
sensors

Article

Parallel Structure from Motion for Sparse Point Cloud
Generation in Large-Scale Scenes

Yongtang Bao 1,* , Pengfei Lin 2,3, Yao Li 2, Yue Qi 2,3, Zhihui Wang 1 , Wenxiang Du 3 and Qing Fan 4

����������
�������

Citation: Bao, Y.; Lin, P.; Li, Y.; Qi, Y.;

Wang, Z.; Du, W.; Fan, Q. Parallel

Structure from Motion for Sparse

Point Cloud Generation in

Large-Scale Scenes. Sensors 2021, 21,

3939. https://doi.org/10.3390/

s21113939

Academic Editor: Mengdao Xing

Received: 1 February 2021

Accepted: 4 June 2021

Published: 7 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Computer Science and Engineering, Shandong University of Science and Technology,
Qingdao 266590, China; zh_wang@sdust.edu.cn

2 State Key Laboratory of Virtual Reality and Technology, Beihang University, Beijing 100191, China;
linpengfei@buaa.edu.cn (P.L.); leeyao@buaa.edu.cn (Y.L.); qy@buaa.edu.cn (Y.Q.)

3 Virtual Reality Research Institute, Beihang University Qingdao Research Institute, Qingdao 266100, China;
dwxiang@buaa.edu.cn

4 MiningLamp Technology, Beijing 100102, China; fanqing@mininglamp.com
* Correspondence: baozi0221@sdust.edu.cn

Abstract: Scene reconstruction uses images or videos as input to reconstruct a 3D model of a real
scene and has important applications in smart cities, surveying and mapping, military, and other
fields. Structure from motion (SFM) is a key step in scene reconstruction, which recovers sparse point
clouds from image sequences. However, large-scale scenes cannot be reconstructed using a single
compute node. Image matching and geometric filtering take up a lot of time in the traditional SFM
problem. In this paper, we propose a novel divide-and-conquer framework to solve the distributed
SFM problem. First, we use the global navigation satellite system (GNSS) information from images
to calculate the GNSS neighborhood. The number of images matched is greatly reduced by matching
each image to only valid GNSS neighbors. This way, a robust matching relationship can be obtained.
Second, the calculated matching relationship is used as the initial camera graph, which is divided
into multiple subgraphs by the clustering algorithm. The local SFM is executed on several computing
nodes to register the local cameras. Finally, all of the local camera poses are integrated and optimized
to complete the global camera registration. Experiments show that our system can accurately and
efficiently solve the structure from motion problem in large-scale scenes.

Keywords: structure from motion; graph segmentation; sparse point cloud; large-scale scene; camera
clustering; UAV image

1. Introduction

Structure from motion (SFM) has rapidly developed in the field of 3D reconstruction.
Image feature extraction and matching have generally achieved considerable success
in computer vision. Until now, the existing research used a single computing node to
reconstruct a three-dimensional (3D) sparse point cloud for small scenes with thousands of
images as input. However, with the increase in the number of datasets, the reconstruction
of large scenes must adopt distributed computing to ensure the accuracy and efficiency
of reconstruction.

In the entire SFM step, image matching and epipolar constraint filtering are the
most time consuming. To solve the problem of time consumption, Li et al. [1] used the
principle of spatial angular order to improve efficiency, which assumes that angular order
of neighboring points relating to one correspondence remains invariant under a variety
of transformation. This constraint was used to remove outliers from initial matches of
image pairs [2,3]. Some prior information of data acquisition can be used to achieve
image pair selection without sacrificing computation costs. By leveraging the temporal
consistency constraint, Aliakbarpour et al. [4] restricted feature matching to their forward
and backward neighbors within a specified time offset. Considering that the long distance

Sensors 2021, 21, 3939. https://doi.org/10.3390/s21113939 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1010-7229
https://orcid.org/0000-0001-8140-1882
https://doi.org/10.3390/s21113939
https://doi.org/10.3390/s21113939
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21113939
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21113939?type=check_update&version=1

Sensors 2021, 21, 3939 2 of 21

between the images is low or the images have no correlation, we use the global navigation
satellite system (GNSS) information from the image to calculate the distance threshold
of the GNSS effective neighbors and perform image matching for each image with its
effective neighbors. The original squared time complexity of image matching is optimized
for linear complexity.

Inspired by the divide-and-conquer framework, we propose camera clustering based
on normalized-cut segmentation in this study. First, we divide the camera graph. The
efficiency and robustness are weighed to perform the expansion work. We then delete
the effective edges when graph cutting is restored. The clustering of cameras guarantees
execution of the divide-and-conquer framework and preserves most of the connectivity
between cameras. For merging blocks and reconstruction results of the subgraph, we select
a reference camera and use it to calculate the scale ratio of the two blocks. The advantage of
our system is that it only needs to meet two coincidence point pairs between the blocks—it
does not require each block to have an overlapping relationship. The graph segmentation
method can also solve the problem of global SFM sensitivity to outliers. The registration of
global camera poses is completed through merger and optimization of the blocks.

In summary, this study makes the following contributions to existing literature:

• We propose a method for calculating the GNSS neighborhood, which greatly reduces
the time of image matching and ensures the robustness of the matching relationship.

• We propose a distributed camera registration algorithm to ensure a strong correlation
within the camera blocks and robustly merge and optimize all of the blocks to obtain
an accurate global camera pose.

• Our algorithm is deployed in a distributed system that can ensure the efficiency and
accuracy of large-scale 3D reconstruction work.

2. Related Work
2.1. Traditional SFM

The traditional SFM is divided into two methods: incremental SFM and global SFM.
Incremental SFM [5–11] has been widely used in the first decade of SFM. It initializes
image pairs and performs unified image extraction, matching, and epipolar constraint
filtering. After obtaining the image relationship, it solves camera registration, triangulation,
and bundle adjustment [12–14] to obtain a sparse point cloud. Furthermore, this method
continues to add images and repeats the abovementioned operations to complete the final
reconstruction. An incremental SFM method that continuously adds new images causes
drift errors or generates only a part of the scene. Moreover, because each image is added to
the calculation, bundle adjustment must be repeated multiple times to ensure the accuracy
of the camera pose and the 3D point cloud. Therefore, the entire process consumes a
considerable amount of time. The memory requirements are increasing, which proves
disadvantageous for limited computing resources.

Compared with the incremental SFM, global SFM [15–27] shows better efficiency.
It simultaneously calculates all camera poses from the available epipolar geometry and the
trifocal tensor. After registering all camera poses, the global SFM method only executes
bundle adjustment once at the end, which makes up for the lack of multiple incremental
calculations. Global SFM uses image matching [28–30] and epipolar constraints [31–33]
to generate an initial camera graph. First, it uses the relationship between the cameras to
form a track. Next, it calculates the relative motions [34–38] between the cameras. Then, it
performs global rotation and translation optimizations through these relative motions to
obtain the camera global motions. Finally, global SFM performs triangulation and bundle
adjustment to obtain the 3D sparse point cloud.

Global SFM is particularly dependent on the accuracy of image matching and is sensi-
tive to outliers. Otherwise, its reconstruction integrity is not as good as that of incremental
SFM. To counter this problem, hybrid SFM (HSFM) was introduced. HSFM uses the respec-
tive advantages of incremental SFM and global SFM to solve large-scale 3D reconstruction
problems. It calculates the global camera rotation at once and incrementally retrieves the

Sensors 2021, 21, 3939 3 of 21

camera projection centers [39–45]. HSFM [27,44–46] proposes a divide-and-conquer frame-
work that divides the camera graph. Then, it executes the reconstruction of the subgraph.
However, a simple graph cut [47,48] reduces excessive image matching relationships. This
results in an incomplete or incorrect integration of subgraph reconstruction.

