
 
 

 

 
Sensors 2021, 21, 3908. https://doi.org/10.3390/s21113908 www.mdpi.com/journal/sensors 

Article 

In-Field Automatic Detection of Grape Bunches under a Totally 
Uncontrolled Environment 
Luca Ghiani 1, Alberto Sassu 1, Francesca Palumbo 2, Luca Mercenaro 1 and Filippo Gambella 1,* 

1 Department of Agricultural Sciences, University of Sassari, Viale Italia 39 a, 07100 Sassari, Italy; 
lghiani@uniss.it (L.G.); asassu@uniss.it (A.S.); mercenaro@uniss.it (L.M.) 

2 Department of Chemistry and Pharmacy, Intelligent System DEsign and Applications (IDEA) Group,  
University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; fpalumbo@uniss.it 

* Correspondence: gambella@uniss.it; Tel.: +39-079-229281 

Abstract: An early estimation of the exact number of fruits, flowers, and trees helps farmers to make 
better decisions on cultivation practices, plant disease prevention, and the size of harvest labor force. 
The current practice of yield estimation based on manual counting of fruits or flowers by workers 
is a time consuming and expensive process and it is not feasible for large fields. Automatic yield 
estimation based on robotic agriculture provides a viable solution in this regard. In a typical image 
classification process, the task is not only to specify the presence or absence of a given object on a 
specific location, while counting how many objects are present in the scene. The success of these 
tasks largely depends on the availability of a large amount of training samples. This paper presents 
a detector of bunches of one fruit, grape, based on a deep convolutional neural network trained to 
detect vine bunches directly on the field. Experimental results show a 91% mean Average Precision. 

Keywords: deep learning; grape detection; object detection; precision agriculture; precision viticul-
ture 
 

1. Introduction 
Precision agriculture evaluates spatial and temporal variability of field data through 

automatic collection and digitization of extensive information databases. Different types 
of sensors are applied to develop high-efficiency approaches to optimize input use, max-
imize crop production, reduce wastes, guarantee environmental sustainability, and obtain 
economic benefits [1–4]. These specific approaches apply to viticulture in terms of efficient 
use of inputs, such as fertilizers, water, chemicals, or organic products [5,6]. In this con-
text, improving crop protection, the use of machinery and labor for harvesting, pruning, 
or other crop management operations focuses on improving the efficiency of each plot 
within the vineyard [7–11]. Vineyards are characterized by high spatial and temporal het-
erogeneity and are influenced by pedo-morphological characteristics, climate, phenology, 
and cropping practices [12]. These variables can influence grape yields and quality, and 
their prediction is the main goal of precision viticulture. Farmers can be encouraged to 
pursue the economic benefits and achieve the desired oenological results by the latest 
technologies combined with decision support techniques [13–15].  

Emerging viticulture technologies are not fully developed, and several challenges 
still need to be addressed. While much of the work is currently promising, much effort is 
required to the so-called “vineyard of the future”. Viticulturists may therefore get ad-
vantage of modern tools to monitor and tailor the management of their vineyards. Useful 
data in vineyard management include automatic knowledge of the leaf area, fruit harvest-
ing, yield estimation, evaluation of grape quality, and grapevine cultivar identification 
[16,17].  
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Yield estimation is of critical importance in the wine industry. Traditionally, yield 
forecasts were based on manual counting of grapevine numbers, bunch numbers per vine, 
and include manual and destructive sampling of bunches to determine their weights, 
berry size, and number.  

When computer vision [18] and machine learning [19] are considered, object detec-
tion [20] represents a technique that deals with the detection of one or more categories of 
objects via the digitization of a given image or video. Object detection tasks can be roughly 
split into the object localization (where each object is located within the image) and object 
classification (which category each object belongs to). The location of the bounding box 
around each detected object will be returned in pixels as the x and y coordinates of the top 
left corner, and the width and height of the box. In this work, we only look for objects 
belonging to the grape class.  

As in many other applications of machine learning, in the last decade, deep learning 
[21] methods proved to be among the most effective in object detection [22,23]. Many dif-
ferent techniques have been implemented starting from R-CNN (Region Based Convolu-
tional Neural Networks) [24], Fast R-CNN [25], and Faster R-CNN [26] up to, among 
many others, YOLO (You Only Look Once) [27] and Mask R-CNN [28].  

Many of these techniques have been successfully applied in the agricultural field. The 
aim of the work of Sa et al. [29] was the building of a fruit detection system. Using transfer 
learning and fine tuning techniques they were able to train a multi-modal Faster R-CNN 
model with a really limited amount of images. They combined RGB and NIR (Near  
InfraRed) information building a reliable multi-modal system. The comparison with a 
Conditional Random Field with hand-crafted features method previously presented by 
the same team proved the validity of the approach. Bresilla et al. [30] trained a YOLO 
convolutional network for fruit detection and localization in images of apple and pear 
trees. Preliminary results were improved by some network modification, dataset augmen-
tation, and also the generation of synthetic images. The network was first trained to detect 
apples using apple trees images. The trained network was then “fine-tuned” with pear 
tree images to also detect pears. To estimate the biovolume of olive trees, Safonova et al. 
[31] used deep learning instance segmentation methods. They analyzed RGB images and 
two well-known normalized difference vegetation indexes. Several Mask R-CNN-based 
models were used for the segmentation of olive tree crown and shadow to estimate the 
biovolume of individual trees. Fuentes et al. [32] proposed a robust deep-learning-based 
detector for real-time tomato diseases and pests recognition. Several experiments were 
conducted with an in-depth analysis of various deep learning architectures and feature 
extractors. Accuracy was further increased by data augmentation techniques and the sys-
tem was able to effectively recognize nine different types of diseases and pests. Picon et 
al. [33] presented several crop disease classification methods for mobile devices (Android, 
iOS, and Windows Phones) using a Deep Residual Neural Network with 50 layers and 
224 × 224 input image size. They first extended an already existing dataset collecting 
leaves images in Spain and Germany. The leaves were labeled as affected by Rust, Septo-
ria, Tan Spot, or Healthy. Three different kinds of inputs were provided to a neural net-
work: the resized full image, a leaf mask crop, and a superpixel based tile. Several data 
augmentation techniques were applied and the training phase was repeated adding an 
artificial background to the images. Experimental results proved to be interesting with 
significant increases caused by the super pixel segmentation, the artificial background, 
and the image augmentation. 

