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Abstract: Diabetic retinopathy (DR) is the main cause of blindness in diabetic patients. Early and
accurate diagnosis can improve the analysis and prognosis of the disease. One of the earliest
symptoms of DR are the hemorrhages in the retina. Therefore, we propose a new method for accurate
hemorrhage detection from the retinal fundus images. First, the proposed method uses the modified
contrast enhancement method to improve the edge details from the input retinal fundus images.
In the second stage, a new convolutional neural network (CNN) architecture is proposed to detect
hemorrhages. A modified pre-trained CNN model is used to extract features from the detected
hemorrhages. In the third stage, all extracted feature vectors are fused using the convolutional sparse
image decomposition method, and finally, the best features are selected by using the multi-logistic
regression controlled entropy variance approach. The proposed method is evaluated on 1509 images
from HRF, DRIVE, STARE, MESSIDOR, DIARETDB0, and DIARETDB1 databases and achieves
the average accuracy of 97.71%, which is superior to the previous works. Moreover, the proposed
hemorrhage detection system attains better performance, in terms of visual quality and quantitative
analysis with high accuracy, in comparison with the state-of-the-art methods.

Keywords: medical image processing; hemorrhage detection; retinal fundus image; diabetic retinopathy;
feature fusion; deep learning

1. Introduction

Diabetic Retinopathy (DR) is the major cause of vision impairment and blindness in the
developed nations of age between 21 and 77 years [1,2]. The World Health Organization
(WHO) predicted that in 2030 around 300 million people will suffer from diabetes [3].
The main cause of diabetes is when the pancreas fails or is not fully able to secrete enough
insulin. The persons, who are suffering from diabetes for a longer period of time, have their
retina slowly degenerated [4]. As it progresses, the patient’s vision starts deteriorating
leading to DR. Ophthalmoscopy, fundus photography, or a dilated fundus exam is used
to evaluate the consequences of nature and status of effect on the eyes due to diabetes.
The long-term effects of diabetes are the rapture, leakage, and damage to blood vessels
in the retina, which increases the amount of glucose in the blood and will cause a typical
pathology known as DR [5,6]. Blindness due to DR can be reduced if it is diagnosed in the
early stages by proper screening. However, the monitoring of DR is executed manually
which is time consuming. The automated screening of DR can overcome the manual
screening that can filter out healthy obvious samples and indicates only suspected cases to
ophthalmologists [7,8].

Sensors 2021, 21, 3865. https://doi.org/10.3390/s21113865 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1775-2589
https://orcid.org/0000-0001-9990-1084
https://orcid.org/0000-0002-2809-2213
https://doi.org/10.3390/s21113865
https://doi.org/10.3390/s21113865
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21113865
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21113865?type=check_update&version=1


Sensors 2021, 21, 3865 2 of 21

DR is an eye condition associated with complications of diabetes mellitus [9],
which damages the retinal blood vessel. The automated DR screening results from retinal
fundus images consists of red lesions, micro-aneurysms (MAs), hemorrhages, and bright
lesions exudates [10]. When the lipids and proteins are leaked from the vessel it makes
yellow spots on the retina known as exudate. Exudates have two categories, i.e., hard and
soft exudates, also known as cotton wool spots (CWS) [11]. Hard exudates are visible as a
yellowish with finite edges, sharply defined and appearing shiny in imaging, individually
and collectively. Soft exudates are visible as a whitish with indistinct edges, giving the feel
of diffuse cotton shape. Soft exudates appear due to blockage of nerve fibers that receive
blood supply from the retinal arteries so that the axon’s nerve fibers become enlarged [12].
DR is known to have particular symptoms covering MAs, hemorrhages, soft exudates or
CWS, hard exudates, neovascularization (NV), and macular edema (ME) [13,14].