2.2. Deep Learning-Based Reconstruction

The application of deep learning in geometric matching pipelines mostly focuses on
local feature detection and descriptor learning [49,50]. Mismatch removal work based on
deep learning [44,51] has also been well applied. In previous work [52], the Point-Net
class architecture and context normalization were used to classify the inferred correspon-
dence. However, this study could not take advantage of the relative motion pose shared
by neighboring pixels [53]. Zhang et al. [54] used neural networks to infer the probabil-
ity of each corresponding point as an interior point and then restored the camera pose.
Tabb et al. [55] used rigid constraints to represent the camera network and multi-camera
calibration problem and expressed it as a system of equations to obtain approximate solu-
tions. Liu et al. [56] developed a new type of deep neural network (LPD-Net), which can
extract distinguishable global descriptors from the original 3D point cloud. Yao et al. [57]
proposed a multi-view-based depth map understanding framework (MVSNet) for the 3D
reconstruction of outdoor scenes. Their method only calculates one depth map at a time
instead of calculating the entire 3D scene. Gu et al. [58] further improved MVSNet, which
solved the cubic increase in computational complexity as the image resolution increased.
Most 3D reconstruction algorithms are only applicable to static scenes. Miksik et al. [59]
proposed an end-to-end system for the real-time reconstruction of outdoor dynamic en-
vironments. The system operates in an incremental manner and can process scenes of
objects in real time. For the application of outdoor dynamic scenes, Hu et al. [60] further
proposed an efficient and lightweight network to directly determine the semantics of each
point in a large-scale point cloud. In short, the current deep learning-based methods can
process low-resolution input image sets. They are mostly suitable for indoor scenes or
small-scale outdoor scene reconstruction work. Therefore, the problem of sparse point
cloud reconstruction for large-scale scenes requires the use of geometric information-based
motion recovery structure technology.

2.3. Large-Scale SFM

Some studies attempted to solve large-scale SFM through multi-core computing
nodes [5,21,61,62] or by reducing the time of pair matching [28,29] through construction
of skeleton diagrams [62–64]. Bhowmick et al. [46] attempted to solve the large-scale
SFM problem in a divide-and-conquer manner. They used the graph cut [47,48] to divide
the camera graph. After all of the sub-graph reconstructions are completed, other cam-
eras are registered in each subgraph to construct overlapping areas and to merge them.
This method was improved in [27,65] to cluster the dataset and to merge each cluster
through a distributed camera model. However, both [27] and [46] did not consider the
graph clustering strategy well. The study conducted by [66] ignored the careful design
of clustering and merging algorithms, which made the reconstruction fragile and caused
drift errors.

With the rapid increase in the number of relative motion calculations [34–38], the stan-
dard motion average problem that considers all relative postures simultaneously becomes
both memory-intensive and time-consuming. This problem becomes more obvious in the
translation averaging [19,20,31,62,67] that considers the relative translation between the
camera and the 3D point.

3. Methodology
3.1. Overview

To solve the problem of large-scale motion averaging in a distributed way, we pro-
pose a divide-and-conquer framework to complete global camera pose registration in a

Sensors 2021, 21, 3939 4 of 21

distributed manner. We also introduce GNSS information as a filter criterion for image
matching, as it can reduce the time complexity of the image matching part of the traditional
SFM method to linear time complexity.

Figure 1 shows the pipeline of our method. Given the collection of images and their
features from large-scale scenes with unmanned aerial vehicle (UAV), our method can
effectively generate sparse point cloud using GNSS neighborhood, camera clustering,
and global camera pose averaging. The images and their features are considered as
inputs. The GNSS neighborhood is calculated for image matching. Camera clustering
and local camera pose registration are used for global camera pose averaging. Executing
triangulation and optional bundle adjustment can obtain sparse point clouds. Specifically,
our method consists of the following three steps: GNSS neighborhood computing, camera
clustering, and camera pose averaging.

Figure 1. Pipeline of the proposed system.

3.2. GNSS Image Matching

Image matching [28,29] is a key step in SFM. The accuracy of the matching relationship
affects the accuracy of the final camera pose and the integrity of the reconstruction results.
Reconstructing large scenes requires a huge number of high-resolution images as input.
The traditional image matching has a square-level time complexity, which takes up more
than half of the time in the entire SFM pipeline. We use GNSS information to calculate the
GNSS neighborhood as the filter conditions for image matching. The time complexity of
image matching is optimized to be approximately linear.

3.2.1. GNSS Neighborhood Computing

WGS84 to ECEF coordinate system conversion: The GNSS system uses position
satellites to locate and navigate in real time. Almost all cameras used in UAVs have the pos-
sibility of storing the drone’s GNSS information inside the exchangeable image file (EXIF)
of the image. GNSS coordinates are based on the World Geodetic System 1984 (WGS84).
We mark the GNSS coordinates in the WGS84 coordinate system as PG = [λ, ϕ, h]T ,
where λ represents longitude, ϕ represents latitude, and h represents height, which is the
height from the surface of the ellipsoid. As GNSS coordinates uses the WGS84 ellipsoid
as a reference surface, we need a Cartesian 3D model to correctly calculate the distance
between the two cameras in space. We need to convert the WGS84 coordinate system to
the Earth-centered Earth-fixed (ECEF) coordinate system [68]. The conversion method is
as follows:

semi−majoraxis : a = 6378137,
semi−majoraxis : b = a(1− f),

f lattening : f = 1/298.257223563,

eccentricity : e =
√

a2−b2

a2 ,

where a and b represent the length of Earth ellipsoid’s semi-major axis and semi-minor axis
in the geodetic system, respectively; f represents the flattening factor of the earth; and e
represents the eccentricity of the Earth.

PE = [(N + h)cosϕcosλ, (N + h)cosϕsinλ, [N(1− e2) + h]sinϕ]T , (1)

where the variable PE is the image coordinate in the ECEF coordinate system and N is
defined as N = a√

1−e2sin2 ϕ
.

Spatial threshold calculation: Given the input N images, we calculated the spatial
Euclidean distance between N(N−1)

2 pairs of images. We recorded the coordinates of the

Sensors 2021, 21, 3939 5 of 21

two images as P1(x1, y1, z1) and P2(x2, y2, z2), respectively. The formula for calculating the
spatial Euclidean distance is as follows:

distance(P1,P2)
=
√
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2.

The farthest distance maxD of each image can be obtained by sorting the GNSS
coordinate distance of each pair of images. To ensure the efficiency and robustness of the
system reconstruction, the distance D is calculated such that each image is matched with
other images in less than the distance Dthreshold.

Dthreshold =
maxD√

N
δl , (2)

where δl is the scale constant. We set it as 10 in our experiments.

3.2.2. Image Matching

Pre-matched view graph establishment: After obtaining each image and all GNSS
neighbors that meet the distance threshold, we generated a pre-matched camera graph
structure based on the GNSS neighborhood. First, we selected the set of hash functions
according to the locality sensitive hash (LSH) algorithm [69] and randomly selected m
hash functions. We then used scale-invariant feature transform (SIFT) for feature points
detection and mapped the image feature points to a hash table, which contains 2m different
bits hash bucket. If there is a matching relationship between the two images, the number
of feature points in each hash bucket obtained by using the same hash function set H
should be similar. Finally, we selected multiple hash function sets {H|H1, H2, ...Hn} and
mapped the input images to multiple hash tables. The images in each hash bucket form
a matching relationship. We restricted the number of matching times k for each image to
improve the time efficiency of image matching. In our experiment, we added the matching
relationship to the pre-matched map only when the k of two images is both less than 100.
The image matching and epipolar geometric constraint filtering are performed according
to the pre-matching map.

