of the
errors under the brightness constancy constraint, and there are two unknown variables:
u and v. An equation cannot determine a unique solution, so a new condition Es needs
to be introduced. Es is the constraint condition for smooth changes of OF over the entire
image [24], which is shown in the Equation (6).

Ed =
x (

Ixu + Iyv + It
)2dxdy (5)

Es =
x (
|∇u|2+|∇v|2

)
dxdy =

x

Ω

[(
∂u
∂x

)2
+

(
∂u
∂y

)2
+

(
∂v
∂x

)2
+

(
∂v
∂y

)2
]

dxdy (6)

where ∇ represents the gradient operator.
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The H&S algorithm converts the OF solution to the minimum optimization problem,
shown as the following Equation (7). Equation consists of a grayscale change factor Ed and
a smooth change factor Es. The ideal OF value E is relatively small, so the corresponding
values of the grayscale change of Ed and the speed change Es are also small, which meets
the assumption of constant brightness and small motion, respectively.

E = Ed + λEs =
x [(

Ixu + Iyv + It
)2

+ λ
(
|∇u|2+|∇v|2

)]
dxdy (7)

where ∇ represents the gradient operator and λ represents the smooth factor.

3.2. Robust Optical Flow Algorithm against Brightness Changes

The above classical OF calculation is usually incorrect when the image sequence has
significant brightness changes, which exist in most real-life videos. Therefore, the OF
algorithm was enhanced by relaxing brightness consistency assumptions [14].

Gennert et al. [14] relaxed brightness consistency assumptions by the Equation

I(x + dx, y + dy, t + dt) = S(x, y, t)I(x, y, t) + T(x, y, t) (8)

where S(x, y, t) and T(x, y, t) are constraint parameters for space and time.
Combining Equations (2) and (8), we can obtain

∂I
∂x

dx +
∂I
∂y

dy +
∂I
∂t

dt = (S− 1)I + T (9)

Let sc = lim
dt→0

(S− 1)/dt,tc = lim
dt→0

T/dt, we combine (9) and (3) obtain

Ixu + Iyv + It − scI − tc = 0 (10)

The enhanced OF is calculated by solving the extreme value problem described by
Equation (11). Compared with Equation (7), the enhanced OF algorithm is more robust by
considering the brightness change.

minu,v,sc,tcE = Ed + λsEs + λscEsc + λtcEtc

Ed =
s

Ω
(

Ixu + Iyv + It − scI − tc
)2dxdy

Es =
s

Ω

(
|∇u|2+|∇v|2

)
dxdy

Esc =
s

Ω |∇sc|2dxdy
Etc =

s
Ω |∇tc|2dxdy

(11)

where λs, λsc, λtc are smoothing factor, spatial domain constraint parameter, and time-
domain constraint parameter, respectively. Ed, Esc are grayscale change factor and smooth
change factor, respectively. Esc and Etc are spatial and time-domain constraint parame-
ters, respectively.

4. Method

We propose a novel framework to overcome the brightness and jitter noises in video
inter-frame tampering detection. As illustrated in Figure 1, there are three algorithms in
this framework. Firstly, Algorithm 1 reduces the impact of illumination changes in the
input video sequence by the optical flow information. At the same time, if the motion
entropy is more significant than a certain threshold, we detect jittery video by Algorithm 2.
Based on the detected tampering points of the above two steps, Algorithm 3 makes the
judgment of video tamper finally.



Sensors 2021, 21, 3953 5 of 21

Sensors 2021, 21, x FOR PEER REVIEW 5 of 21 
 

entropy is more significant than a certain threshold, we detect jittery video by Algorithm 

2. Based on the detected tampering points of the above two steps, Algorithm 3 makes the 

judgment of video tamper finally. 

