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Abstract: Recently, as technology has advanced, the use of in-vehicle infotainment systems has
increased, providing many functions. However, if the driver’s attention is diverted to control
these systems, it can cause a fatal accident, and thus human–vehicle interaction is becoming more
important. Therefore, in this paper, we propose a human–vehicle interaction system to reduce
driver distraction during driving. We used voice and continuous-wave radar sensors that require
low complexity for application to vehicle environments as resource-constrained platforms. The
proposed system applies sensor fusion techniques to improve the limit of single-sensor monitoring.
In addition, we used a binarized convolutional neural network algorithm, which significantly reduces
the computational workload of the convolutional neural network in command classification. As a
result of performance evaluation in noisy and cluttered environments, the proposed system showed
a recognition accuracy of 96.4%, an improvement of 7.6% compared to a single voice sensor-based
system, and 9.0% compared to a single radar sensor-based system.

Keywords: binarized convolutional neural network; gesture recognition; human vehicle interaction;
sensor fusion; voice recognition

1. Introduction

As technology advances, the number of infotainment systems available in vehicles is
increasing [1,2]. Car manufacturers are including more functions and services in vehicles to
increase user satisfaction and provide a variety of infotainment systems and environmental
control functions for the driver to manipulate [3]. Accordingly, factors that can distract
driver concentration, such as setting up a global positioning system (GPS) navigation
system and using an audio entertainment device have also increased [4]. However, in a
road environment where various unexpected situations exist, driver carelessness can cause
serious safety threats. Therefore, to control the interior of the vehicle without distracting the
driver’s concentration, human–vehicle interaction (HVI) systems are becoming increasingly
important [5].

Various sensors, such as touch screen, camera, depth, voice, and radar sensors are
used in HVI systems for in-vehicle device control [6–16]. Touch screens provide the largest
amount of information to users at once and show the highest recognition accuracy. How-
ever, because eyesight must remain on the touch screen for control, it can lead to dangerous
situations as a result of the break in concentration on the road. In contrast, camera, depth,
radar, and voice sensors can be used without causing driver neglect. However, camera and
depth sensors have the disadvantages of high computational complexity, personal privacy
problems, and susceptibility depending on the light condition. Because illuminance varies
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depending on the weather, location, and time in the road environment, it can harm the
recognition performance.

Conversely, voice sensors are not affected by light environments, unlike vision-based
sensors; therefore, they can be used during the day, at night, or anytime. It also requires
much lower computational complexity than vision-based sensors and is inexpensive.
Therefore, a voice sensor is suitable as an HVI system inside a vehicle implemented as
a power-constrained and resource-constrained platform, and much research has been
conducted. Voice sensor-based command recognition exhibits excellent performance with-
out high computational costs. However, when a voice sensor is used alone, recognition
performance degrades in a severely noisy environment.

Radar sensors are another solution for command recognition because they provide ro-
bust recognition regardless of the illumination environment and do not cause privacy prob-
lems. Conventionally, radar sensor-based gesture recognition uses a frequency-modulated
continuous-wave (FMCW) radar to obtain a range-Doppler map (RDM) by applying a
2-dimensional (2D) fast Fourier transform (FFT). Subsequently, the feature is extracted
from the RDM, and the command is recognized using a machine-learning algorithm [9–11].
Command classification using the FMCW radar showed high accuracy. However, the
FMCW radar requires a relatively higher computational complexity and memory require-
ment than the continuous wave (CW) radar because of the 2D FFT. CW radars can extract
micro-Doppler frequencies with less computation than FMCW radar require, which can
be used as a feature for command recognition [17]. However, when a CW radar sensor is
used alone in a vehicle environment, performance may be degraded in a cluttered cabin
environment because of passenger movement or vehicle vibration.

Voice sensors have low computational complexity and are robust to lighting conditions,
but their performance is poor in noisy environments. CW radar sensors have the advantage
of requiring less computational complexity, are not affected by lighting conditions, and do
not present privacy issues. However, recognition performance can be degraded in severely
cluttered interiors. Therefore, if only a voice or CW radar sensor is used in a vehicle
environment, command recognition performance degrades in a specific environment with
either significant noise or clutter, so the sensors must be fused to complement each other.