In order to detect bunches of grapes or single berries, several methods have been 
proposed. Reis et al. [34] were able to detect red and white grapes, experimentally select-
ing a few intervals of Red, Green, Blue (RGB) values by trial and error, collecting images 
during the night to limit light/brightness variations. After a sequence of iterations of the 
morphological dilation, the bunch regions were located and measured. Diago et al. [35] 
automatically estimated the number of flowers per inflorescence. The images of the inflo-
rescences, with a uniform background of black color, were first converted from the RGB 
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to the CIELAB color space (CIE L*a*b, where CIE stands for International Commission on 
Illumination in French), then segmented using thresholding based on histogram values. 
The elimination of local peaks (lower than a threshold) and a final post-processing filter-
ing allowed to find and identify the brighter points corresponding to the flowers. An au-
tomatic system for shoot detection and yield estimation has been proposed by Liu et al. 
[36]. Images are converted from the RGB to the L*a*b color space and an Otsu thresholding 
technique [37] is used for the first segmentation step. An unsupervised feature selection 
followed by an unsupervised shoot classification using the K-means clustering algorithm 
leads to the shoot identification. Diago et al. [38] proposed a methodology to characterize 
the grapevine canopy and assess leaf area and yield through RGB images. They used the 
Mahalanobis distance to classify leaves (young or old), wood, grapes, and background. 
Font et al. [39] acquired images at night under controlled artificial illumination to simplify 
the grape segmentation procedure. They analyzed both the RGB and the Hue, Saturation, 
and Value (HSV) color spaces and segmented the images with five different methods: 
thresholding with the Otsu method followed by a sequence of morphological filtering; 
Mahalanobis distance between the three-dimensional color intensities; a Bayesian classi-
fier; a Linear Color Model; a three-dimensional color-intensity histogram.  

A methodology for segmenting inflorescence grapevine flowers was presented by 
Aquino et al. [40]. They applied some morphological operators to the images in the HSV 
color spaces and a top-hat transformation to emphasize bright details. After binarization 
and pyramidal decomposition, the regional peak corresponding to the inflorescence was 
found. An automated image analysis framework for berry size determination was pro-
posed by Roscher et al. [41]. Working in the YIQ color space and after the detection of 
berry candidates with the circular Hough transform, they extracted several features from 
the image patches around the detected circles. Berry diameters were measured after using 
conditional random field to classify those patches as berry or non-berry. Another berry 
detection method using images converted to the CIELAB color space was proposed by 
Aquino et al. [42]. Images were acquired with dark cardboard placed behind the cluster. 
After an Otsu thresholding and some filtering, berries candidates were selected by finding 
regional maxima of illumination, and then six descriptors were extracted, and false posi-
tives were discarded using two different supervised-learning classifiers: Neural Network 
and Support Vector Machine. Liu and Whitty [43] eliminated irrelevant regions in the im-
age by thresholding the H and V channels in the HSV color space obtaining potential 
bunch areas and reduced the noise by applying several morphological operations. The 
resulting bunches in 80 images were manually labeled as true or false and 54 different 
measures from RGB, HSV, and L*a*b color spaces were extracted. After applying the  
ReliefF algorithm and a sequential feature selection to reduce the feature dimensions, the 
SVM was used to train the system. Nuske et al. [44] predicted yields in vineyards through 
cameras and illumination mounted on a vehicle. They detect potential berry locations us-
ing a Radial Symmetry Transform and an Invariant Maximal Detector, then they use Ga-
bor filters, a SIFT descriptor, and a Fast Retinal Descriptor to classify the detected points 
as grapes or not-grapes through a randomized KD-forest. To avoid double-counting of 
grapes between consecutive images, the grape locations were registered. A sequence of 
calibration measurements allows the team to predict yields with remarkable precision. 
That work was continued by Mirbod et al. [45] that used two algorithms (Angular invari-
ant maximal detector and Sum of gradient estimator) for berry diameter estimation. Covi-
ello et al. [46] introduced the Grape Berry Counting Network (GBCNet). It belongs to the 
family of Dilated CNNs and it is composed by ten pre-trained convolutional layers for 
feature extraction and by a dilated CNN for density map generation. The authors were 
able to estimate the number of berries in the image achieving good performances on two 
datasets, one with seven different varieties and one with only one variety. Finally, a more 
comprehensive review of computer vision, image processing, and machine learning tech-
niques in viticulture has been proposed by Seng et al. [47]. 
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Three main limitations characterize many of the works summarized in this section: 
the detection process is not fully automated, it is usually based on a limited amount of 
data (dozens or hundreds of images), and it is also based on a limited amount of grape 
variety (in most of the cases no more than two). Therefore, a method applied on images 
acquired in a vineyard under specific conditions may not work as well in another vine-
yard or may not even work in the same vineyard as some of those conditions change.  