Algorithm 1

No

Algorithm 3

Algorithm 2

Calculate feature r between the 

adjacent frame of the tampering points

The point i is the 

frame deletion point

The fram pair (i，j) is 

the frame insertion point
1r 

Yes

No

The video is a jittery 

video

Extract texture 

smoothness features

Locate tampering points

Extract video 

sequence

Pretreatment and 

intensity 

normalization

Locate tampering 

points

Calculate robust optical flow 

fluctuation characteristics r 

and motion entropy ME

Relax the brightness 

constancy assumption

The video is a non-

jittery video

Yes
_ME THR E

 

Figure 1. Detection process of the proposed framework. 

4.1. Algorithm 1: Reduce the Impact of Illumination Changes 

The consistency of the 𝐎𝐅 has been proven to be an efficient tool to check the integ-

rity of video [3,5,6]. Based on the enhanced 𝐎𝐅 algorithm described in the previous sec-

tion, we design Algorithm 1 to reduce the impact of illumination changes; the main steps 

are shown as follows. 

Step 1: Due to the brightness variations, the intensity of images should be normalized 

[15] before applying the optical flow method with a digital filter sequence. To cope with 

the high-frequency noise which affects the 𝐎𝐅 computation, we preprocess the input 

video by Gaussian filter [26]. 

Step 2: Based on the enhanced 𝐎𝐅 method described in Section 3 we extract the 𝐎𝐅 

fluctuation feature ir  to measure the similarity between adjacent frames of the video by 

Equation (12) 

_
( _ )

i
i

i

sum OF
r

avg sum OF
  (12) 

i_sum OF  is the 𝐎𝐅 sum of the i-th video frame, which is calculated by Equation (13) 

i

1 1

_ ( ( , ) ) ( , ) )

1,2,..., 1

wid hei

i i

m n

sum OF u m n v m n

i N

 

 

 

  (13) 

where 𝑤𝑖𝑑, ℎ𝑒𝑖 represent the width and height of the video frame, respectively. N is the 

video frames number. 

The average 𝐎𝐅  sum ( _ )iavg sum OF  in a sliding window centered on the 

𝑖_𝑡ℎframe is calculated by the Equation: 

 

Figure 1. Detection process of the proposed framework.

4.1. Algorithm 1: Reduce the Impact of Illumination Changes

The consistency of the OF has been proven to be an efficient tool to check the integrity
of video [3,5,6]. Based on the enhanced OF algorithm described in the previous section,
we design Algorithm 1 to reduce the impact of illumination changes; the main steps are
shown as follows.

Step 1: Due to the brightness variations, the intensity of images should be normal-
ized [15] before applying the optical flow method with a digital filter sequence. To cope
with the high-frequency noise which affects the OF computation, we preprocess the input
video by Gaussian filter [25].

Step 2: Based on the enhanced OF method described in Section 3 we extract the OF
fluctuation feature ri to measure the similarity between adjacent frames of the video by
Equation (12)

ri = sum_OFi/avg(sum_OFi) (12)

sum_OFi is the OF sum of the i-th video frame, which is calculated by Equation (13)

sum_OFi =
wid
∑

m=1

hei
∑

n=1
(|ui(m, n)|) + |vi(m, n)|)

i = 1, 2, . . . , N − 1
(13)

where wid, hei represent the width and height of the video frame, respectively. N is the
video frames number.

The average OF sum avg(sum_OFi) in a sliding window centered on the i_th frame is
calculated by the Equation:

avg(sum_OFi) =



sum_OF3+sum_OF4
2 i = 1

sum_OFi−1+sum_OFi+1
2 i ∈ (1, w + 1) ∪ (N − w, N)

w
∑

k=1
sum_OFi+k+sum_OFi−k

2w i ∈ [w + 1, N − w]
sum_OFi−1+sum_OFi−2

2 i = N

(14)
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where 2w is the width of the sliding window, sum_OF3 is the OF sum of the third video
frame, sum_OF4 is the OF sum of the fourth video frame.

Step 3: Jitter frame pixels have small amplitude movements in the same motion direc-
tion [26], which has the consistency of motion direction. The video with consistent motion
direction has small motion direction entropy. Therefore, we adopt motion direction entropy
ME to perceive the consistency of video motion direction, which can sense video jitter.