Cascade hashing image matching: We used the LSH algorithm to implement a cascade
hashing image matching method. This method includes three steps: rough query, mapping
Hamming space, and hash sorting. First, we recorded the feature points in all hash
tables that fall into the same hash bucket and used these hash buckets as the scope of
the query. We then mapped each feature point to a higher dimensional Hamming space
(128 dimension in our experiment) and only calculated the descriptor similarity between
the feature points for which the Hamming distance is less than the threshold. Finally,
the problem was transformed into a top k problem of finding the smallest Hamming
distance among candidate feature points. We adopted the idea of hash sorting and used the
Hamming distance as the key to establish a hash bucket. Points with the same Hamming
distance as the query point fall into the same bucket.

Epipolar constraint: We first obtained all matching relations that were accurate and
satisfied the epipolar geometry. We then established the camera graph G = (V, E), where V
represents the cameras and E is the matching relationship between the cameras. The vertex
vi ∈ V in the GNSS neighborhood represents a camera that is an image. The edge eij ∈
E among vertices indicates that the distance between the vertices meets the threshold
Dthreshold. The weight of the edge wij represents the number of matching feature points Mij
between the two images, that is, wij =

∣∣Mij
∣∣.

3.3. Camera Clustering

With the increasing number of input images for the SFM, two problems need to be
solved. The first is that the program exceeds the memory limit of a single computing
node. Second, the parallelized computer cluster resources are difficult to use [5,21,61,62].
Therefore, we divided the camera graph into multiple subgraphs and utilized multiple
computing nodes in parallel to solve the above two problems.

Sensors 2021, 21, 3939 6 of 21

The segmentation of the camera graph should be divided into two steps, namely
division and expansion. Division enables each sub-problem to solve the enforceability
constraint on a single computing node. The expansion makes all adjacent subgraphs
overlap enough to meet the consistency constraint. This ensures that the corresponding
poses are merged in motion averaging. At the same time, accurate global camera poses
and complete reconstruction results can be obtained.

3.3.1. Normalized-Cut Algorithm

We use a normalized-cut algorithm to divide the camera graph. The matching re-
lationship among the images was used as the weight. The camera graph was divided
into multiple subgraphs. As there needs to be a coincidence point between subgraphs, it
is necessary to select the edge with the greatest weight from the edges removed by the
division. We retrieved this from each subgraph.

The normalized-cut algorithm is a graph segmentation algorithm. A weighted undi-
rected graph G = (V, E) can be divided into two non-connected subgraphs, A and B.
This can be done by deleting some edges so that A ∪ B = V, A ∩ B = ∅. The sum
of the weights of the removed edges is regarded as the dissimilarity of the two parts,
A and B. It can further be defined as cut(A, B) = ∑u∈A,v∈B w(u, v). The sum of the
weights of all nodes in subgraph A and all of the nodes V in graph G can be recorded as
assoc(A, V) = ∑u∈A,v∈V w(u, v), where w(u, v) is the weight of the edge. The normalized
segmentation method [48] is given as follows:

Ncut(A, B) =
cut(A, B)

assoc(A, V)
+

cut(B, A)

assoc(B, V)
. (3)

Note that minimizing the calculation result ensures that the subgraphs have a small
degree of correlation and that the subgraphs have a large degree of correlation.

3.3.2. Camera Graph Division

We used G = (V, E) to represent the camera graph, where each vertex vi ∈ V
represents a camera ci ∈ C and each edge eij ∈ E has a weight weij to connect two different
cameras, ci and cj. We used the number of matching feature points between the two images
to represent the weight, expressed as weij =

∣∣Mij
∣∣. The camera graph G is divided into

several subgraphs Gi such that each subgraph is controlled within its size. The number of
vertices in each subgraph was similar. All of the divided subgraphs were recorded as the
set Gc. The enforcement constraint needs to satisfy

∀Gi ∈ Gc, |Vi| ≤ Nlimit,

∀Gi, Gj ∈ Gc, |Vi| ≈
∣∣Vj
∣∣, (4)

where Nlimit represents the maximum number of cameras in each subgraph, Gi and Gj
represent the subgraph, and |Vi| and

∣∣Vj
∣∣ represent the number of vertices in the subgraph

of Gi and Gj. The normalized segmentation ensures that the segmented subgraph meets
|Vi| ≈

∣∣Vj
∣∣. Nlimit affects the calculation time of the local SFM, multi-block expansion,

and data transmission time of computing nodes. We chose Nlimit = 2000 to deal with
large-scale scene reconstruction based on the reconstruction effect and efficiency. Our
predecessors [44] used 100 for Nlimit. However, this causes many graph segmentation
operations and data transmission, and the local bundle adjustment cannot cover the
number of cameras. More subgraph merging also causes a large drift error. We set Nlimit as
2000 so that each computing node can process and obtain more accurate reconstruction
results.

3.3.3. Camera Graph Expansion

Each subgraph must have overlapping vertices to complete the camera pose synthesis
and subsequent reconstruction work between subgraphs. Therefore, the subgraphs after
division must be expanded accordingly. Each subgraph does not need to overlap with

Sensors 2021, 21, 3939 7 of 21

all of the other subgraphs. However, the coincidence ratio between the subgraphs must
be guaranteed to ensure that each subgraph can be merged. This is not affected by the
relationship between the subgraphs. We define the consistency constraint as

∀Gi ∈ G,

∣∣Vexpansion
∣∣

|Vi|
≥ δratio, (5)

where Vexpansion represents the vertices of expansion and δratio is the expansion ratio. The
edges deleted during the division of each subgraph were sorted by weight, according to
the number of matching feature points. After that, we obtained some edges with the largest
weight. The two vertices of the edge were added to the subgraph, and the number of these
points is

∣∣Vexpansion
∣∣. We set the δratio to 0.5 in our experiments. We stopped the expansion

when the ratio of the expanded vertices was greater than or equal to this ratio, or all of the
cut edges between the subgraphs were restored.

When all of the removed edges of multiple subgraphs were restored, the overall
expansion ratio was lower, resulting in insufficient matching relationships. In this case,
we performed a secondary expansion on all subgraphs. We defined the ratio of all new
vertices to the total number of original vertices as the expansion consistency constraint as

∑
∣∣Vexp ansion

∣∣
∑ |Vi|

≥ δratio, (6)

where δratio denotes the same meanings as in Equation (5). If the condition is not satisfied,
the edges discarded by the normalized-cut segmentation are selected according to the
weights in descending order. We then randomly add the new edge to one of the two
blocks connected by the new edge, and then iteratively expand until the expansion ratio is
satisfied. This ensured that there were enough coincidence points between each subgraph.
Moreover, this could restore a large number of connections through the expansion of all
subgraphs to ensure the accuracy of the integration result and avoid wasting computing
resources due to the redundancy of the extended cameras.

3.4. Camera Pose Averaging

The camera poses in each subgraph can be obtained by executing the local SFM for
each subgraph. In this section, we provide a fast and accurate averaging method to merge
and optimize the previously calculated camera poses of each subgraph. We obtain global
camera poses for subsequent triangulation and bundle adjustment.

A similar transformation method to that in [34] was used to merge the camera pose.
The conversion formula for any two camera poses is as follows:[

Rj Tj
0T 1

]
=

[
rij tij
0T 1

][
Ri Ti
0T 1

]
, (7)

where Ri and Ti are the rotation and translation of camera i, respectively; Rj and Tj are the
rotation and translation of camera j; and rij and tij are the relative rotation and translation
between camera i and j, respectively. Rj and Tj can be derived as

Rj = rijRi,

Tj = rijTi + tij.
(8)

These equations represent the conversion relationship between the poses of the two
cameras. The camera poses in the world coordinate system of the two cameras can be used
to estimate the relative rotation and translation between the two cameras. The camera pose
was merged using a similar transformation method. We optimized the merged camera
pose by nonlinear optimization to obtain an accurate global camera pose.