In this paper, we try to overcome each of these problems. As a matter of fact, the aim 
of this work was the development of a grape detector able to analyze images automatically 
acquired by a vehicle moving in a generic vineyard (located in an unspecified geograph-
ical area with an unspecified grape variety). Due to those issues, in Table 1, the main char-
acteristics of the grape detection method proposed in this work are compared with those 
presented in Section 1, focusing on the detection process, the data set and the number of 
grape varieties. The detector, based on an R-CNN (Region Convolutional Neural Net-
work), was trained and tested on the GrapeCS-ML dataset containing more than 2000 im-
ages of much different varieties described in the next section. We also used an internal 
dataset to further test the framework on different grape varieties and under different en-
vironmental conditions.  

Table 1. Comparison between the main characteristics of grape detection proposed methods. 

Reference Fully Automated Detection 
Process 

Large Data Set 
(More Than a Thousand) 

Large Grape Variety  
(More Than Ten) 

[34] 
Yes  

(by camera internal flash at 
night) 

No  
(190 images of white grapes, 35 

images of red grapes) 

No  
(Port) 

[35] 
No  

(using a uniform background 
of black color) 

No  
(90 images) 

No  
(Tempranillo, Graciano, and Carignan) 

[36] Yes 
Yes 

(thousands of images extracted 
from hundreds of videos) 

No  
(Chardonnay and Shiraz) 

[38] Yes 
No  

(70 images) 
No  

(Tempranillo) 

[39] 
Yes  

(with artificial illumination at 
night) 

No  
(40 images) 

No  
(Flame Seedless) 

[40] 

No  
(capturing inflorescences fac-

ing the Sun and casting a 
shadow on the scene to create 
a homogeneous illumination) 

No  
(40 images) 

No  
(Airen, Albariño, Tempranillo, and Verdejo) 

[41] Yes 
No  

(139 images) 

No 
(Riesling, Pinot Blanc, Pinot Noir, and Dorn-

felder) 

[42] 
No  

(using a dark 
cardboard behind the cluster) 

No 
(152 images) 

Yes  
(Tempranillo, Semillon, Merlot, Grenache, Cab-
ernet Sauvignon, Chenin Blanc, and Sauvignon 

Blanc) 

[43] Yes 
No 

(160 images) 
No (Shiraz and Cabernet Sauvignon) 

[44] 

Yes  
(with natural illumination, 

flash illumination, and cross-
polarized flash illumination) 

Yes  
(more than one thousand im-

ages) 

No  
(Traminette, Riesling, Chardonnay, Petite Syrah, 

Pinot Noir, and Flame Seedless) 

[45] Yes 
Yes 

(more or less 100,000 images) 
No 

(Petite Syrah and Cabernet Sauvignon) 
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[47] Yes 
Yes  

(GrapeCS-ML dataset: more 
than 2000 images) 

Yes  
(Merlot, Cabernet Sauvignon, Saint Macaire, 

Flame Seedless, Viognier, Ruby Seedless, Ries-
ling, Muscat Hamburg, Purple Cornichon, Sul-
tana, Sauvignon Blanc, Chardonnay, Shiraz, Pi-

not Noir) 

This work Yes 

Yes  
(GrapeCS-ML dataset: more 

than 2000 images 
+ 

Internal dataset: 451 images) 

Yes  
(Merlot, Cabernet Sauvignon, Saint Macaire, 

Flame Seedless, Viognier, Ruby Seedless, Ries-
ling, Muscat Hamburg, Purple Cornichon, Sul-
tana, Sauvignon Blanc, Chardonnay, Shiraz, Pi-

not Noir, Vermentino, Cannonau (i.e., Gra-
nache), Cagnulari (i.e., Graciano)) 

2. Materials and Methods 
In this section, we will fully describe the proposed methodology summarized in Fig-

ure 1. The GrapeCS-ML dataset was labeled and divided in train, validation, and test sub-
sets. Augmentation techniques [48] were applied to the training subset. A pre-trained 
Mask R-CNN framework was fine-tuned using the train and validation subsets, and from 
the trained network and the test subset were obtained the experimental results.  

 
Figure 1. Detailed workflow of the proposed methodology. After the labeling, the data set is di-
vided in train, validation, and test. A pre-trained Mask R-CNN framework is fine-tuned using the 
augmented train set and the validation set. The experimental results are obtained by applying the 
detector to both the test set and our internal dataset. 