ME can be calculated as follows: 1. Use the frame difference method [27] to calculate
the binarized motion area. 2. Utilize Shi-Tomasi corner calculation method [28] to obtain
the corner c(j) on the binarized motion area. 3. Combining the standard deviation S(θ) of
the histogram of the OF direction, the motion entropy ME of the video is computed.

MEi =

 ∑
j∈c(j)

OFij

/S(θ) (15)

ME = std(MEi)
i = 1, 2, . . . , N

(16)

where OFij is the OF of the corner c(j) in the i_th frame. The S(θ) is the standard deviation
measure of the OF direction histogram, which measures the consistency of the direction
histogram. MEi is the motion entropy of the i_th frame and std is the standard deviation of
the N video frames.

Step 4: We judge whether the video is tampered with based on the continuity of the
video frame feature sequence. THR_R is a threshold selected for the peak point of OF
fluctuation feature sequence, and C is the variable counter for peak point. THR_E is the
threshold selected for ME. If ri THR_R, the i_th frame is considered to be the suspected
tamper point and C+ = 1 is used to count the number of suspected tamper points. When
C ≥ 1, it means the video has suspected tamper points. Under the premise of C ≥ 1, if the
detection result satisfies the condition ME ≤ THR_E, which means the video is not jittery.
Then we can judge the video as a tampered video directly; if not, it indicates that the video
is jittery. Therefore, the video needs to be further detected by Algorithm 2. The suspected
tampered position detection process is summarized in Algorithm 1.

Algorithm 1: Reduce the impact of illumination changes

Input : video framesI(p)(1 ≤ p ≤ N
)

, set THR_R as threshold selected for peak point,

THR_R as threshold selected for ME.
Output: store position of suspicious tampering point in S.
1 : S = ∅, C = 0 //C is the variable counter for peak point
2 : for i = 1; i < N; i ++ do
3 : calculate OF fluctuation feature ri and motion entropy ME
4 : if ri THR_R then
5 : add iinto S
6 : C+ = 1
7: end if
8: end for
9 : if C ≥ 1
10 : if ME ≤ THR_E then
11: (a) return FORGED VIDEO
13 : (b) store S, C
14: else run Algorithm 2
15: end if
16:else return ORIGINAL VIDEO
17:end if
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4.2. Algorithm 2 Detects Jittery Video

Video jitter refers to a small motion in the same motion direction of the video frame.
Since the enhanced OF fluctuation feature r in Algorithm 1 is a global motion statistic, only
using the feature r is likely to cause leak detection or false detection, especially in the case
of severe video jitter. To eliminate the false negative detected point caused by video jitter,
we adopt the video texture changes fraction TC to detect the jitter video. The TC feature
captures the local details changes of different motion direction of the video frame, which is
not captured the characteristics of the same motion direction of the jitter frame, so jittery
frames are not identified as tampered frames. The TC feature is calculated by three steps:

Step 1: We compute the gradient structure information of the i_th frame as ‖∆Ii‖. The
corresponding binary mask TMi is obtained by the threshold Tht for the gradient image
‖∆Ii‖, and the binary mask of the video frame is shown as Figure 2b1,b2.

‖∆Ii‖ =
√
(Ii

x)
2
+ (Ii

y)
2 (17)

TMi =

{
255 ‖∆Ii‖ Tht
0 ‖∆Ii‖ ≤ Tht

(18)

where Ii
x is the partial derivative of the i_th frame in the x-direction, Ii

y is the partial
derivative of the i_th frame in the y-direction, and ‖∆Ii‖ means the gradient structure
information of the i_th frame.
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of (a1,a2), (b1,b2) are the corresponding binary mask; after perform morphological operations on (b1,b2), (c1,c2) are the
textures area of video frames).

Step 2: We perform morphological operations on the binary mask TMi to fill the gaps
and remove small areas containing noise, as shown in Figure 2(c1,c2).

TMi = (TMi•SE) ◦ SE (19)

where • means a closed operation of morphological operation, ◦ means an open opera-
tion of morphological operation, and SE is a structural element of open operation and
closed operation.