Sensors 2021, 21, 3939 8 of 21

3.4.1. Global Rotation Registration

We denote the repeated cameras Crpt in any two clusters Ci, Cj as
{

Crpt|Crpt = Ci ∩ Cj
}

.
We first calculated the relative rotations rrel of the coincident point and all points in the
cluster that need to be transformed. We then fixed the global rotations of the repeated
cameras. The original camera rotations Rrpt in Cj were updated to the corresponding R

′
rpt

of the same camera in Ci. Finally, the updated global rotation R
′
j of the other cameras in the

cluster was obtained as follows:

∀cj ∈ Cj, R
′
j = rijR

′
rpt. (9)

Except for the fixed camera pose, all other camera poses belonging to the subgraphs
need to be calculated. This results in some coincidence points that are repeatedly calculated
for the pose. These repeated calculations were used as a benchmark for error. We first
selected a fixed camera pose, which we believed was the most accurate reference camera.
We then set the error between the camera poses of all calculated coincidence points and the
original pose as the smallest one. Finally, we used this camera as the base of the camera’s
global rotation registration.

3.4.2. Global Translation Registration

The rotations and translations of the camera poses in each subgraph have their own
scales. These scales do not affect the abovementioned method of global rotation registration.
However, the registration of the global translation registration needs to calculate the
difference scale value λt between the local translation in each subgraph scale.

As shown in Equation (7), without considering the scale of the same subgraph, the
conversion relationship between the local translations of the two cameras is as follows:

T2 = r12T1 + t12,

T
′
2 = r12T

′
1 + t

′
12,

(10)

where T
′
1 and T

′
2 are the translations of cameras 1 and 2 in subgraph 1, T

′
1 and T

′
2 are the

translations of cameras 1 and 2 in subgraph 2, and t12 and t
′
12 are the relative translations

between cameras 1 and 2 in subgraphs 1 and 2, respectively. We defined the pairs of
repeated cameras in the two subgraphs to be merged as {T1, T2} and

{
T
′
1, T

′
2

}
. As the

translation of the same camera in two different coordinate systems is to be calculated, r12
remains the same.

The camera poses in each subgraph can be obtained by executing the local SFM for
each subgraph. The relationship between the local translation within two subgraphs can
be obtained after executing the local SFM. We combined all of the coincident points Crpt

into n(n−1)
2 pairs, where n =

∣∣Crpt
∣∣. We then obtained the most accurate scale λt according

to the following formula:

λt =
∑i,j∈{Crpt}

∣∣∣ti′ j′
∣∣∣

|tij|∣∣Crpt
∣∣ , (11)

where

∣∣∣ti′ j′
∣∣∣

|tij| is the scale ratio calculated according to each group of camera pairs.

In the global rotation registration, we selected the most accurate reference camera,
and in the global translation registration work, we used the same camera as the reference.
We marked the translation of the reference camera in the current coordinate system and
the target coordinate system as Ta and T

′
a, and the translations of the camera to be merged

in the current and target coordinate system were denoted by Tb and T
′
b respectively. rab

Sensors 2021, 21, 3939 9 of 21

represents the relative rotation of the reference camera and other cameras. The relevant
formula for the camera translation is given as

tab = Tb − rabTa, (12)

T
′
b = rabT

′
a + λttab. (13)

We first calculated the relative translation tab between the camera translation Tb and
the reference camera translation Ta using Equation (12). We then converted the reference
camera translation Ta into translation T

′
a in the target coordinate system. Finally, we used

the calculated translation scale ratio λt to calculate the global translation T
′
b in the target

coordinate system according to Equation (13).
In this section, we discuss how the camera pose is merged between the two sub-

images. We can also merge new subgraphs through continuous iterations and finally obtain
a unified global camera pose. Our method does not require overlap between each subgraph;
it only needs to ensure that there is sufficient overlap relationship, so that a new subgraph
can be merged repeatedly through iteration. As each new subgraph only needs to have an
overlap relationship with the merged group of pictures, the number of overlapping points
is at least 2.

3.4.3. Optimization of Camera Poses

Calculation of the translation scale among the coordinate systems can be guaranteed
to be accurate by averaging it with the selections from the reference camera. A relatively
complete reconstruction result can be obtained by directly applying these camera poses to
the subsequent reconstruction work. However, the details of the reconstruction result are
greatly reduced. In this section, we give more consideration to the relationship between
the sub-images and further optimize the previously calculated camera pose to obtain
a more refined reconstruction result. We keep the relative rotations and translations
obtained when local SFM is executed on each subgraph and record them as Rrel and
Trel , respectively. After the global rotation and translation registration, these relative
relationships are merged, which can cross-influence the entire synthesized camera pose.
Therefore, we use the following method to optimize the previously registered global camera
pose γ = {Ri}, τ = {Ti}.

arg min
γ

∑rij∈Rrel
dR
(

rij, RjRT
i

)P
,

arg min
τ

∑tij∈Trel
dT
(

tij, Tj − RjRT
i Ti

)P
,

(14)

where rij and tij denote the same meanings as in Equation (8), dR represents the chordal dis-
tance, dT represents the Euclidean distance, and P takes 2 to represent the L2 normal form.

These local camera poses are obtained from each subgraph, which can ensure that
the relationship between them is accurate because of the advantage of normalized-cut.
Therefore, we used the camera pose as input to avoid calculating the relationship among
all camera poses. This can also completely optimize the overall global camera pose. After
optimizing the above camera pose, a robust and accurate global camera pose was obtained
for subsequent triangulation, and hence, a sparse point cloud with an accurate position
could be obtained.

4. Results
4.1. Implementation Details

We implemented GNSS neighbor computing, camera clustering, and global camera
pose merging and optimization on a single computer. The server system was Ubuntu 16.04,
g++ 9.2.0 and was configured with an Intel(R) Xeon(R) CPU E5-2680 v4 at 2.40 GHz 28-core
96 GB memory. We also performed image matching and local camera pose estimation on

Sensors 2021, 21, 3939 10 of 21

a distributed computing system consisting of eight computers. Table 1 summarizes the
cluster configuration experimental environment, including eight computers, of which the
28-core 96 GB memory computer is the master node and the remaining computers are the
slave nodes. All of the computers were deployed on a scalable network file system similar
to the Hadoop File System. The large-scale datasets used in this study are all drone aerial
images with a resolution of 2736 × 1824.

Table 1. Cluster configuration.

CPU Core Number Memory Size Machine Number

Intel(R) Xeon(R)
CPU E5-2680 v4 at 2.4 GHz 28 96 1

Intel(R) Core(TM)
i7-6700 CPU at 3.40 GHz 8 32 2

Intel(R) Core(TM)
i7-8700 CPU at 3.20 GHz 12 64 5

4.2. GNSS Neighbor Computing and Image Matching

In this section, we use three aerial datasets to validate our method. Aerial dataset 1 is
an area of Tiangong University, which contains 1510 images. Dataset 2 is the entire campus
of Tianjin University of Technology and contains 8876 images. Dataset 3 is the Tianjin
Xuefu Industrial Zone, which contains 25,726 images. Figure 2 shows the GNSS neighbor
computing results of dataset 3. In this figure, two cameras are sampled and marked in red,
and their respective GNSS neighbors are marked in blue. The camera represented by the
red dot only performed image matching with the blue dot camera, avoiding redundant
image matching with the green dot cameras. This can greatly reduce the time required for
image matching.

Figure 2. GNSS neighbor computing result of Tianjin Xuefu Industrial Zone.