Currently, there are numerous DR screening approaches for the diagnosis, i.e., color fun-
dus photography and fundus fluorescein angiograms (FFA) to determine pathological
signs [15]. Color fundus photography method is economical and can save the data easily,
therefore it is more appropriate by ophthalmologists for DR screening. Contrastingly,
FFA differentiate better between the MAs and hemorrhages, due to its invasiveness, cost,
and risk of allergic reactions, fundus imaging is the desired method [16]. The DR screening
procedure performed by the ophthalmologists is time consuming, therefore it is deemed
necessary to employ computer-based technology for the automatic detection and analysis
of DR and pathological signs in the color fundus images to make the diagnosis more
accurate and more accessible to people in the remote communities [17,18] as a part of
remote health (telehealth) infrastructure services [19].

Hemorrhages are the early stage lesions of DR. Hemorrhages are placed in the
deep middle layer of the retina and are usually round dark red spots, flamboyant spots,
bright red, linear, and long strip [20]. Hemorrhages normally coexist with MAs, and the
rate of clinical DR is categorized according to the existence and number of these two
lesions. Hence, the accurate hemorrhage detection is essential for the automatic detection
and effectual analysis of DR [21]. Figure 1 illustrates the retinal fundus image marked with
numerous features like blood vessels, optic disc, fovea, macula, hemorrhages, exudates, etc.
Hemorrhage detection is very challenging for early diagnosis of DR because of the variation
in color, size, texture, shape, and also contains similar color contrast with its background.
The detection of hemorrhages is the most challenging task in fundus image analysis.

Figure 1. Colored fundus image marked with important retinal features [12].
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The expert-based DR detection process is time consuming, costly, manual, and requires
extra efforts to run the equipment. The accurate and automatic hemorrhage detection is
never easy in terms of image processing and exhibits several limitations due to the following
reasons [22].

1. Hemorrhages occur in places where the contrast is significantly poor.
2. False hazard because of the existence of blood vessels.
3. Detection performance may vary by disparate sizes of MAs and hemorrhages.
4. Existing DR screening methods are computationally complex and take a longer

processing time to detect the accurate hemorrhages.

Hence, the accurate automatic hemorrhage detection method is needed to take care
of the patients. Regular retinal imaging over a time interval has quickly become the
standard of care for a variety of eye diseases such as glaucoma, diabetes, hypertensive
retinopathy [23], and macular degeneration. Today, computerized diagnostic systems
based on image processing are becoming increasingly popular to make it easier for doctors
and shorten the time of diagnosis [24,25].

To this end, we propose a novel method for the automatic detection of early patholog-
ical signs of DR in diabetic patients namely hemorrhages after the development of MAs,
having the following contributions:

1. A modified Contrast Limited Adaptive Histogram Equalization (CLAHE) method is
used as a preprocessing step to enhance the edge details from the input source images.

2. A novel 3D Convolutional Neural Network (CNN) model for the accurate segmenta-
tion of hemorrhages from the retinal images with high accuracy and early detection.

3. A modified pre-trained VGG19 deep learning architecture is used for feature extrac-
tion, and it performs transfer learning to retrieve the selected datasets.

The proposed algorithm reduces the time it takes for an ophthalmologist to diagnose
hemorrhages, while ensuring reliable detection accuracy. The proposed automatic system
is cost effective and presents accurate results with less processing time.

The remaining paper is structured as follows. Section 2 reviews the prominent related
work on hemorrhage detection and classification. In Section 3, the detailed methodology
of the proposed method is discussed. Section 4 analyses the performance of the proposed
method in comparison with other state-of-the-art methods and, finally, Section 5 concludes
this paper with future research goals.

2. Related Work

Modern healthcare methods actively use retinal fundus images for the diagnosis [26–29].
In this section, we critically review the prominent work on hemorrhage detection from the
retinal fundus images.