2.1. Dataset 
The main difficulty in applying machine learning techniques in the agronomic field 

is the availability of useful data for training and testing. In 2018 the Charles Sturt Univer-
sity released the freely downloadable (as a zip file) GrapeCS-ML dataset [47], containing 
more than 2000 images of 15 grape varieties at different stages of development and col-
lected in three Australian vineyards. The images are divided into five subsets: 
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• Set 1: Merlot cv. bunches, taken in seven rounds from the period Jan. to Apr. 2017; 
• Set 2: Designed for research on berry and bunch volume and color as the grapes ma-

ture, featuring Merlot, Cabernet Sauvignon, Saint Macaire, Flame Seedless, Viognier, 
Ruby Seedless, Riesling, Muscat Hamburg, Purple Cornichon, Sultana, Sauvignon 
Blanc, and Chardonnay cvs; 

• Set 3: Subsets for two cultivars (Cabernet Sauvignon and Shiraz) taken at dates close to 
maturity; 

• Set 4: Subsets of images for two cultivars (Pinot Noir and Merlot) taken at dates close 
to maturity, with the focus on the color changes with the onset of ripening; 

• Set 5: Sauvignon Blanc cv. bunches taken on three different dates. Each image also 
contains a hand-segmented region defining the boundaries of the grape bunch to 
serve as the ground truth for evaluating computer vision techniques such as image 
segmentation. 
Although several subfolders contain some data such as the grape variety and the date 

of acquisition, a meaningful information is missing: the ground truth, i.e., the position of 
the bunches inside the different images. Therefore, we hand-drew the smallest Bounding 
Boxes around every bunch of grapes for each image. We used the “Image Labeler” app 
(Figure 2) available within Matlab. As shown in the Figure, the app enables the user to 
define a set of class labels (in our case just one class named “grape”) to draw a rectangle 
that is the Region of Interest (RoI) around each selected object and to label that ground 
truth as belonging to one of the previously defined classes. 

 
Figure 2. MATLAB Image Labeler used in the labeling process. For each image the smallest 
bounding box was hand drawn around every bunch of grapes. 

A color reference or a volume reference is present in most of the images (a few exam-
ples are shown in Figure 3) but we chose to ignore this kind of information in order to 
obtain a fully automated detection process. 

During the last 15 years, thousands of digital images of bunches were collected at the 
Department of Agricultural Sciences, University of Sassari (a few examples are presented 
in Figure 4). 



Sensors 2021, 21, 3908 7 of 21 
 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 3. Samples images from GrapeCS-ML dataset 2: (a–c) include a color reference; (d–f) con-
tain a volume reference. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. Samples images from our internal dataset: (a) cv. Cannonau; (b) cv. Cagnulari; (c) and 
(d) cv. Vermentino with different stage of maturation. 
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While all the GrapeCS-ML images of different grape varieties were collected in Aus-
tralian vineyards, the ones in our dataset were collected all around in Sardinia Island (It-
aly), literally on the other side of the world. The number of available images were in the 
thousands and they were acquired all around several Sardinian vineyards. Some con-
tained the entire vineyard, others in perspective the space between two rows or an entire 
row imaged from one end. The purpose of our work was to train a detector able to analyze 
images automatically acquired by a vehicle moving between the vine rows. Therefore, we 
only selected photos acquired between the rows at a distance of about one meter from the 
leaf wall. A total of 451 images were selected to further test the trained network. It is worth 
emphasizing the importance of testing the system on a dataset that contains images like 
those we will work on. Moreover, it would be even more important to ascertain the ability 
of the system to provide good detection results on images very different from those pre-
sent in the training set. In fact, while in the former case, we would have a well performing 
detector on a specific vineyard, in the latter we would have a “universal” detector able to 
work anywhere. 

2.2. Mask R-CNN Framework for Grape Detection 
Given its performance on several well-known object detection benchmark datasets 

[22,23], we have chosen to train our system with the Mask R-CNN method [28]. The Py-
thon implementation used in this work is freely downloadable from 
https://github.com/matterport/Mask_RCNN (accessed on 3 June 2021) [49]. 

The Mask R-CNN framework (Figure 5) segmentation is an extension of Faster R-
CNN, and it adopts a two-stage procedure.  

 
Figure 5. MaskR-CNN framework (He et al. [28]). In this two-stage procedure, the first stage, 
called Region Proposal Network (RPN), estimates the position of bounding boxes. The second 
stage performs a classification, a bounding box regression, and extracts a binary mask. 

The first stage is called Region Proposal Network (RPN) and is a fully convolutional 
network. The RPN can be trained to predict region proposals at different scales and aspect 
ratios; therefore, it is used to estimate the position of bounding boxes. The second stage 
corrects the RoI misalignments in the RoIAlign layer and then performs in parallel a clas-
sification, a bounding box regression, and extracts a binary mask in order to output the 
bounding boxes and the segmentation masks of the selected object [28]. In this work, we 
only trained the system to extract the bounding boxes values while ignoring the segmen-
tation. 
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2.3. Training Procedure 
It is well-known that deep learning training process requires a huge number of sam-

ples, hundreds of thousands, or even millions. In addition, training a model from scratch 
is tremendously expensive in terms of required computational power but also in terms of 
processing time. Luckily, the availability of a pre-trained model allows the execution of 
the so-called “fine-tuning”. In the fine-tuning process, a model trained on some huge (mil-
lions of samples) dataset is “specialized” on different data and this further training re-
quires much fewer resources.  

In our case, we started from a ResNet101 (a convolutional neural network that is 101 
layers deep) pre-trained on the MS COCO (Microsoft Common Objects in Context), a da-
taset containing hundreds of thousands of images belonging to 80 different classes [50]. 
Basically, a network trained to be able to detect objects belonging to the 80 different classes 
of the MS COCO has been retrained to specialize on the grape class. The availability of 
pre-trained weights for MS COCO make easier to start the training since those weights 
can be used as a starting point to train a variation on the network. We used Google Colab, 
a cloud service that provides free access to computing resources including GPUs. The ex-
periments were executed by a virtual machine with 12 GB of RAM, an Nvidia graphic 
card (Tesla P100-16GB), and 68 GB of disk space. We performed fine-tuning (Goodfellow 
et al. [21]) using the GrapeCS-ML dataset images. The dataset was divided into a train (set 
1, containing more than 1000 images), validation (set 2, containing more than 500 images), 
and test (sets 3, 4, and 5, containing nearly 500 images); see Table 2 for further details.  