Step 3: We calculate the texture changes fraction TC(Ii, Ii+1) between TMi and TMi+1
with Equation (20), and || is an absolute value operator. The value of 1 in i_th frame
and 0 in (i + 1)_th frame is called the exiting pixel, shown by the arrow at the top of
Figure 3, and its statistic is called Cout. On the contrary, the value of 0 in i_th frame and 1
in (i + 1)_th frame is called entering pixels, shown by the arrow at the bottom of Figure 3,



Sensors 2021, 21, 3953 8 of 21

and its statistic is called Cin. The process of the detection algorithm based on video texture
changes fraction TC is shown in Algorithm 2.

TC(Ii, Ii+1) = |Cini − Couti| (20)
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Due to the picture continuity of video frames, the content similarity between adjacent
frames is substantial, and the value TC is considerably small. If a certain number of frames
are inserted or deleted, the video continuity will be destroyed. The larger the value TC,
and the more likely the video is to be tampered.

Algorithm 2: Detection algorithm based on video texture changes fraction

Input : video frames I(p)(1 ≤ p ≤ N), set THR_R1 as threshold selected for peak point
Output : store position of suspicious tampering point in S
1 : S = ∅, C = 0 //Reset S, C in Algorithm 1
2 : for i = 1; i < N; i ++ do
3 : calculate video texture changes fraction TC(Ii, Ii+1)
4 : if TC(Ii, Ii+1) THR_R1 then
5 : add i
6 : C + = 1
7: end if
8: end for
9 : if C ≥ 1 then
10: (a) return FORGED VIDEO
11 : (b) store S, C
12:else return ORIGINAL VIDEO
13:end if

4.3. Algorithm 3: Make the Judgement of Video Tamper

The exiting common video tamper operation can cause different tampering point on
the extracted video feature sequence. More concretely, the deletion forgery causes a sudden
peak in the feature sequence, and the insertion forgery causes two pikes. When Ii is a
frame forgery point and its previous frame is I(i−1). At the same time, I j is another frame
forgery point, and its next frame is I(j+1). If I(i−1) and I(j+1) are very similar, then there is a
video frame insert clip from Ii to I(j−i+1). If not, the tamper detection method is a deletion
forgery. The process of judgment of video tamper is shown in Algorithm 3.
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Algorithm 3: judgment of video tamper

Input:suspicious tampering point set in S, the variable counter for peak point C
Output : frame insertion setSinsert , frame deletion set Sdelete
1 : Sinsert = ∅, Sdelete = ∅
2 : for i = 1; i < C; i ++ do
3 : for j = i + 1; j < C; j ++ do
4 : if j > C:
5 : add i into Sdelete
6: else:

7 : calculate OF fluctuation feature r between frame S[i]− 1and S[j] + 1
8 : if r ≈ 1:
9 : add i, j into Sinsert
10: end if
11: end if
12: end for
13: end for

5. Evaluation of Optical Flow Computation
5.1. Experimental Setup

To evaluate the enhanced OF algorithm of the proposed detection framework, we
perform experiments on the benchmark dataset [29]. The dataset contains various image
sequences and the corresponding ground-truth OF information, so we can quantify the
robustness and accuracy of the enhanced OF algorithm. To evaluate the enhanced OF
algorithm against dynamic brightness variation, the image I is multiplied by a factor M,
and a constant C1 is added to construct a model of dynamic brightness variation. The
specific calculation process is shown in Equation (21). For example, Figure 4a,b show
frame10 and frame11 of the Hydrangea sequence group in the dataset, respectively. When
M = 1.1 and C1 = 10, Figure 4b is changed to Figure 4c. We need to calculate the OF
information between Figure 4a,c.

I = M ∗ I + C1 (21)

where M ∈ [0.9, 1.1], C1 ∈ [−10, 10].
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Figure 4. Hydrangea image pair. (a) frame10, (b) frame11, and (c) brightness change added on
frame11 while M = 1.1 and C1 = 10.