Many researchers have worked on the automated detection and classification of the
hemorrhages using retinal fundus images. For example, Tang et al. [20] developed a
method based on splat feature classification to detect the hemorrhages in retinal fundus
images using supervised learning. This method uses the MESSIDOR database and attains
the receiver operating characteristic curve of 0.96. Srivastava et al. [21] presented a frangi
filter to recognize red lesions and blood vessels. These methods can be used on different
scales of patches of different sizes. Each grid is designed with a kernel and multiple
cores with SVM are used to diagnose lesions of different sizes. The proposed method
used 143 images for MAs and hemorrhage detection and obtained the receiver operating
characteristic curve of 0.97 and 0.92, respectively.

Seoud et al. [30] proposed an algorithm for MAs and hemorrhage detection using
color retinal fundus images using dynamic shape features. These features reflect the evolu-
tion of shape during image flooding and can distinguish lesions and vascular segments.
This approach uses the MESSIDOR database and obtained the FROC score and ROC curve
of 0.420 and 0.899, respectively. Wu et al. [31] presented an automatic hemorrhage de-
tection method based on two dimensional gaussian fitting. The image is enhanced using
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contrast enhancement and watershed segmentation is used to extract the hemorrhages.
The two-dimensional Gaussian adaptation is used to extract visual characteristics from a
hemorrhages candidate. This method used the DIARETDB1 database using 219 retinal fun-
dus images and obtained the sensitivity, specificity and accuracy of 100%, 82%, and 95.42%,
respectively.

Mumtaz et al. [32] proposed an automatic hemorrhage detection approach. The noise
is removed through image enhancement and normalization. The blood vessels are seg-
mented from hemorrhages using scale-based methods and finally by using the gamma
correction and thresholding method the hemorrhages are detected. This algorithm used
the DIARETDB1 database and attained a specificity, sensitivity, and accuracy of 84%, 87%,
and 89%, respectively.

Tan et al. [33] developed an approach which automatically detects the exudates and
hemorrhages using convolutional neural networks (CNNs). CLEOPATRA database is used
and has a sensitivity of 0.6257.

Prasad et al. [34] presented a hemorrhage detection method using retinal fundus
images through feature classification by extracting the features using filter bank outputs
and applied gaussian filters on green channel result. Then using the wrapper and filter
approach the final set of extracted features are determined.

Orujov et al. [35] suggested a contour detection based method, which uses Mamdani
(Type-2) fuzzy rules for blood vessel detection in retinal fundus images. The approach has
achieved an accuracy of 0.865, 0.939, 0.950 for the STARE, DRIVE and ChaseDB datasets,
respectively.

Shankar et al. [36] proposed an automated detection of DR using a deep learning
approach. The segmentation based on histogram is used to extract the features and a
synergic deep learning method is used to classify the fundus DR images. This method uses
the MESSIDOR database.

Gadekallu et al. [37] proposed an automated detection algorithm by employing
principal component analysis firefly-based deep learning approach to extract the important
features from the retinal fundus image.

Kumar et al. [38] presented an enhanced technique to detect the hemorrhages using
fundus images. The segmentation method based on watershed transform is used to
segment out the candidate region and radial function neural network is used for the
classification. This method attained a sensitivity and specificity of 87%, 93% respectively.

Joshi et al. [39] proposed a method for the recognition of hemorrhages based on
morphological segmentation and geometrical feature approaches. This method uses the
DIARETDB1 dataset and attains an accuracy of 95.47%.

Qureshi et al. [40] presented the hemorrhage detection method using a multi-layer
framework of neural networks. The convolutional neural network is used to extract the
features to obtain the candidate region. This method attained the average sensitivity of
92.20%, specificity of 95.10%, and classification accuracy of 98%.

Bae et al. [41] proposed an algorithm based on normalized cross-correlation template
matching for the detection of hemorrhages. This method attained a sensitivity of 85%.
Sirajudeen et al. [42] used the multi-scale local binary pattern to obtain the features and
support vector machine to recognize the hemorrhages.

From the literature review, we can conclude that there are still various concerns related
to information extraction to DR detection that need serious attention, such as (i) red lesions
occur in places where the contrast is significantly poor, (ii) false hazard because of the
existence of blood vessels, and (iii) detection performance may vary by disparate sizes of
MAs and hemorrhages.