Recently, research on deep learning algorithms for classifying fusion data has in-
creased remarkably, and among them, convolutional neural network (CNN) algorithms
have been widely used [18–21]. However, CNN algorithms are difficult to apply to power-
constrained and resource-constrained platforms such as in-vehicle environments because
of their high computational complexity and large memory requirements. Therefore, var-
ious studies have been conducted to implement the CNN algorithm on the embedded
platform, and a popular technique for increasing resource efficiency is the quantized
model [22–24]. Among them, the binarized convolutional neural network (BCNN) has
been in the spotlight because it does not show much deterioration in performance, while
dramatically reducing computational complexity and memory by reducing the parameter
to single-bit precision [25–29].

Therefore, in this paper, we propose an HVI system that can be implemented with
high recognition performance on power- and resource-constrained platforms. To ensure
command recognition performance, even under environmental constraints such as illumi-
nation, noise, and clutter, we fuse the voice and radar sensor information. Furthermore,
we adopt BCNN algorithms that improve CNNs’ very high computational complexity
and memory requirements and can implement them on an embedded platform. The rest
of this paper is organized as follows: Section 2 briefly reviews related works. Section 3
provides an overview of the proposed system, BCNN algorithms, and signal processing
methods. Section 4 presents the experimental environment and performance evaluation
results. Finally, the conclusions of this study are presented in Section 5.
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2. Related Works

Recently, command classification studies with voice recognition have been conducted
frequently in vehicle environments. Wang et al. [6] presented a front-end speech enhance-
ment approach for robust speech recognition in automotive environments. In this study, a
multiple Gaussian mixture model (GMM) architecture was proposed to deal with voice
activity detection under low signal-to-noise ratio conditions. The trained GMMs were
used to estimate the speech presence probability on a frame-by-frame basis. The estimated
probability serves as basic information for the relative transfer function estimation, adap-
tive beamforming, and post-filtering. The average word error rate (WER) was 7.6% for
several scenarios.

Loh et al. [7] implemented a speech recognition interactive system that did not disturb
the driver while driving. Fourteen speech commands were transformed into the frequency
domain via the discrete Fourier transform (DFT), and Mel-frequency cepstral coefficients
(MFCC) features were extracted by calculating the Mel-frequency spectrum. Subsequently,
the MFCC feature was used to recognize the speech command with vector quantization
using the Linde–Buzo–Gray model. The accuracy of the proposed system was 78.6%.

Feng et al. [8] extracted MFCC features from speech signals, applied linear discrim-
inant analysis (LDA), and aligned the data by applying a maximum-likelihood linear
transform. Finally, maximum-likelihood linear transformation was applied to normalize
the inter-speaker variability and for training and testing. The final data were combined with
vehicle speed information, heating, ventilation, air conditioning (HVAC) fan status, wiper
status, and vehicle type information. By adopting the hybrid deep neural network–hidden
Markov model (DNN–HMM), WER was reduced by 6.3%. However, a single voice sensor
system significantly reduced the accuracy in a noisy vehicle environment, and complex
signal processing was required to improve performance.

Another sensor used in the HVI system is radar, and much research has focused on
hand gesture recognition. Most of the studies used FMCW radar with high computational
complexity. Smith et al. [9] used FMCW radar to obtain RDM information. A total of
nine features, including distance and velocity information, were extracted from the RDM
and used for hand gesture classification. Random forest was adopted as the classification
algorithm, and the proposed system performed at above 90% accuracy for all gestures on
average.

Wang et al. [10] proposed a method for continuous hand gesture detection and
recognition based on the FMCW radar. RDM was acquired from raw data using a 2D
FFT. A range map (RM) and Doppler map (DM) were extracted, and multiple signal
classification (MUSIC) algorithms were used to extract an angle map (AM). Subsequently,
hand gestures were segmented using threshold values; moreover, a fusion dynamic time
warping (FDTW) algorithm was proposed, and a hand gesture recognition rate of 95.8%
was achieved.

Sun et al. [11] studied gesture recognition using a radar system based on micro-
Doppler information. They incorporated the range information in addition to the micro-
Doppler signature to filter out undesired moving targets. They used a total of five features
from the acquired data, including the number of chirp-sequence cycles and the total
bandwidth of the Doppler signal. The k-nearest neighbor (k-NN) algorithm was used to
classify seven gestures, resulting in an accuracy of 84%. However, as in previous studies,
the hand gesture recognition system using FMCW radar requires high computational
complexity and memory owing to the 2D FFT operation to acquire RDM. Furthermore, an
additional clutter removal algorithm is required to improve the performance in a vehicle
environment with much clutter, leading to an increase in the complexity of the system.