To verify the effectiveness of our image matching method, we performed a time-
consuming analysis on these three datasets. Table 2 presents the time required for image
matching using the traditional method, our method on a single computer, and our method
on a cluster. It takes time to transmit images and feature points among clusters, and there
are fewer matching pairs filtered by GNSS information. The optimization effect is not
obvious on dataset 1 owing to a small number of images. As our method reduces the time
complexity of image matching from square to approximately linear, our method on a cluster
can show good optimization effects on datasets 2 and 3. Performing an image matching
experiment on dataset 2, the result of our method on the cluster was approximately 16
times faster than the conventional method. The image matching speed of our method was
approximately 55 times faster than that of the traditional method on dataset 3.

Sensors 2021, 21, 3939 11 of 21

Table 2. Time-consuming analysis for image matching (min).

Aerial
Dataset

Image
Number

Traditional
Method (SIFT)

Our Method on
Single Computer

Our Method
on a Cluster

Dataset1 1510 41.2 36.6 18.9
Dataset2 8876 2927.3 1146.1 197.6
Dataset3 25,726 24,517.5 3094.1 438.8

Figure 3 shows a comparison of the image matching results generated by the tradi-
tional method and our cascade hashing image matching method. It can be seen from this
figure that our method can obtain more matching points in a short time and that the quality
of the matching points is higher, which can better represent the local features of images.

Figure 3. Comparison of image matching results. (a,c) The results using a traditional method such as
SIFT. (b,d) The corresponding results generated by our cascade hashing image matching method.

4.3. Camera Clustering Results

We used a single computer configuration to verify the accuracy of the camera clus-
tering results. Figure 4 shows the camera graph division and expansion of the area of
Tiangong University. The dataset contains 1510 UAV aerial images with a resolution of
2736 × 1824, where each point represents a camera. As shown in Figure 4, our method can
enable effective camera division and expansion on medium-scale scenes.

We further applied our method to a large-scale scene to verify the effectiveness of
the method. Figure 5 shows the camera clustering and sparse point cloud reconstruction
results of the Tianjin Xuefu Industrial Zone. The dataset contains 25,726 UAV aerial images.
Cameras with different colors indicate different camera clustering results. As shown
in Figure 5, our method can be applied to camera clustering in large-scale scenes and
subsequent sparse point cloud generation work. Figure 6 shows the maximum spanning
tree composed of camera subgraphs in the Tianjin Xuefu Industrial Zone. The cameras
of different colors correspond to the camera classification results in Figure 5. The edge
weights connected between nodes are defined as cut(A,B)

|VA |+|VB |
, cut(A, B), |VA|, and |VB| and

have the same meaning as in Section 3.3. We performed camera image expansion work
according to the maximum spanning tree.

Sensors 2021, 21, 3939 12 of 21

Figure 4. Camera graph division and expansion of an area for Tiangong University. Cameras in
different colors in (a) represent different categories, and black cameras in (b) represent cameras that
overlap between sub-images after camera expansion.

Figure 5. Camera clustering and sparse point cloud results of Tianjin Xuefu Industrial Zone: (a) dif-
ferent camera categories; (b) camera clustering and corresponding sparse point cloud.

Sensors 2021, 21, 3939 13 of 21

Figure 6. Maximum spanning tree composed of camera subgraphs.

4.4. Camera Pose Estimation

As described in Section 4.1, global camera pose merger and optimization are per-
formed by a single computer, and the local camera pose estimation step uses cluster
resources to calculate the local camera pose of each camera sub-image in parallel.

Figure 7 shows the results of the local camera pose estimation performed in parallel by
each computing node of the Tianjin Xuefu Industrial Zone dataset. This result is displayed
in the form of a sparse point cloud. We used the camera pose of each sub-image in the
actual work. Figure 8 shows the final result of performing global camera pose registration
after local camera pose estimation of each subgraph in Figure 7. The white-marked letters
on the image correspond to the specific positions of the camera poses of each sub-image in
the global space.

Figure 7. Local camera pose estimation results of the Tianjin Xuefu Industrial Zone. (a)–(h) show the
different parts of the Tianjin Xuefu Industrial Zone.

Sensors 2021, 21, 3939 14 of 21

Figure 8. Local camera pose merging results of the Tianjin Xuefu Industrial Zone.

5. Discussion

We compared our approach with state-of-the-art sparse point cloud generation meth-
ods in different scenarios. We carried out experimental verification on the two types of
internet public datasets and large-scale datasets.

5.1. Internet Public Datasets

Time efficiency evaluation: We compared our approach with two incremental SFM
(COLMAP [9] and TheiaSfM [70]) and two global SFM (1dSfm [62] and LUD [26]) meth-
ods to measure the efficiency of our algorithm. As the public internet datasets are small,
the comparison experiments were run on a single computer for the sake of fairness. Fig-
ure 9 shows the time-efficiency comparison of datasets with different algorithms. As
observed from Figure 9, owing to the continuous implementation of bundle adjustment,
the incremental SFM methods become very time-consuming as the number of images
increases. Our approach completely adopts the global SFM methods, which reduce the
time of bundle adjustment through the reconstruction of camera clustering and reduce
the time of image matching through the GNSS neighbor matching mode. Our approach is
proven to be faster than all current public methods when using a distributed system with a
cluster configuration.

Sensors 2021, 21, 3939 15 of 21

Figure 9. Efficiency evaluation on datasets with different algorithms.

Accuracy and performance evaluation: To verify the accuracy and efficiency of our
approach, we compared our method with several traditional methods on public internet
datasets. Bundle adjustment is generally used as a final step in generating sparse point
clouds. It is known as the estimation involving minimizing the reprojection error. Consider
a situation in which a set of 3D points Pj is viewed by a set of cameras with matrices
RiTi; we denote by xi

j the coordinate of the jth point as seen by the ith camera. If the

image measurements are noisy then the equations xi
j = RiTiPj are not satisfied exactly.

We estimate projection matrices R̂iT̂i and 3D points P̂j, which project exactly to image
points x̂i

j as x̂i
j = R̂iT̂iP̂j, and minimize the image distance between the reprojected points

and detected image feature points xi
j for every view in which the 3D points appears. The

reprojection error can be expressed as follows:

min
R̂i T̂i ,P̂j

∑
i,j

d(R̂iT̂iP̂j − xi
j)

2
,

where d(x, y) is the geometric image distance. The smaller the projection error of the control
points, the higher the quality of the generated point clouds. In addition to the reprojection
error, we also use the number of recovered cameras and the number of generated 3D point
clouds to measure the accuracy of various methods. Table 3 presents the comparative
experimental results of local camera pose estimation with COLMAP [9], 1dSfm [62], and
LUD [26] on public internet datasets. The six public datasets in Table 3 are Courtyard, Aos
Hus, Buddha, Cathedral, Palace, and Forum [71,72]. Nc, Np, and T∑ represent the number
of recovered cameras, the number of 3D points, and the reconstruction time, respectively.
As the datasets are small, we gave up the advantages of a distributed system and only
compared our approach with other methods in the local camera pose estimation. As shown
in Table 3, our method can always recover most camera poses and sparse point cloud
results at a faster speed.

In the final generation of sparse point cloud, we evaluated our algorithm on several
public datasets [71,72]. For these small-scale internet public datasets, we ran our system on
only one computer.

The sparse point cloud reconstruction results are shown in Figure 10. From top to
bottom, the datasets are Alcatraz Courtyard, Aos Hus, and Buddha Statue. Left to right
in each row are the sparse point cloud results generated by COLMAP [9], TheiaSfM [70],
1dSfm [62], LUD [26], and our method. The results of point cloud visualization can also be

Sensors 2021, 21, 3939 16 of 21

used to verify the accuracy of the methods. As shown in Figure 10, our method can always
obtain more accurate sparse point cloud results.