We estimate the OF information between Figure 4b and c, let ugt
i ,vgt

i represent the real
OF information, and let ue

i , ve
i represent the estimated OF information. We evaluate OF

methods by two measures indicators: the average angular error (AAE) [30] and the end
point error (EPE) [31]. The AAE and EPE are used to compare the difference between the
ground truth OF and the estimated OF information. The smaller the values of AAE and
EPE, the better the performance of the corresponding OF algorithm. We can also visually
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estimate OF algorithm performance by visualization of the flow map. Equation of AAE is
shown in Equations (22) and (23).

φ(i) = arccos

 ugt
i ue

i + vgt
i ve

i + 1√(
ugt

i

)2
+
(

vgt
i

)2
+ 1
√(

ue
i
)2

+
(
ve

i
)2

+ 1

 (22)

AAE =
1
N

N

∑
i=1

φ(i) (23)

5.2. Experimental Results and Analysis

The test results of different OF algorithms between frame10 Figure 4a and frame11
(Figure 4c under brightness change) in the Hydrangea sequence group are shown in
Figure 5. The description of different approaches and parameter settings used for OF eval-
uation is shown in Table 1. The performance evaluation results of different OF algorithms
are shown in Table 2. The original image and the ground-truth velocity field are shown
in Figure 5a. The flow map and the warped image obtained by the HS algorithm are
shown in Figure 5b. The flow map uses different colors and brightness to indicate the size
and direction of the estimated OF, and the warped image represents frame11 warped to
frame10 according to the estimated OF. At the same time, it is observed that the estimated
flow map in Figure 5b and the ground truth in Figure 5a are significantly different. The
error measures of AAE and EPE in Table 2 are also relatively large. It is observed that
the HS algorithm is not suitable for the evaluation of the image sequence with dynamic
brightness variation.

The evaluation result of the HS+IN (intensity normalization) algorithm is shown in
Figure 5c. Compared to the HS algorithm, the values of AAE and EPE of the HS+IN
algorithm are significantly reduced. The execution time is not much different, which
indicates that the intensity normalization is beneficial to the OF calculation of image
sequences with brightness changes.

The evaluation result of the HS+BR (brightness relaxing factor) algorithm is shown
in Figure 5d. Compared to the HS algorithm, the values of AAE and EPE of the HS+BR
algorithm is greatly increased, which indicates that just introducing the brightness relaxing
factor is not beneficial to the OF calculation of image sequences with brightness changes.

Combining IN and BR, we propose the enhanced OF algorithm. The evaluation result
is shown in Figure 5e, which is very close to the ground-truth velocity field in Figure 5a
visually. The warped image is also similar to frame10. The values of AAE and EPE are small,
which reaches single digits. The above indicators show that the enhanced OF algorithm
proposed is suitable for the OF calculation of image sequence with brightness changes. We
have made a trade-off between computational accuracy and time complexity.
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Figure 5. Comparison of different OF methods between frame10 and frame11 of Hydrangea images
under brightness change (colored). (a) Original image and the ground-truth velocity field, OF
and corresponding warped image of (b) ‘HS’, (c) ‘HS + IN’, (d) ‘HS + BR’, and (e) ‘the enhanced
OF algorithm’.
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Table 1. Description of different approaches and parameter settings used for OF evaluation on
Hydrangea images with brightness change.

Approaches Descriptions and Parameter Settings

HS Classical H&S method, λ = 1000.

HS + IN H&S method with Intensity Normalization,
λ = 1000.

HS + BR H&S method with Brightness Relaxing factor,
λs = 10, λsc = 1, λtc = 1, and d = 0.35.

the enhanced OF algorithm combine HS+BR and intensity normalization.

Table 2. Error measures of different OF methods between frame10 and frame11 of Hydrangea images
under brightness change.