Because a single sensor system has limitations in some environments, two or more sen-
sors must be used by fusion. Over the past decade, research using deep learning techniques
for sensor fusion data, mostly CNN algorithms, has been ongoing. Molchanov et al. [18]
presented a hand gesture recognition system that combined short-range radar, camera, and
depth sensors. RDM was acquired by the FMCW radar, and distance, velocity, and angle



Sensors 2021, 21, 3906 4 of 16

information were obtained and then combined with the camera and depth sensors. The
obtained datasets were used to learn and evaluate the 3D CNN classifier and showed a
classification accuracy of 94.1%.

Münzner et al. [19] studied deep learning methods for human activity recognition
(HAR). A method for optimally fusing multimodal sensors was also studied. The early
fusion, sensor-based late fusion, channel-based late fusion, and shared filter hybrid fusion
performances of the CNN algorithm were analyzed.

Alay et al. [20] proposed a multimodal biometric system to overcome the limitations
of a single-mode biometric system. In this study, the CNN-based multimodal biometric
system using iris, face, and finger vein recognition systems showed better accuracy than
unimodal systems. The performance of the fusion technique was compared. The proposed
system showed a performance of 99.4% with the feature-level fusion technique and 100%
with the score-level fusion technique for the SDUMLA-HMT dataset [30], a multimodal
biometric database. In our work, we used reasonable voice and CW radar sensors on
an embedded platform for command recognition in a vehicle environment. In addition,
BCNN, a lightweight CNN algorithm, was used as a classification algorithm for fusion
data. To the best of our knowledge, there are no BCNN-based sensor fusion studies with
voice and radar sensors applicable to embedded systems.

3. Materials and Methods
3.1. Proposed System

As shown in Figure 1, we propose an HVI system that classifies user commands. The
commands include voice commands from spoken words and gesture commands from
hand gestures. The proposed system acquires voice commands using a voice sensor and
gesture commands using a CW radar. We used an MVL Lavalier microphone developed
by Shure [31]. The voice sensor parameters are listed in Table 1. In addition, we used a
Sense2GoL CW radar made by Infineon, which has a central frequency of 24 GHz [32].
The radar parameters are listed in Table 2. Each sensor’s raw data are processed into a
2D spectrogram via a short-time Fourier transform (STFT) operation. The acquired spec-
trogram cropped significant signals to 32 × 24 sizes, reducing computational complexity
and memory usage while matching the dimensions. The cropped 2D spectrogram was
concatenated into 3D data and processed to enable BCNN learning and classification.
Because voice and gesture commands should be concatenated into a 2-channel spectrogram
and transferred simultaneously to BCNN, voice and radar sensor data are collected in
parallel in the proposed system. Finally, the 2 × 32 × 24 sized spectrogram data were
used as a 2-channel input of BCNN and processed at once to recognize the user command.
Additionally, feature maps were extracted from the convolution layers (CLs). The output
feature maps of the last CL were fed to the fully connected layers (FCLs), and the final class
was predicted.

Figure 1. Overview of the proposed system.
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Table 1. Voice sensor parameters.

Parameter Value

Frequency response 45 Hz–20 kHz
Polar pattern Omnidirectional

Signal-to-noise ratio 65 dB
Maximum sound pressure level 124 dB

Table 2. Radar sensor parameters.

Parameter Value

Center frequency 24 GHz
Output power 6 dBm
Antenna gain 10 dBi

Maximum distance 15 m
Horizontal field of view 29◦

Vertical field of view 80◦

3.2. Voice Signal Processing

Voice data have many meanings and characteristics of the frequency components.
Therefore, it is ideal to analyze signals through frequency conversion, rather than merely
using raw data. The human voice is composed of many frequencies, and most of the
voice information is concentrated below 8 kHz. According to the Nyquist sampling theory,
a sampling rate of at least 16 kHz is necessary to avoid distortion of the human voice.
Therefore, all voice commands were recorded at a sampling rate of 16 kHz for 1 s. When
analyzing a signal whose frequency changes over time, such as a voice command, STFT
can be used. Because the STFT segments a long-time signal into several short-time units
and applies an FFT, it can perform analysis for each time interval. The STFT equation can
be written as follows:

X(τ, f ) =
∫ ∞

−∞
x(t)ω(t − τ)e−j2π f tdt (1)

where ω is the window function, and τ is the window delay time.
A 128-point FFT and Hamming window were applied to the STFT with an overlap

ratio of 50%, and a 128 × 249-sized spectrogram was obtained. The frequency axis length
is 128, and the time axis length is 249. When we perform the STFT with real number data,
such as voice commands, the signal is symmetrical at 0 Hz on the frequency axis, so it is
reduced in size by half, and a 64 × 249-sized spectrogram is obtained. However, as the
input size increases, the computation of the CNN increases exponentially, so there is a limit
to using a 64 × 249-sized spectrogram as it is. Furthermore, the data cropping process is
essential because the input size must be matched to the fusion with the radar data. Thus,
the obtained spectrogram was 2 × 4 subsampled to obtain a 32 × 63-sized spectrogram, and
the frame of maximum power signal was cropped to the size of 32 × 28. The 32 × 28-sized
spectrogram is cropped into 32 × 24 and augmented into five spectrograms. The overall
signal processing of voice data is shown in Figure 2. As a result, a voice data entry with a
recording length of 1 second and a sampling rate of 16 kHz was processed into five spectro-
grams of size 32 × 24. Figure 3 represents the nine voice command spectrograms: right,
left, yes, no, stop, pull, once, twice, and unknown.
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Figure 2. Voice signal processing flow.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i)

Figure 3. Voice spectrogram: (a) right; (b) left; (c) yes; (d) no; (e) stop; (f) pull; (g) once; (h) twice; (i) unknown.
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3.3. Radar Signal Processing

CW radar can measure velocity using the Doppler effect caused by movement from the
hand gesture. The Doppler effect is a phenomenon in which the frequency of the received
radio wave becomes higher than the transmitted radio wave when the target approaches
the radar, and the received radio wave frequency becomes lower than the transmitted radio
wave when the target moves away from the radar. The change in frequency caused by
the Doppler effect is called the Doppler frequency, and by the STFT of the radar signal,
the Doppler frequency according to the short time change can be acquired. The gesture
command used CW radar to sample 3200 data for approximately 3 s and then removed the
DC offset.

Raw radar data were processed into a 64 × 50-sized spectrogram via a 64-point STFT
with a Hamming window. The maximum power signal in the time axis was cropped to
32 × 28 with 0 Hz as the center to reduce the input size and match the dimension with the
voice data. The 32 × 28-sized cropped spectrogram was augmented into five spectrograms
of size 32 × 24. The signal processing scheme of radar data is similar to voice. The defined
nine gestures are shown in Figure 4: swipe the hand from left to right, swipe the hand from
right to left, draw an “O” with the finger, draw an “X” with the finger, stretch the palm in
front of the radar, pull the palm toward the body, stretch and pull the palm once, repeat
stretch and pull the palm twice, and do nothing. Each of the nine class gestures means
right, left, yes, stop, pull, once, twice, and unknown. The spectrograms for each gesture are
presented in Figure 5.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Hand gesture examples: (a) Hand swipe from right side to left side (symbol for right); (b) Hand swipe from
right side to left side (symbol for left); (c) Hand swipe shape O (symbol for yes); (d) Hand swipe shape X (symbol for no);
(e) Hand push from body to radar (symbol for stop); (f) Hand pull from radar to body (symbol for pull); (g) Hand push and
pull performed once (symbol for once); (h) Hand push and pull performed twice (symbol for twice).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i)

Figure 5. Gesture spectrogram: (a) right; (b) left; (c) yes; (d) no; (e) stop; (f) pull; (g) once; (h) twice; (i) unknown.

3.4. Binarized Convolutional Neural Network

CNNs have the advantage of learning filters and extracting features of input data
independently [33]. Therefore, CNNs do not require additional feature extraction and can
use raw data without loss of information. Furthermore, owing to their robustness to distor-
tion and changes in images, CNNs have been widely used in image classification contests
and show excellent performance [34–37]. In a CNN, the CLs can extract the features via a
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convolution operation between the input data and the filter, and simple features such as
lines are extracted from the front layer, and complex features such as texture are extracted
from the back layer. The FCL uses the last output feature map of the CLs as the input
and infers the final class. The pooling layer reduces the size of the data, thereby reducing
computational complexity and preventing overfitting. For the pooling layer, max pooling
and average pooling are commonly used. The batch normalization layer prevents internal
covariate shift, improves learning speed, and solves gradient vanishing problems [38].
When it comes to the deep neural network architecture design, there exist hyper-parameter
selection algorithms that have been shown to perform on par with human experts or
surpassed them [39,40]. Suganuma et al. [39] attempts to automatically construct CNN
architectures for an image classification task based on Cartesian genetic programming.
Lorenzo et al. [40] proposed a particle swarm optimization algorithm for hyper-parameter
optimization in deep neural networks. These network optimization methods show compet-
itive results compared to state-of-the-art models. However, since most of these methods
are focused on image classification, we select adequate network architecture through ex-
periments with various network configurations. However, we think further research on
network optimization is needed in the future.