The internal dataset collected at the University of Sassari contains 451 images from 
all around Sardinia. The photos collect images of clusters of the main cultivars grown on 
the island. Specifically, of the 451 photos, almost 200 are Cannonau and Vermentino culti-
vars. Every single photo represents a different biotype or clone obtained following two 
important experimental works on mass and clonal selection for cv. Cannonau [51] and va-
rietal comparison for cv. Vermentino [52]. 

The other photos were collected mainly in collection vineyards of the University of 
Sassari where all the regional varieties registered in the national register of Italian vine vari-
eties are grown [53]. 

Table 2. Number of images contained in the GrapeCS-ML Dataset and in the internal dataset. 

GrapeCS-ML Dataset 
Train Set 1 1114 images 

Validation Set 2 505 images 

Test 
Set 3 204 images 
Set 4 242 images 
Set 5 49 images 

Internal Dataset  451 images 

Regarding the presence of different varieties, we point out the main difference with 
respect to similar works. The introduction of several different varieties will probably con-
tribute to the generalization, but it is difficult to evaluate this contribution if examples of 
all the varieties are present in train, validation and test at the same time. In our work we 
have done something totally different since there are notable differences, in terms of vari-
eties, between train, validation, and test (in the Australian GrapeCS-ML dataset), and 
above all, a second test dataset was created with further different varieties (the Italian 
internal dataset). 

Images dimensions in the first four sets of the GrapeCS-ML dataset are almost always 
480 × 640 or 640 × 480. Conversely, images dimensions in the set 5 of GrapeCS-ML dataset 
and in the internal dataset vary a lot, from 480 × 640 up to 3024 × 4032 or 4608 × 3456 and 
many more (see Table 3). Since those sets are both used to test the system, consistent re-
sults could prove the robustness even towards considerable variations in size. In order to 
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be processed by the Mask R-CNN framework all the images are automatically resized to 
1024 × 1024 pixels. The aspect ratio is preserved, so if an image is not square it is padded 
with zeros. 

Table 3. Numerosity (in brackets) per different size of the images contained in the GrapeCS-ML 
dataset and in the internal dataset. 

GrapeCS-ML Dataset 
Set 1 480 × 640 (1102), 640 × 480 (7), 1200 × 1600 (5) 
Set 2 480 × 640 (253), 640 × 480 (198), 1200 × 1600 (28), 1600 × 1200 (26) 
Set 3 480 × 640 (81), 640 × 480 (81), 1200 × 1600 (21), 1600 × 1200 (21) 
Set 4 480 × 640 (35), 640 × 480 (206) 
Set 5 640 × 480 (1), 3024 × 3024 (12), 3024 × 4032 (36), 3402 × 3752 (1) 

Internal Dataset 

360 × 640 (1), 480 × 640 (29), 640 × 480 (17), 1600 × 2128 (2), 1904 × 2528 
(3), 2048 × 1536 (36), 2112 × 2816 (23), 2304 × 3072 (1), 2320 × 3088 

(120), 2560 × 1536 (3), 2816 × 2112 (139), 3072 × 2304 (9), 3088 × 2320 
(43), 3456 × 4608 (2), 4160 × 2340 (1), 4608 × 3456 (22) 

To expand the size of the training part of the dataset, we used a technique called 
“data augmentation” through which many modified versions of the images in the dataset 
are created by horizontally flipping, translating, and adding artificial blur and contrast (a 
few augmentation examples are shown in Figure 6).  

This technique allows to considerably extend the number of samples presented to the 
network during the training phase and, accordingly, to increase its detection and gener-
alization capabilities. Moreover, variations in blurring, color, and brightness are a major 
problem in the field of computer vision. While in other works the authors try to limit those 
variations as much as possible, on the contrary, we have tried to include as many varia-
tions as possible in our training using dataset augmentation, so that the system “learns” 
to detect a grape bunch under as many as possible different conditions. It is worth noting 
that we only used set 1 for train due to the highest numerosity; more than 1000 images 
which is half of the entire GrapeCS-ML Dataset. The training of the network with a single 
variety, which could quickly lead to overtraining, is balanced by the use of data augmen-
tation and the high number of varieties present in the validation set. 

 
(a) 

 
(b) 

 
(c) 

Figure 6. Examples of train dataset augmentation: (a) original image; (b) horizontal flipping; (c) 
image blurring. 

3. Results 
3.1. Performance Evaluation 

To evaluate the effectiveness of the proposed approach for bunches detection, we 
used the Intersection over Union (IoU) measure (Equation (1)), which allows us to esti-
mate the precision in the overlap between a bounding box obtained by the classifier and 
that defined as ground truth that is the one hand drawn during the ‘labelling’ process. 