Approaches AAE Average EPE Time (s)

HS 13.188 1.350 6.07

HS + IN 7.074 0.776 6.62

HS + BR 28.497 6.631 7.08

Enhanced OF
algorithm 4.175 0.389 8.06

6. Experimental Results and Analysis

We conduct extensive experiments in diverse and realistic forensic setups to evaluate
the performance of the proposed detection framework in this section. The experimental
data is introduced first. Then the setup of parameters and evaluation standards are
suggested. Finally, we present the experimental results and comparison analysis with four
existing state-of-art algorithms to detect accuracy and robustness.

6.1. Experimental Data

To evaluate the detection effect of the proposed method, we performed experiments
on three public datasets, namely the SULFA Video Library (The Surrey University Library
for Forensic Analysis) [32], the CDNET Video Library (a video database for testing change
detection algorithms) [33], and the VFDD Video Library (Video Forgery Detection Database
of South China University of Technology Version 1.0) [34], respectively. There are about
200 videos in total. The scenes in the video library are as follows:

(1) The video library includes videos of different motion levels, including slow motion,
medium motion, and high motion.

(2) The video library contains videos of different brightness intensities and different
scenes (indoors and outdoors).

(3) The video library includes a variety of mobile phone videos, as well as camera
videos, which were taken with or without a tripod.

6.2. Experimental Setup

We download 150 videos with noticeable brightness changes from the video website
and adopt the metrics of ACE forensics [35] to determine the brightness changes of videos.
We found that these videos have a higher intensity of dynamic brightness changes than
the experimental video library. Because the authenticity of the website video is uncertain,
it cannot be used as an experimental video. Therefore, we apply the model of dynamic
brightness change, which is shown in Equation (21), to simulate the video brightness
changes in the real-life environment. We report the precision with respect to λsc, λtc, λs
and THR_E respectively. Based on the results of Figure 6, we observe the effect is best
when λsc= 1, λtc = 1, λs = 10 and THRE = 0.5. The values of THR_R and THR_R1 are
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set according to the Chebyshev inequality adaptively [36], and the corner point c(i) in
Algorithm 1 is set to 50.
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THR_E = 1.0, the precision with the variation of λsc (b)when λsc = λtc = 1; λs = 10, the pre-
cision with the variation of THR_E.

To evaluate the performance of the detection algorithm, we use the error metrics of
precision and recall to analyze the experimental results. The calculation Equations are:

precision =
Nc

Nc + N f
(24)

recall =
Nc

Nc + Nm
(25)

where Nc is the number of detected correct points, N f is the number of detected false points,
and Nm is the number of tampered points that were missed.

6.3. Experimental Results

Figure 7 is the detection result of frame deletion forgery for the video with jitter noises
and illumination noises. Figure 7a is the experimental results by Algorithm 1, which shows
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the OF fluctuation feature sequence has peaks pair (91, 99, 118). At the same time, the
calculated value of motion entropy ME is 0.672, which indicates that the video is jittery.
To reduce the side effect of the video jitter, we detect the nervous video by Algorithm 2,
which utilizes the texture changes fraction feature TC to detect. The detection result of
double-checking is shown as Figure 7b, where the tampering point is 118. At last, we make
the judgment of video tamper by Algorithm 3, We can obtain that 118 is frame deletion
forgery point, and the peak pair (91, 99) is false detection results.
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Figure 7. Detection result of frame deletion forgery for the video with jitter noises and illumination
noises. In (a), Algorithm 1 utilizes the fluctuation extent of OF to detect forgery, and the detection
results show that the feature sequence has peaks pair (91, 99, 118). At the same time, the motion
entropy of OF is greater than the selected threshold, which indicates it is a jittery video. Therefore,
we detect the video by Algorithm 2, and the detection results in the (b) show that frame118 is the
tampering point.