Table 3. Accuracy and efficiency evaluation with datasets having different scales. Nc, Np, and T∑ represent the number of
recovered cameras, number of 3D points, and reconstruction time (s), respectively.

Dataset Images
COLMAP [9] 1DSFM [62] LUD [26] Ours

Nc Np T∑ Nc Np T∑ Nc Np T∑ Nc Np T∑

Courtyard 133 133 12,763 170.39 133 8597 113.10 132 9603 108.64 133 11,346 106.1
Aos Hus 811 801 293,541 1963.14 763 279,154 1097.46 782 230,654 984.66 800 301,449 789.18
Buddha 321 321 109,833 527.32 316 84,546 419.63 316 86,459 423.11 321 109,431 409.16
Cathedral 1227 1223 510,369 3497.24 1163 482,164 3095.60 1150 451,319 3018.76 1154 516,797 3042.84
Palace 241 234 70,468 597.91 231 66,157 519.49 231 63,149 544.50 234 70,997 497.1
Forum 1084 1083 41,064 3054.46 1076 384,988 2874.13 1075 375,556 2943.13 1083 449,731 2849.83

Figure 10. Reconstruction results on publicdatasets. From top to bottom: the Alcatraz Courtyard,
Aos Hus, and Buddha Statue datasets.

5.2. Large-Scale Datasets

Effectiveness evaluation: We used the large-scale scenes in Section 4.2 to verify the
effectiveness of our method. Due to the huge set of input images for large-scale scenes,
we used all of the computing nodes in our cluster for experiments. Figure 11 shows the
sparse point cloud reconstruction results for large-scale scenes. The first and second rows
illustrate the scenes of datasets 1 and 2 in Section 4.2, respectively. The last row shows the
campus of Tianjin Normal University. As seen in Figure 11, (a) represents the sparse point
cloud reconstruction results of the entire campus, (b) represents the sparse point cloud of
the red rectangle in (a), (c) is the sparse point cloud of the red rectangle in (b), and (d) is
the corresponding 3D scene model of (c). As shown in Figure 11, our method can generate
accurate sparse point cloud results and the corresponding 3D models for large-scale scenes.

Performance evaluation: Similar to the performance evaluation in Section 5.1, we
compare our method with other traditional methods on large-scale datasets. Table 4
presents a comparison of the reconstruction results with COLMAP [9] and 1dSfm [62] on
large-scale datasets. The three aerial datasets in Table 4 correspond to rows 1–3 in Figure 11.
Although our system uses global SFM, our method and COLMAP [9] can complete almost
the same number of camera registrations, and the reconstruction speed is nearly 20 times

Sensors 2021, 21, 3939 17 of 21

faster than that for COLMAP [9]. In addition, our system can obtain more 3D points than
the other two methods.

Figure 11. Sparse point cloud reconstruction results in large-scale scenes.

Table 4. Comparison of reconstruction results. Nc and Np represent the number of recovered cameras and number of 3D
points, respectively. T∑ denotes the total time (s), and Td denotes the total time (s) that is evaluated in a distributed system.

Dataset Images
COLMAP [9] 1DSFM [62] Ours

Nc Np T∑ Nc Np T∑ Nc Np T∑ Td

Aerial-1 7063 6616 3,269,946 97,461.16 6134 2,849,849 19,613.18 6614 3,319,946 9184.33 2493.18
Aerial-2 9238 8343 3,849,478 164,941.07 8097 3,349,818 31,564.62 8448 3,948,163 27,199.16 7413.94
Aerial-3 11,194 9431 4,984,134 211,496.91 8989 4,316,413 51347.41 9524 5,046,491 43,186.19 13,486.60

5.3. Evaluations

Parameters: Although our method involves many parameters, most of these parame-
ters are insensitive to different large-scale scenes. We used the same parameter values for
all scenes throughout our experiments. All parameter values were specified in each step.

Robustness: We generated a sparse point cloud of a large-scale scene to evaluate the
robustness of our method. Calculating all camera rotation and translation matrices at
one time consumes a considerable amount of time and surpasses the memory limit of the
computing nodes. We proposed a divide-and-conquer framework to achieve global camera
pose registration for large-scale scenes. Figure 8 shows the final result of performing global
camera pose registration. As shown in Figure 5b, the sparse point cloud can be generated
by our method. To further validate the robustness of our approach, we generated 3D
models from a sparse point cloud. As shown in Figure 11d, our approach can generate real
3D scene models.

Limitations: Although our method uses the divide-and-conquer strategy to solve
the registration of camera poses in large-scale scenes, it does not improve the subsequent
bundle adjustment, which still consumes a lot of computing resources. Another limitation is
that the poor-quality extended cameras are discarded after the local camera pose estimation
due to incomplete capture of large-scale scenes. In addition, the proposed workflow does
not work when there is no available camera spatial location information.

Sensors 2021, 21, 3939 18 of 21

6. Conclusions

We proposed a distributed 3D sparse point cloud generation method for reconstruction
of large-scale scenes. By calculating the GNSS spatial neighborhood of aerial images, the
square time complexity of traditional image matching was reduced to approximately linear.
The divide-and-conquer framework was used to solve the distributed SFM problem. We
divided the camera graph into several subgraphs and ensured that the subgraphs met the
enforcement and consistency constraints. Local camera poses were merged and optimized
to obtain the global camera poses. Finally, we used traditional triangulation and bundle
adjustment to obtain a sparse point cloud. Compared with the traditional state-of-the-art
sparse point cloud generation methods, our approach could effectively generate sparse
point cloud results and the corresponding 3D models. Our method could complete the
3D sparse point cloud reconstruction of a real scene with an area of 10 km2 in less than
20 h. In the future, we would like to further enhance our method using global SFM and
incremental SFM and to improve the subsequent bundle adjustment, which can quickly
generate sparse point clouds of large-scale scenes.

Author Contributions: Conceptualization, Y.B. and Y.Q.; methodology, Y.Q.; software, P.L. and W.D.;
validation, Y.L., P.L. and Z.W.; formal analysis, Y.B.; writing—original draft preparation, P.L. and Y.B.;
writing—review and editing, Y.B., Z.W. and Q.F.; visualization, P.L., W.D. and Y.L.; supervision, Y.Q.
and Q.F.; project administration, Y.Q. and Y.B.; funding acquisition, Y.B., Y.Q. and Q.F. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Shandong Provincial Natural Science Foundation
(ZR2020MF132); the National Natural Science Foundation of China (62072020); the National Key
R&D Program of China (2017YFB1002602); the Open Project Program of State Key Laboratory of
Virtual Reality Technology and Systems, Beihang University (No.VRLAB2019A03); and the Qingdao
Leading Scholars Project on Innovation and Entrepreneurship 2019 (No.19-3-2-21-zhc).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We thank the anonymous reviewers for their valuable suggestions and Xun Luo
for the aerial datasets.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Li, Y.; Tsin, Y.; Genc, Y.; Kanade, T. Object detection using 2d spatial ordering constraints. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), San Diego, CA, USA, 20–26 June 2005.
2. Liu, Z.; An, J.; Jing, Y. A simple and robust feature point matching algorithm based on restricted spatial order constraints for

aerial image registration. IEEE Trans. Geosci. Remote Sens. 2011, 50, 514–527. [CrossRef]
3. Jiang, S.; Jiang, W. Reliable image matching via photometric and geometric constraints structured by delaunay triangulation.

ISPRS J. Photogramm. Remote Sens. 2019, 153, 1–20. [CrossRef]
4. Aliakbarpour, H.; Palaniappan, K.; Seetharaman, G. Fast structure from motion for sequential and wide area motion imagery.