Sensors 2021, 21, 3908 11 of 21 
 

 

𝐼𝑜𝑈 ൌ ீ௥௢௨௡ௗ ்௥௨௧௛∩௉௥௘ௗ௜௖௧௜௢௡ீ௥௢௨௡ௗ ்௥௨௧௛∪௉௥௘ௗ௜௖௧௜௢௡. (1)

This measure is given by the ratio between the intersection and the union of the sur-
faces of the two bounding boxes (Figure 7), and it is positively evaluated if it exceeds a 
given threshold value (usually 0.5, but other values can also be considered [22]). In Figure 
8, two examples of IoU are presented, one higher and the other lower than 0.5. 

 
(a) 

 
(b) 

Figure 7. Evaluation of the IoU—Intersection over Union. This value is the ratio between the inter-
section and the union of the surfaces of the blue bounding box obtained by the classifier (Predic-
tion) and the green one hand drawn during the ‘labelling’ process (Ground Truth). In (a) a sample 
image, in (b) a description of the calculation process. 

 
Figure 8. Two examples of IoU. In the example on the left the ratio between intersection and union 
of the ground truth and prediction bounding boxes is higher than 0.5 (0.52) while in the example 
on the right the ratio is lower (0.23). 

The following values are defined: 
• TP (True Positive): bounding boxes correctly detected (IoU > 50%); 
• FP (False Positive): bounding boxes wrongly detected (there are no bunches or IoU < 

50%); 
• FN (False Negative): bounding boxes not detected where the bunches are present. 

Precision (the ratio between the number of correctly detected bunches and the total 
number of objects detected as bunches in the image) and Recall (the ratio between the 
number of correctly detected bunches and the number of all the bunches present in the 
image) can therefore be calculated for each class as 
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precision = ்௉்௉ାி௉, (2)

recall = ்௉்௉ାிே. (3)

Since each bounding box is detected with a certain probability, values of this proba-
bility higher than a certain threshold represent the more probable grape’s locations. As 
this threshold grows from 0.0 to 1.0, all possible Precision and Recall values are obtained. 
These values can be used to plot, for each image, a curve with Precision as y value and 
Recall as x value called the Precision–Recall Curve. The most important points are those 
for which there is a value change for Precision or for Recall. The purpose of this procedure 
is the computation of the area below this curve that is called Average Precision (AP) and 
can be used as a measure of the detection performance on the image. In Figure 9, an ex-
ample of the Precision–Recall curve obtained during our experiments is presented. The 
mean of all the obtained values is known as mean Average Precision (mAP) and is among 
the most used metrics in the field of object detection. 

 
Figure 9. Example of Precision–Recall curve obtained during our experiments. The Average Preci-
sion, that is the area below the curve, has a value of 0.833. In this example there are three Precision 
or Recall value changes, but that number of changes could be different for each image. 

3.2. Loss Function 
An important step in the training of a model is the selection of a loss function to 

evaluate the network performances. Among many possible values, we chose the sum of 
losses obtained from the three different outputs of the Mask R-CNN framework as they 
represent the best compromise between the three different losses: 

L = Lcls + Lbox + Lmask. (4)𝐿௖௟௦ is the classification loss, 𝐿௕௢௫ is the bounding-box loss, and 𝐿௠௔௦௞ is the mask 
loss as described in [28]. 

It is well known that during the training process, the validation loss is essential in 
choosing when to stop. As a matter of fact, if the training loss (evaluated on the train da-
taset) indicates how well the system is learning to perform the object detection on the 
training set (that is the already known data), the validation loss (evaluated on the valida-
tion dataset) explains how much the system is able to generalize the detection capability 
on never seen data. Figure 10 shows the training and validation loss values obtained by 
our system. The number of epochs, which is the number of times the learning algorithm 
update the model by analyzing the entire training dataset, is used as a temporal scale. 



Sensors 2021, 21, 3908 13 of 21 
 

 

 
Figure 10. Training and validation loss profile over the number of epochs, which is the number of 
times the learning algorithm update the model by analyzing the entire training dataset. The two 
curves show the performance improvement on training and validation data. 

3.3. Detection Results 
The result obtained by applying the detector on the test samples was a mAP value of 

92.78%. It means that a large majority of the bounding boxes have been correctly detected. 
In their works, Reis et al. [34] correctly identified 91% of white grapes and 97% of red 
grapes, Diago et al. [35] obtained a global Recall of 74.3% and a global Precision of 92.9% 
for flower detection in grapevine inflorescence, Liu and Whitty [43] detected bunches with 
an average accuracy of 88.0% and a recall of 91.6%, Aquino et al. [40] detected flowers 
with an average Precision of 0.8338 and a Recall of 0.8501, and Liu et al.’s [36] average 
detection performance was an Accuracy of 0.8683 and an F1 Score of 0.9004. Unfortu-
nately, it is difficult to make a direct comparison among all those results and ours. Indeed, 
the evaluated metrics are not always the same and, most importantly, the experimental 
set-up used to retrieve the images is different (usage of different cameras and acquisition 
with different light conditions) as well as the vines varieties are different. Despite this, it 
can be observed that the values we obtained are competitive with most of the works pre-
sented since, despite the different metrics, the recognition rate almost never exceeds 92%. 
The only case where the recognition rate seems higher is when images are captured at 
night using the camera’s internal flash with very little light/brightness variation [34]. A 
more reliable comparison can be made with the results obtained by Seng et al. [47] on the 
GrapeCS-ML Dataset although it is not clear which images were used for training, for 
validation, and for testing. By applying six different algorithms on four different color 
spaces, the highest classification rate they were able to achieve was 84.4% for white culti-
vars and 89.1% for red cultivars. In our work, there is no distinction between white and 
red cultivars, but with a mAP value of 92.78%, we can claim that our results are competi-
tive with what is currently the state of the art. 