Based on the detection result of Figure 7, Figure 8 is the detection result of multiple
tampering of the same video. Figure 8a is the experimental results by the Algorithm 1,
which shows that the OF fluctuation feature sequence has peaks pair (91, 99, 118, 150, 180).
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Moreover, the motion entropy ME is 0.752, which indicates that the video is jittery. To
eliminate the effect of the video jitter, this video is re-tested by Algorithm 2, The re-testing
detection result is shown as Figure 8, which locates the tampering points pair at (118, 150,
180), and the peak pair (91, 99) is false detection results. At last, we make the judgment of
tamper by Algorithm 3. We can obtain that frame118 is the deletion forgery point, and the
point pair (150, 180) is frame insertion forgery point.
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Figure 8. The multi-tamper detection result of jitter video with jitter noises and illumination noises.
In (a), Algorithm 1 utilized the fluctuation extent of OF to detect forgery, and the detection results
show that the feature sequence has peaks pair (91, 99, 118, 150, 180). At the same time, the motion
entropy of OF is greater than the selected threshold, which indicates the video is a jittery video; this
video is re-tested using Algorithm 2, and the detection results in (b) show that frame pair (118,150,180)
is the tampering point.
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Figure 9 is the detection result of the untampered video with jitter noises and illu-
mination noises. Figure 9a is the detection result by Algorithm 1, which shown that the
OF fluctuation feature sequence has a peak pair (22, 70). The motion entropy ME is 0.643,
which indicates the video is jittery. To eliminate the effect of the video jitter, this video is
re-tested by the Algorithm 2, which utilizes the texture changes fraction to detect. The
detection result of re-testing is shown as Figure 9b, which indicates that the texture changes
fraction sequence has no peaks. Based on the above test results, we judge that the video is
original and has not been tampered.
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Figure 9. Detection result of the untampered video with jitter noises and illumination noises. In (a),
Algorithm 1 utilizes the fluctuation extent of OF to detect forgery, and the detection results show
that the feature sequence has peaks pair (22, 70). At the same time, the motion entropy of OF is
greater than the selected threshold, which indicates the video is jittery; this video is re-tested using
Algorithm 2 and it can be seen that the texture changes fraction sequence has no peaks in (b).
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Figure 10 shows frame replacement forgery detection result of video with illumination
noise. It shows that the feature sequence has peaks pair (51, 93). At the same time, the
calculated motion entropy ME is 0.453, which indicates that the video is not jittery. Then
we judge video tamper, and the OF fluctuation feature r between frame 50th and 94th is
1.0046, which shows frame pair (50, 94) is very similar. Therefore, the peak pair (51, 93) is
the location of video insertion forgery.
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Figure 10. Detection result of frame replacement forgery of video with illumination noise.

Figure 11 shows the detection result of frame deletion forgery of video with illumina-
tion noises. It indicates the OF fluctuation feature r has prominent peaks at frame deletion
point 56. Because the motion entropy ME is 0.486, which suggests that the video is not
jittery. At last, we make the judgment of video tamper and obtain that frame point 56 is the
location of video deletion forgery.
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Figure 11. Detection result of frame deletion forgery of video with illumination noise.

Figure 12 is the detection result of video frame copy-move forgery of video with
illumination noise. Figure 12 is the detection result by Algorithm 1, which shown that the
OF fluctuation feature sequence has a peak pair (45, 57). And we calculate the value of
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motion entropy ME is 0.482, which indicates that the video is not jittery. At last, we make
the judgment of video tamper. The OF fluctuation feature r between frame 44th and 58th is
0.9844. Therefore, the peak pair (45, 57) is the location of video insertion forgery.
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Figure 12. Detection result of frame copy-move forgery of video with illumination noise.

According to the performance evaluation criteria of the proposed algorithm, a compar-
ison is made between the proposed algorithm in the paper and the state-of-the-art different
video tamper detection algorithms [3,6,9,37]. Table 3 shows the parameter description of
the comparison methods, our proposed method and the comparison methods use the same
dataset, and the comparison results are shown in Table 4.

Table 3. Parameter description of comparison methods.

Parameters
Methods

Ref. [3] Ref. [6] Ref. [9] Ref. [37] Proposed

Consider the
illumination noise No No Not validated Not validated Yes

Consider the jitter noise Not validated Not validated Not validated Not validated Yes

Validation by
multi-forgery No No No No Yes

Forgery detected Removal/Insertion/copy-
move Copy-move Removal/insertion/copy-

move
Removal/insertion/copy-

move
Removal/insertion/copy-

move

Table 4. Comparison with state-of-the-art algorithms.