In Proceedings of the IEEE International Conference on Computer Vision Workshop (ICCVW), Santiago, Chile, 7–13 Decem-
ber 2015.

5. Agarwal, S.; Furukawa, Y.; Snavely, N.; Simon, I.; Curless, B.; Seitz, S.; Szeliski, R. Building Rome in a day. Commun. ACM 2011,
54, 105–112. [CrossRef]

6. Frahm, J.; Fite-Georgel, P.; Gallup, D.; Johnson, T.; Raguram, R.; Wu, C.; Jen, Y.H.; Dunn, E.; Clipp, B.; Lazebnik, S.; Pollefeys,
M. Building rome on a cloudless day. In Proceedings of the European Conference on Computer Vision (ECCV), Crete, Greece,
5–11 September 2010.

7. Jiang, N.; Tan, T.; Cheong, L. Seeing double without confusion: Structure-from-motion in highly ambiguous scenes. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012.

8. Pollefeys, M.; Van Gool, L.; Vergauwen, M.; Verbiest, F.; Cornelis, K.; Tops, J.; Koch, R. Visual modeling with a hand-held camera.
Int. J. Comput. Vision 2004, 59, 207–232. [CrossRef]

http://doi.org/10.1109/TGRS.2011.2160645
http://dx.doi.org/10.1016/j.isprsjprs.2019.04.006
http://dx.doi.org/10.1145/2001269.2001293
http://dx.doi.org/10.1023/B:VISI.0000025798.50602.3a

Sensors 2021, 21, 3939 19 of 21

9. Schonberger, J.; Frahm, J. Structure-from-motion revisited. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 4104–4113.

10. Snavely, N.; Seitz, S.; Szeliski, R. Photo tourism: exploring image collections in 3D. ACM Trans. Graph. 2006, 25, 835–846.
[CrossRef]

11. Wu, C. Towards linear-time incremental structure from motion. In Proceedings of the International Conference on 3D Vision
(3DV), Seattle, WA, USA, 29 June–1 July 2013.

12. Eriksson, A.; Bastian, J.; Chin, T.; Isaksson, M. A consensus-based framework for distributed bundle adjustment. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

13. Ni, K.; Steedly, D.; Dellaert, F. Out-of-core bundle adjustment for large-scale 3d reconstruction. In Proceedings of the International
Conference on Computer Vision (ICCV),Rio de Janeiro, Brazil, 14–20 October 2007.

14. Triggs, B.; McLauchlan, P.; Hartley, R.; Fitzgibbon, A. Bundle adjustment—A modern synthesis. In Proceedings of the International
Workshop on Vision Algorithms: Theory and Practice, Corfu, Greece, 21–22 September 1999; Springer: Berlin/Heidelberg,
Germany, 2000.

15. Arie-Nachimson, M.; Kovalsky, S.; KemelmacherShlizerman, I.; Singer, A.; Basri, R. Global motion estimation from point matches.
In Proceedings of the 3DIMPVT, Zurich, Switzerland, 13–15 October 2012.

16. Brand, M.; Antone, M.; Teller, S. Spectral solution of large-scale extrinsic camera calibration as a graph embedding problem.
In Proceedings of the European Conference on Computer Vision (ECCV), Prague, Czech Republic, 11–14 May 2004.

17. Carlone, L.; Tron, R.; Daniilidis, K.; Dellaert, F. Initialization techniques for 3D slam: A survey on rotation estimation and its use
in pose graph optimization. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Seattle,
WA, USA, 26–30 May 2015.

18. Chatterjee, A.; Govindu, V. Efficient and robust largescale rotation averaging. In Proceedings of the International Conference on
Computer Vision (ICCV), Sydney, Australia, 1–8 December 2013.

19. Cui, Z.; Jiang, N.; Tang, C.; Tan, P. Linear global translation estimation with feature tracks. In Proceedings of the British Machine
Vision Conference (BMVC), Swansea, UK, 7–10 September 2015.

20. Cui, Z.; Tan, P. Global structure-from-motion by similarity averaging. In Proceedings of the International Conference on
Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015.

21. Govindu, V. Combining two-view constraints for motion estimation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Kauai, HI, USA, 8–14 December 2001.

22. Govindu, V. Lie-algebraic averaging for globally consistent motion estimation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Washington, DC, USA, 27 June–2 July 2004.

23. Haner, S.; Heyden, A. Covariance propagation and next best view planning for 3d reconstruction. In Proceedings of the Annual
Swedish Symposium on Image Analysis (SSBA), In Proceedings of the European Conference on Computer Vision (ECCV),
Firenze, Italy, 7–13 October 2012.

24. Hartley, R.; Trumpf, J.; Dai, Y.; Li, H. Rotation averaging. Int. J. Comput. Vision 2013, 68, 267–305. [CrossRef]
25. Kneip, L.; Scaramuzza, D.; Siegwart, R. A novel parametrization of the perspective-three-point problem for a direct computation

of absolute camera position and orientation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Colorado Springs, CO, USA, 20–25 June 2011.

26. Ozyesil, O.; Singer, A. Robust camera location estimation by convex programming. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015.

27. Sweeney, C.; Fragoso, V.; Hollerer, T.; Turk, M. Large-scale SFM with the distributed camera model. In Proceedings of the
International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016.

28. Li, X.; Wu, C.; Zach, C.; Lazebnik, S.; Frahm, J. Modeling and recognition of landmark image collections using iconic scene
graphs. In Proceedings of the European Conference on Computer Vision (ECCV), Marseille, France, 12–18 October 2008.

29. Zhou, L.; Zhu, S.; Shen, T.; Wang, J.; Fang, T.; Quan, L. Progressive large scale-invariant image matching in scale space.
In Proceedings of the International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017.

30. Shen, T.; Zhu, S.; Fang, T.; Zhang, R.; Quan, L. Graphbased consistent matching for structure-from-motion. In Proceedings of the
European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 11–14 October 2016.

31. Moulon, P.; Monasse, P.; Marlet, R. Global fusion of relative motions for robust, accurate and scalable structure from motion.
In Proceedings of the International Conference on Computer Vision (ICCV), Sydney, Australia, 1–8 December 2013.

32. Shen, T.; Wang, J.; Fang, T.; Zhu, S.; Quan, L. Color correction for image-based modeling in the large. In Proceedings of the Asian
Conference on Computer Vision (ACCV), Taipei, Taiwan, 20–24 November 2016.

33. Sinha, S.; Steedly, D.; Szeliski, R. A multi-stage linear approach to structure from motion. In Proceedings of the European
Conference on Computer Vision workshop RMLE(ECCV), Crete, Greece, 10–11 September 2010.

34. Martinec, D.; Pajdla, T. Robust rotation and translation estimation in multiview reconstruction. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Minneapolis, MN, USA, 17–22 June 2007.

35. Nister, D. An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 756–770.
[CrossRef] [PubMed]

36. Sim, K.; Hartley, R. Recovering camera motion using minimization. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), New York, NY, USA, 17–22 June 2006.

http://dx.doi.org/10.1145/1141911.1141964
http://dx.doi.org/10.1007/s11263-012-0601-0
http://dx.doi.org/10.1109/TPAMI.2004.17
http://www.ncbi.nlm.nih.gov/pubmed/18579936

Sensors 2021, 21, 3939 20 of 21

37. Wilson, K.; Bindel, D.; Snavely, N. When is rotations averaging hard? In Proceedings of the European Conference on Computer
Vision (ECCV), Amsterdam, The Netherlands, 11–14 October 2016.

38. Yao, Y.; Li, S.; Zhu, S.; Fang, T.; Deng, H.; Quan, L. Relative camera refinement for accurate dense reconstruction. In Proceedings
of the International Conference on 3D Vision (3DV), Qingdao, China, 10–12 October 2017.