CNNs have high computational complexity owing to the CLs and large memory require-
ments owing to the FCLs. Accordingly, much research on the weight reduction of algorithms
has been conducted. Among them, the BCNN algorithm is in the spotlight [25–29]. The
BCNN algorithm calculates the input and weight as 1 bit and significantly reduces memory
and computational workload without significant performance degradation. By binarizing
the CNNs, multiplication and accumulation operations for floating-point numbers can
be replaced by exclusive NOR (XNOR) and pop count operations. Therefore, it is more
advantageous in terms of hardware area and power, and thus it is suitable for embedded
platforms. In the next section, the adequate network architecture for recognizing com-
mands in the vehicle environment is selected, and the performance of the selected BCNN
architecture is presented.

4. Experimental Results
4.1. Environment

When driving on a road, there are numerous sources of in-vehicle noise and clutter [6].
The major sources of noise that deteriorate voice recognition performance are ground-tire
friction noise, engine noise, air noise when driving with the windows open, and air noise
from the air conditioner or heater. The clutter types that deteriorate gesture recognition
performance from the CW radar perspective are passenger movement with a Doppler
frequency component and movement of an object or person due to vehicle vibration when
driving on the road. In this paper, we propose an HVI system that performs classification
with high accuracy, regardless of the existence of these interfering elements.

All experiments were conducted in a real in-vehicle environment with various driving
speeds ranging from 20 to 120 km/h. A total of five people participated in the experiment:
two men in their 20s, one man in their 30s, and two women in their 20s. Figure 6 shows the
experimental in-vehicle environment setup for acquiring data and evaluating performance.
Voice commands were recorded in three environments: just driving, driving with the win-
dows open, and driving with the air conditioner turned up to maximum. Voice commands
were recorded 25 times each for one second by five participants in three environments
for a total of nine commands: right, left, yes, no, stop, pull, once, twice, and unknown.
Therefore, the number of raw data sets is 3375. After that, in the process of extracting the
spectrogram, the data were augmented five times, so a total of 16,875 data sets were used.
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The driver performed gesture commands with the right hand in three environments:
no passenger, a passenger in the passenger seat and moving his upper body and arms, and
a passenger sitting in the rear seat and moving his upper body and arms. As shown in
Figure 6, the radar was installed in front of the center dashboard of the vehicle. The gestures
were performed in the range of 30–60 cm between the driver and radar. Gesture commands
were repeated 25 times each by five participants for approximately three seconds with
eight hand gestures and one unknown gesture in which the driver did nothing. Therefore,
the total number of raw data sets was 3375. The spectrogram was extracted, and the data
were augmented five times, so the total number of data sets used was 16,875. Two 2D
spectrograms extracted by voice and radar were concatenated and processed into 3D data.

Figure 6. Experiment setup for voice and hand gesture recognition in vehicle.

4.2. Evaluation

The BCNN classifier was trained to recognize voice and gesture fusion data. All
voices and gestures were normalized and used. There were 13,500 (80%) train sets used for
learning and 3375 (20%) validation sets for monitoring generalization ability during training
and for performance evaluation. The loss function was cross-entropy, and the optimizer
was Adam for training and was trained on a GeForce RTX 2080 Ti GPU. The batch size
was 200, and the epoch was 100 times. The learning rate was 0.005 before 40 epochs, 0.001
after 41 epochs, and 0.9 and 0.999 for the beta. If the network architecture is too shallow,
underfitting may occur, and if it is too deep, overfitting may occur. Therefore, experiments
were conducted by changing the number of CLs and FCLs to determine the adequate
architecture of the BCNN. The results after evaluating the performance by changing the
BCNN architecture for the fusion data are shown in Table 3. The best performance was
observed with two CLs and four FCLs, three CLs and three FCLs. As shown in Table 4,
both networks have similar computation times. On the other hand, the network with two
CLs and four FCLs requires about 2.5 times more parameters. Therefore, we selected the
network with three CLs and three FCLs. The detailed architecture of the proposed network
model is illustrated in Figure 7. Each CL’s filter size was 5 × 5, the channels were each
expanded to 16, and the stride was 1 × 1. Each layer’s activation function uses the Sign
function to binarize the feature map to 1 for values greater than 0 and −1 for values less
than 0.
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Table 3. Accuracy according to network architecture.