The detailed results are shown in the second column of Table 4 (train complete, with 
augmentation). The validation and test values are very similar, proving the generalization 
capability of the system. Since the test dataset is composed of three subsets of the 
GrapeCS-ML Dataset, we also present the mAP of each of them. The considerable varia-
tion in the results is because the images in the three sets have very different characteristics. 
As shown in Figure 11, while in set 3 the bunches images are usually well defined and 
easy to detect, in set 4 and, even more, in set 5 there is a greater overlap between different 
bunches. Furthermore, the prevalence of red grapes in set 3 makes the detection much 
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easier compared to the detection of white grapes, more similar in color to the surrounding 
vegetation. 

Table 4. Experimental results on both GrapeCS-ML and our internal dataset. The detector has 
been trained in three different ways: using the entire set 1 as train, with dataset augmentation; 
using only 10% of set 1 as a train, with dataset augmentation; using only 10% of set 1 as a train, 
without dataset augmentation. 

 mAP 

Dataset Name 
Train Complete, 

with  
Augmentation 

Train 10%,  
with Augmenta-

tion 

Train 10%, with-
out Augmentation 

Validation (Set 2) 93.97% 90.95% 85.24% 
Test (Set 3 + Set 4 + Set 5) 92.78% 90.98% 87.65% 

Set 3 98.77% 98.69% 97.30% 
Set 4 89.18% 86.70% 83.40% 
Set 5 85.64% 80.07% 68.44% 

Internal Dataset 89.90% 86.41% 70.75% 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

  
(i) 

Figure 11. Images from the three GrapeCS-ML subsets included in the test: (a–c) set 3; (d–f) set 4; 
(g–i) set 5. 
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To assess the generalization capability of the proposed framework, we also tested the 
system on our internal dataset. Since, concerning the GrapeCS-ML dataset, our images 
contain different grape varieties, different vegetation, and different colors, it would be 
important to replicate on our dataset results similar to those obtained with the original 
test. As shown in Table 4, we obtained an 89.90% mAP that it is only slightly smaller than 
the other values. 

In order to determine the importance of the size of the dataset used for train and to 
determine the importance of the augmentation techniques, we performed two more train-
ing. We followed the described workflow, but we used only a reduced set of the original 
train (10% of the training images randomly selected) in one case with and in the other 
without the dataset augmentation. As it could have been expected, in the third and fourth 
column of Table 4 we observe a decrease in the mAP values especially in the experiments 
performed without augmentation. The obtained results prove the importance of a high 
number of images in the train but also of the use of augmentation techniques. Most of the 
results show a decrease between 3% and 5%, passing from the value obtained with the 
complete train, to those with the reduced train, to those with the reduced train and with-
out augmentation. Exceptions are the always very high values obtained for set 3 for which 
the decrease is limited to values around 1% and those on set 5 and the internal dataset 
which are much lower than the others. It is particularly important to highlight the differ-
ent values obtained for the internal dataset: if the considerable reduction in the number of 
train images causes a limited reduction in performance (around 4%), the absence of aug-
mentation leads to a drop in performance (more than 15%). 

Since the overlap between bunches and the presence of smaller bunches is probably 
the factor that reduced the detection capability, we also divided the different sets into 
subsets based on the number of ground truth objects in each image. The results presented 
in Table 5 as expected prove that the detection capability usually decreases as the number 
of objects in the image increases. It is worth noting that by analyzing the results from this 
different perspective, those that seemed evident differences between the various datasets 
are considerably reduced. Whatever the dataset, when there is just a single bunch in the 
image, the detection rate is always high. 

Table 5. Experimental results on both GrapeCS-ML and our internal dataset based on the number of bunches present in 
the images. After each mAP value, in brackets, the number of examined images is shown. 

Dataset Name mAP (Total Number of Images) 
 1 bunch 2 bunches 3 bunches 4 bunches 5 bunches 6 bunches 

Validation (Set 2) 98.85% (369) 82.61% (126) 57.22% (10)    
Test (Set 3, 4, 5) 99.75% (395) 65.41% (73) 72.59% (15) 51.72% (8) 60.00% (2) 64.63% (2) 

Set 3 100.00% (195) 72.22% (9)     
Set 4 99.45% (181) 57.70% (53) 65.28% (8)    
Set 5 100.00% (19) 96.97% (11) 80.95% (7) 51.72% (8) 60.00% (2) 64.63% (2) 

Internal Dataset 96.79% (218) 85.39% (166) 76.11% (46) 80.89% (17) 99.17% (4)  

4. Discussion 
As stated before, the system is not error-free, since some bounding boxes are not de-

tected at all, and others are not correctly detected, meaning that their IoU, with the ground 
truth, is lower than 0.5. In Figure 12, an example is shown of correct detection on a test 
image (the green boxes represent the ground truth, while the blue ones are the detection 
results) since the IoU is clearly greater than 0.5. Other examples, in Figure 13, show some 
of the typical problems of object detection. In Figure 13a, only one out of two bounding 
boxes is correctly detected. In Figure 13b,c, the two bunches are detected but as a single 
element. This is one of the cases in which the error can be considered as “less severe”, 
since the area containing the bunches has been correctly detected. Unfortunately, when 
many bunches stay so close together inside the same image, they are difficult to distin-
guish. In Figure 13d, the picture is out of focus and only the larger of the two bunches has 
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been correctly detected. These examples confirm the results presented in Table 5 since a 
single bunch is almost always correctly detected. Most of the errors are due to the presence 
of bunches that are too small and out of focus or to the inability to distinguish partially 
overlapping bunches. 