Method Precision Recall

Proposed 0.8968 0.8952

Ref. [3] 0.5134 0.5142

Ref. [6] 0.5262 0.5193

Ref. [9] 0.6321 0.6352

Ref. [37] 0.6454 0.6336

As compared to methods reported in [3,6,9,37], the proposed method has high ro-
bustness and high accuracy. The results indicate that the proposed method is capable of
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effective detection and localization of all inter-frame forgeries on videos with illumination
noises and jitter noises. In a real-life scenario, the forensic investigator has no control over
the parameters of the environment where the video was captured or the parameters used
by the video tamper. The forensic investigator must detect in the complete absence of any
information regarding the noises, the motion-level, and the forgery operation forms of the
captured video. Therefore, the most suitable forgery detection is the one that has practical
suitability for the real-life video scenes, such as videos with brightness variance, videos
with significant jitter, and the various motion-level videos. Furthermore, our method not
only can locate the forgery precisely, but also can estimate the way of multi-forgery on
tampered positions.

For [3,6], the detection methods based on OF are invalid when there are illumination
changes added to the image sequence. Hence, the detection result is not so good. For [9],
the detection performance is improved; the main reason is that the Zernike moment feature
avoids the effect of brightness intensity. However, experiments prove that its detection
performance on the jittery video has decreased significantly, so the detection result is not
so good. For [37], the test results are also relatively improved; the main reason is that the
multi-channel feature avoids missing detection; however, experimental results show that
the performance of this method is not good for the minor frame deletion forgery, so this
method is not as stable as the proposed method in our paper.

Prior video tampering detection methods are not suitable for videos with dynamic
brightness changes and jittery videos. The detection method [13] based on motion residual
can be ideal for the most motion-level video, such as high motion-level, medium motion-
level, etc. However, it is not suitable for the slowest motion-level video. The inter-frame
difference will decrease as the video motion-level decrease, so the extracted motion residual
feature will be weak. However, the relocated I-frame is not affected by the motion level of
video, so the relocated I-frame will be defined as the tampered frame mistakenly. Therefore,
reference [13] is not suitable for the lowest motion video. Our proposed method utilizes
the inconsistencies of features, including the enhanced OF and texture changes fraction, to
detect tamper in real-life videos. The former feature is insensitive to the motion level of the
video. Moreover, the latter feature can also describe the subtle inter-frame differences of the
lowest motion video. Therefore, our method is also suitable for the lowest motion video.

To reduce the effect of illumination noises and jitter noises, we utilize a robust optical
flow detection method based on relaxing brightness consistency assumption and intensity
normalization, which can reduce the influence of significant brightness change and small
brightness change, respectively. At the same time, we use motion entropy ME to sense
whether the video is jittery and utilize the texture changes fraction TC for double-checking,
so the false detection caused by video jitter can be reduced. Experiments prove that
the proposed detection method has strong robustness and high accuracy for complex
scene video.

7. Conclusions

In this paper, we have proposed a novel detection framework for inter-frame forgery
in real-life video with illumination noises and jitter noises. Firstly, for videos with severe
brightness changes, we relax brightness constancy constraint and adopt intensity normal-
ization to propose a new optical flow algorithm in Algorithm 1. Secondly, for videos with
large jitter noises, we introduce motion entropy to detect the jitter and extract the stable
feature of texture changes fraction for double-checking in Algorithm 2. Finally, we make
the judgment of video tamper in Algorithm 3. The proposed method was validated by
extensive experimentation in diverse and realistic forensic setups. The obtained results
indicate that the proposed method is entirely accurate and robust. It can detect video single-
forgery or multi-forgeries with an average accuracy of 89%, including frame deletion, frame
insertion, frame replacement, and frame copy-move. Furthermore, the proposed method is
not sensitive to the jitter noises, illumination noises, or the motion level of the video. In the
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future, it would be beneficial to explore the suitability of some other real-life video scenes,
such as blurred video and still video.
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