Convolution Layer
Fully Connected Layer

1 2 3 4

1 84.5 ± 4.5% 89.5 ± 4.5% 91 ± 3% 90.5 ± 3.5%
2 91 ± 3% 91 ± 3% 92.5 ± 2.5% 95 ± 1%
3 92 ± 2% 92.5 ± 2.5% 95 ± 1.5% 94 ± 1%
4 91 ± 3% 92.5 ± 2.5% 93 ± 3% 94 ± 1%

Table 4. Number of parameters and inference computation times.

2CLs + 4FCLs 3CLs + 3FCLs

Number of parameters 140,256 56,320
Computation time 0.581 ms 0.622 ms

Figure 7. Architecture of binarized convolutional neural network.

The proposed system classifies a command that combines a voice command with noise
and a radar command with clutter in a driving environment. To confirm the effectiveness
of the proposed fusion method, we presented the learning curve of the 2-channel BCNN
as shown in Figure 8 and compared the performance of a single sensor system as shown
in Figure 9. The single sensor system was configured identically except that the BCNN
used a 1-channel spectrogram as an input. Figure 9a shows the classification results of
the HVI system based on a single voice sensor as a confusion matrix. Of the 3375 datasets
used for performance evaluation, 2996 were corrected, resulting in low accuracy of 88.8%.
Figure 9b shows the confusion matrix for a single radar sensor-based HVI system. Of
the 3375 datasets, 2951 were corrected, with a low accuracy of 87.4%. In contrast, the
proposed sensor fusion HVI system, as shown in Figure 9c, showed a high accuracy of
96.4% by obtaining 3252 correct answers out of 3375. Because the CW radar only knows
the approach or receding speed, gestures of right and left, yes and no, are difficult to
distinguish. However, the proposed system has improved performance because it uses
voice and radar sensors together. The proposed system showed 7.6% higher performance
than using only a voice sensor and 9.0% higher than using only a radar sensor. The
classification performance per the command of the proposed method is shown in Table 5.
The proposed system showed over 94% F1 score for all commands.

Table 5. Classification performance of each fused command.

Right Left Yes No Stop Pull Once Twice Unknown

Precision 0.96 0.94 0.99 0.98 0.98 0.96 0.99 0.96 0.92

Recall 0.94 0.95 0.99 0.95 0.95 0.97 0.94 0.99 0.98

F1 score 0.95 0.94 0.99 0.96 0.97 0.96 0.97 0.98 0.95
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Figure 8. Learning curve of the 2-channel binarized convolutional neural network.

(a) (b) (c)

Figure 9. Confusion matrix of HVI system: (a) voice only; (b) radar only; (c) voice and radar fusion.

In a cluttered environment where the noise is low due to simple driving but with
much residual vehicle vibration or passenger movement, the voice command will show
high classification accuracy, but the gesture command will show low classification accuracy.
On the other hand, in a noisy environment where the clutter is low because of no residual
vibration or passenger movement, but loud noise is present from opening a window
or turning up the air conditioner, a low voice command classification accuracy and high
gesture command classification accuracy will be observed. However, in the proposed fusion
technique, two different sensors provide complementary information. Even in a limited
environment for a single sensor, sufficiently good performance is observed. Therefore, to
analyze the effectiveness of the proposed system, we defined good and bad datasets and
developed additional scenarios to conduct the experiments. Voice commands recorded
in a simple driving environment and gesture commands without passenger interference
were defined as good datasets. Voice command in a noisy environment, such as opening a
window or turning on an air conditioner, and gesture command with the movement of a
passenger were defined as bad datasets. There were four scenarios for the experiments.
The performance of the single-sensor system and the performance of the sensor fusion
system were compared and analyzed for each scenario. The performance table for each
scenario is shown in Figure 10.