 
Figure 12. Example of correct detection on a test image from the GrapeCS-ML dataset. The green 
box represents the ground truth while the blue one is the detection results. The IoU of the two 
boxes is greater than 0.5. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 13. Examples of errors in the GrapeCS-ML dataset. The green boxes represent the ground 
truth while the blues ones are the detection results. In (a) only one out of two bounding boxes is 
correctly detected, in (b,c) the two bunches are detected but as a single element, in (d) only the 
larger of the two bunches is correctly detected. 

Those obtained with the internal dataset can be considered excellent results due to 
the considerable difference between the grape varieties images in this dataset, and those 
used to train the system. In Section 2, we stated that our aim was the development of a 
grape detector able to analyze images automatically acquired in a generic vineyard. We 
could even claim that those are the most important results presented in this work. 
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As in the previous cases, most of the errors are due to the incorrect detection of over-
lapping bunches (Figure 14a), others are caused by the inability to correctly detect shaded 
parts (upper-left box in Figure 14b). Another error is the incorrect detection of some leaves 
as bunches (Figure 14c) and it is probably due to the difference between the Sardinian 
grape varieties and those in the training dataset. In this case, the difference between the 
leaves in the image and all of those previously shown, belonging to the GrapeCS-ML da-
taset, is evident. This type of error can be significantly reduced by training and testing the 
system with images collected in the same geographic area or, even better, in the same 
vineyard, but the focus of this work was, on the contrary, the analysis of a generalized 
capability of the framework. This capability is shown, for example, in the two images of 
the internal dataset in Figure 15, where the same bunches are depicted. It is worth noting 
that, despite the image in Figure 15a is considerably overexposed, all the clusters have 
been correctly recognized as in Figure 15b. The ability to correctly detect grape bunches 
of varieties never seen before under uncontrolled lighting conditions is the main novelty 
of this work. Once again we emphasize the fact that, even in the most difficult cases, single 
bunches are almost always correctly detected as shown in Table 5. 

 
(a) 

 
(b) 

 
(c) 

Figure 14. Examples of errors in the internal dataset. The green boxes represent the ground truth 
while the blues ones are the detection results. In (a) the incorrect detection of overlapping 
bunches, in (b) undetected shaded parts, and in (c) leaves incorrectly detected as bunches.

(a) (b) 

Figure 15. Example of same bunches correctly detected in two similar images. The image (a) is 
significantly overexposed compared to the image (b). The green boxes represent the ground truth 
while the blues ones are the detection results. 

Details of yield estimations involving traditional methods such as the lag phase 
method and others can be found in [54,55]. The quality assessment by visual inspection 



Sensors 2021, 21, 3908 18 of 21 
 

 

scales poorly to large vineyards and appears inaccurate due to the subjectivity of the hu-
man evaluator [56]. Moreover, these methods are expensive, inaccurate (if the yield is un-
evenly distributed across the vineyard), laborious, and time-consuming since they require 
a manual measurement of specific cluster features [57]. The precise knowledge of the 
number of bunches and their position in the vineyard would automate such activities. 

5. Conclusions 
In this paper, a detector of grape bunches based on the Mask R-CNN framework was 

presented. The GrapeCS-ML dataset was used to train the system and to evaluate its per-
formances. We also tested the detector on an internal dataset collected in several Sardinian 
vineyards during the last decade since our main goal was the training of a system capable 
of detecting bunches regardless of both the grape variety and its geographical location. 

The presented results are promising since most of the bunches were correctly de-
tected and many of the errors were only due to the incorrect detection of two adjacent 
bunches as one. In fact single bunches were usually correctly detected even in the most 
difficult cases, despite problems as shadowing and overexposition. It is worth noting that 
the importance of the presented methodology is that good results are obtained not only 
on the GrapeCS-ML database, which has been used to train the system, but also on our 
internal dataset, confirming the portability of the proposed methodology to different sce-
narios. This is something novel at the state of the art, where methodologies are normally 
customized over a precise context of application and not proved to be portable. 

This approach is suitable to be employed, after an appropriate training, in multiple 
scenarios of fruit detection and tracking from autonomous systems, reducing the subjec-
tivity of the human evaluator during the visual quality assessment and optimize monitor-
ing operating times. Indeed, the achieved results represent a valuable first results within 
the activities of the Comp4Drones (C4D) project. Starting from images’ collection, it would 
be possible to more precisely monitor the development of the grapes, detect the diseases, 
estimate the yield in terms of quantity and quality, and predict the appropriate time for 
harvesting. In C4D the idea is to allow running those types of analysis both off-line and 
on-line. In this regard, as future work, we have planned a new set of training with differ-
ent frameworks, starting from the YOLO detector, which is known to be less precise but 
much faster in order of images analyzed per second with respect to the Mask R-CNN. 
Such a characteristic makes YOLO particularly suitable for the usage on embedded plat-
forms, such as co-processing units acting as companion computers [58,59], which will al-
low advanced on-line processing on-boards of Unmanned Autonomous/Ground Vehi-
cles. Additionally, as future work, the teamwork plans also to collect a new set of images 
in the vineyards where field trials will be carried out in the coming years. 
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