39. Farenzena, M.; Fusiello, A.; Gherardi, R. Structure and motion pipeline on a hierarchical cluster tree. In Proceedings of the
International Conference on Computer Vision Workshops (ICCV Workshops), Kyoto, Japan, 27 September–4 October 2009.

40. Havlena, M.; Torii, A.; Pajdla, T. Efficient structure from motion by graph optimization. In Proceedings of the European
Conference on Computer Vision (ECCV), Crete, Greece, 5–11 September 2010.

41. Lhuillier, M.; Quan, L. A quasi-dense approach to surface reconstruction from uncalibrated images. IEEE Trans. Pattern Anal.
Mach. Intell. 2005, 27, 418–433. [CrossRef] [PubMed]

42. Resch, B.; Lensch, H.; Wang, O.; Pollefeys, M.; Hornung, A. Scalable structure from motion for densely sampled videos.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015.

43. Toldo, R.; Gherardi, R.; Farenzena, M.; Fusiello, A. Hierarchical structure-and-motion recovery from uncalibrated images. Comput.
Vis. Image Underst. 2015, 140, 127–143. [CrossRef]

44. Zhu, S.; Shen, T.; Zhou, L.; Zhang, R.; Wang, J.; Fang, T.; Quan, L. Parallel structure from motion from local increment to global
averaging. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),Honolulu, HI, USA,
21–26 July 2017.

45. Zhu, S.; Zhang, R.; Zhou, L.; Shen, T.; Fang, T.; Tan, P.; Quan, L. Very large-scale global SFM by distributed motion averaging.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June
2018; pp. 4568–4577.

46. Bhowmick, B.; Patra, S.; Chatterjee, A.; Govindu, V.; Banerjee, S. Divide and conquer: Efficient large-scale structure from motion
using graph partitioning. In Proceedings of the Asian Conference on Computer Vision (ACCV), Singapore, 1–5 November 2014.

47. Dhillon, I.; Guan, Y.; Kulis, B. Weighted graph cuts without eigenvectors a multilevel approach. IEEE Trans. Pattern Anal. Mach.
Intell. 2007, 29, 1944–1957. [CrossRef] [PubMed]

48. Shi, J.; Malik, J. Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 888–905.
49. Kwang, M.; Eduard, T.; Vincent, L.; Pascal, F. Lift: Learned invariant feature transform. In Proceedings of the European

Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 11–14 October 2016.
50. Daniel, D.; Tomasz, M.; Andrew, R. Superpoint: Self-supervised interest point detection and description. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018.
51. Seo, Y.; Hartley, R. A fast method to minimize error norm for geometric vision problems. In Proceedings of the International

Conference on Computer Vision (ICCV), Rio de Janeiro, Brazil, 14–20 October 2007.
52. Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Instance normalization: The missing ingredient for fast stylization. arXiv 2016,

arXiv:1607.08022
53. Bian, J.; Lin, W.; Matsushita, Y. Gms: Grid-based motion statistics for fast, ultra-robust feature correspondence. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.
54. Zhang, J.; Sun, D.; Luo, Z. Learning two-view correspondences and geometry using order-aware network. In Proceedings of the

International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019.
55. Tabb, A.; Medeiros, H. Calibration of asynchronous camera networks for object reconstruction tasks. arXiv 2019, arXiv:1903.06811
56. Liu, Z.; Zhou, S.; Suo, C. Lpd-net: 3D point cloud learning for large-scale place recognition and environment analysis.

In Proceedings of the International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019.
57. Yao, Y.; Luo, Z.; Li, S. Mvsnet: Depth inference for unstructured multi-view stereo. In Proceedings of the European Conference

on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018.
58. Gu, X.; Fan, Z.; Zhu, S. Cascade cost volume for high-resolution multi-view stereo and stereo matching. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020.
59. Miksik, O.; Vineet, V. Live Reconstruction of Large-Scale Dynamic Outdoor Worlds. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 16–20 June 2019.
60. Hu, Q.; Yang, B.; Xie, L. RandLA-Net: Efficient semantic segmentation of large-scale point clouds. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020.
61. Heinly, J.; Schonberger, J.; Dunn, E.; Frahm, J. Reconstructing the world in six days. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015.
62. Wilson, K.; Snavely, N. Robust global translations with 1dSFM. In Proceedings of the European Conference on Computer Vision

(ECCV), Zurich, Switzerland, 6–12 September 2014.
63. Snavely, N.; Seitz, S.; Szeliski, R. Skeletal graphs for efficient structure from motion. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Anchorage, AK, USA, 23–28 June 2008.
64. Wang, J.; Fang, T.; Su, Q.; Zhu, S.; Liu, J.; Cai, S.; Tai, C.; Quan, L. Image-based building regularization using structural linear

features. IEEE Trans. Vis. Comput. Graph. 2016, 22, 1760–1772. [CrossRef]
65. Sweeney, C.; Sattler, T.; Hollerer, T.; Turk, M.; Pollefeys, M. Optimizing the viewing graph for structure from motion. In Proceed-

ings of the International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015.

http://dx.doi.org/10.1109/TPAMI.2005.44
http://www.ncbi.nlm.nih.gov/pubmed/15747796
http://dx.doi.org/10.1016/j.cviu.2015.05.011
http://dx.doi.org/10.1109/TPAMI.2007.1115
http://www.ncbi.nlm.nih.gov/pubmed/17848776
http://dx.doi.org/10.1109/TVCG.2015.2461163

Sensors 2021, 21, 3939 21 of 21

66. Zach, C.; Irschara, A.; Bischof, H. What can missing correspondences tell us about 3d structure and motion? In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage, AK, USA, 23–28 June 2008.

67. Jiang, N.; Cui, Z.; Tan, P. A global linear method for camera pose registration. In Proceedings of the International Conference on
Computer Vision (ICCV), Sydney, Australia, 1–8 December 2013.

68. Slater, J.; Malys, S. WGS 84-Past, Present and Future. Int. Assoc. Geod. Symp. 1998, 118, 1–7.
69. Cheng, J.; Leng, C.; Wu, J. Fast and accurate image matching with cascade hashing for 3d reconstruction. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 24–27 June 2014; pp. 1–8.
70. Sweeney, C.; Hollerer, T.; Turk, M. Theia: A fast and scalable structure-from-motion library. In Proceedings of the Annual ACM

International Conference on Multimedia (ICMR), Shanghai, China, 23–26 June 2015; pp. 693–696.
71. Olsson, C.; Enqvist, O. Non-sequential structure from motion. In Proceedings of the International Conference on Computer

Vision Workshops (ICCV Workshops), Barcelona, Spain, 6–13 November 2011; pp. 264–271.
72. Olsson, C.; Enqvist, O. Structure from Motion for Unordered Image Collections. In Proceedings of the Scandinavian conference

on Image analysis(SCIA), Ystad, Sweden, 11–14 May 2011; pp. 524–535.

	Introduction
	Related Work
	Traditional SFM
	Deep Learning-Based Reconstruction
	Large-Scale SFM

	Methodology
	Overview
	GNSS Image Matching
	GNSS Neighborhood Computing
	Image Matching

	Camera Clustering
	Normalized-Cut Algorithm
	Camera Graph Division
	Camera Graph Expansion

	Camera Pose Averaging
	Global Rotation Registration
	Global Translation Registration
	Optimization of Camera Poses

	Results
	Implementation Details
	GNSS Neighbor Computing and Image Matching
	Camera Clustering Results
	Camera Pose Estimation

	Discussion
	Internet Public Datasets
	Large-Scale Datasets
	Evaluations

	Conclusions
	References