• Scenario 1: simple driving with less noise and no movement of passengers with
less clutter;
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• Scenario 2: simple driving with less noise and significant movement of passengers
with clutter;

• Scenario 3: opening a window or turning on the air conditioner with significant noise
and no passenger movement with less clutter;

• Scenario 4: opening a window or turning on the air conditioner with significant noise
and passenger movement with clutter.

The proposed HVI system has better accuracy in all scenarios, as shown in
Figure 10. A single voice sensor system performs poorly in noisy environments, such
as when a window is opened or the air conditioner is turned on. However, the proposed
HVI system uses a radar sensor to improve its performance. The classification accuracy
of gesture commands in a single radar sensor system is poor in an environment where
there is significant passenger movement; however, the fusion with the voice sensor shows
much better performance. Note that Scenario 4, which limited the environments for both
sensors, showed low accuracies of 86% and 83.4% in the single voice sensor-based system
and the single radar sensor-based system, respectively. However, in the same scenario,
the proposed HVI system improved its performance by 7% compared to the single voice
sensor-based system and 9.6% compared to the single radar sensor-based system with an
accuracy of 93% owing to the fusion of the two sensors. Therefore, we confirm that HVI
systems using the proposed fusion technique are more effective than single voice or radar
sensor systems for in-vehicle environments.

Figure 10. Accuracy of the HVI systems for each scenario.

We also performed k-fold cross-validation to confirm that the network generalization
was successful. The four drivers’ datasets were used for training, and the rest of the datasets
were used for the test. Table 6 shows the results of 5-fold cross-validation. The gesture
and fusion performance of Driver 4 was a little lower because the gesture movement
was relatively smaller than others due to inexperienced driving. However, in all cases, a
fusion-based system is more effective than a single sensor-based system.

Table 6. Accuracies of HVI systems for each fold.

Validation Sets Voice Only Gesture Only Fusion

Driver 1 87.6% 84.4% 95.2%
Driver 2 88.3% 89.7% 97.2%
Driver 3 85.2% 83.5% 94.0%
Driver 4 86.8% 78.8% 90.9%
Driver 5 84.9% 88.6% 96.8%
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5. Conclusions

The HVI system for in-vehicle environments monitors human information based on
various sensors without interfering with driving. However, it is difficult to apply a camera
sensor to in-vehicle environments because of its high computational load, privacy issues,
and vulnerability to dark environments. A depth sensor has the disadvantage of being
vulnerable to bright light. Voice and radar sensors have the advantage of being robust
in illuminated environments, and their computational complexity is smaller than that of
vision-based sensors. However, if each sensor is used alone, it is vulnerable to noisy and
cluttered environments. Therefore, the proposed HVI system provides robust recognition
regardless of the illumination, noise, and clutter environment by fusion of voice and radar
sensors, and it shows improved performance in a limited environment. CNNs can learn
filters, extract features by themselves, and perform well. However, owing to the massive
computation of CLs and the large memory requirement of FCLs, there is a limit to their
application in embedded systems such as vehicles. Therefore, we applied BCNN algo-
rithms using binarized inputs and weights to significantly reduce the large computational
workload and memory requirements. As a result of the performance evaluation in the
vehicle, a single voice sensor system showed 88.8% accuracy in a noisy environment. A
single radar sensor system showed 87.4% accuracy in a cluttered environment. However,
the proposed system showed a recognition accuracy of 96.4%, with a 7.6% improvement
compared to the single voice sensor system and a 9% improvement compared to the single
radar sensor system.

In future work, we will study a system that can more accurately classify a driver’s
command by fusing voice sensors and FMCW radar sensors that can extract distance and
angle information, as well as Doppler frequency. Using the FMCW radar instead of the
CW radar, more information can be obtained, but the computational complexity for radar
signal processing and BCNN increases. Therefore, we will study a lighter and improved
signal processing algorithm and BCNN architecture. In addition, only the noise in the
vehicle was considered as the interference signal of the voice sensor. In a practical driving
environment, there may be two or more passengers. One can interfere with the gesture
by movement, and the other can interfere with the voice by speaking. In this case, the
recognition accuracy may be degraded. Nevertheless, the proposed system is expected
to show better performance than a single sensor system because two different sensors
complement each other. In future work, we will define additional scenarios with two or
more passengers and verify the system. In addition, by applying a method of spotting
voice or gesture commands, we will implement a real-time embedded system.
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