To resolve these aforementioned problems, we propose a novel hemorrhage detection
algorithm that is elaborated on in the following section.
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3. Proposed Hemorrhage Detection Technique

This section shows our proposed novel approach for hemorrhage detection and classifi-
cation. The proposed method comprises eight phases that include green channel extraction,
contrast enhancement, 3D CNN based segmentation, training models, deep learning fea-
tures, feature extraction using transfer learning, feature selection, and feature fusion and
classification as displayed in the schematic model in Figure 2. These steps are detailed in
the following subsections.

Figure 2. Schematic diagram of the proposed 3D-CNN selection of feature for hemorrhage detection
and classification.

3.1. Green Channel Extraction

Colored retinal fundus images are in imperfect contrast. Therefore, it is very important
to refine the contrast of the images. To find our region of interest (ROI) the color images are
converted into the green channel. The reason for using the green plane is due to the highest
contrast between hemorrhages, blood vessels, optic disc, exudates, and the background as
compared to the blue and red plane. In addition, the red lesions (hemorrhages) and blood
vessels appear dark and the white lesions (exudates) and optic disc appear bright in the
green plane image. Retinal fundus images need to be separated into three channels and we
use only one of them.

The extraction of the red, blue, and green channels of the retinal fundus image is
shown in Figure 3. As displayed in Figure 3a,b it can be observed that the red and blue
channel is not extracting the complete information. The blue channel extracted from the
retinal image has poor contrast and does not contain all the necessary information for
further processing. In the red channel, the vessels in the fundus images are found to be
noticeable, on the other hand, the red channel incorporates much noise or sometimes it
is just saturated. In Figure 3c, the green channel provides full detailed information of the
retinal fundus image. Green channel extraction from the color retinal images provides a
prominent outcome in the contrast of blood vessels as in this channel it darkens the blood
vessels on a bright background. So, in this paper, we have used the green channel for the
detection of hemorrhages.
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(a)

(b)

(c)

Figure 3. Left: the retinal fundus image. Right: (a) Red channel extraction, (b) Blue channel extraction,
(c) Green channel extraction.

3.2. Contrast Enhancement

Contrast enhancement is a main pre-processing step for diagnosis processes [43].
The source retinal fundus image has poor contrast due to inadequate illumination. To en-
hance the low contrast images the histogram equalization approach seems to be a more
effective technique. A modified CLAHE [43] is used to refine the contrast and keep the aver-
age brightness of the input image. CLAHE affects small segments of the image (called tiles).
The contrast of each mosaic is enhanced, rather than the entire image in retinal images,
so the histogram in the output area roughly matches the specified histogram. After level-
ing, adjacent tiles are joined using linear interpolation to remove the artificial boundary.
CLAHE uses a user-defined clipping threshold, which is used to limit the enhancement
when clipping the histogram. The crop level reduces the noise level, and the crop level also
sets the contrast level to improve the histogram. In this paper, we used 0 to 0.01.



Sensors 2021, 21, 3865 7 of 21

Firstly, the source image is divided into non overlapping related regions. The total
number of image tiles is equal to M × N. The histogram of each non overlap related region
is computed to gray levels that exist in the image array. Equation (1) computed the contrast
limited histogram of the non-overlapping related part by clip limit as:

Iavg =
Nx × Ny

Ngray
, (1)

where Iavg is the pixel average number, Ngray is the number of gray levels in the non
overlapping related part, Nx and Ny is the number of pixels in the non-overlapping area
dimensions x and y. The clip limit is calculated in Equation (2) as:

ICL = Nclip × Iavg, (2)

where ICL is the clip limit, Nclip is the normalized clip limit of range between [0, 1].
The pixels are clipped when the number of pixels is greater than ICL. The remaining
average pixels is distributed to each gray level as:

Iavg,gray =
Nwc

Ngray
, (3)

where Nwc represents the whole number of clipped pixels. Move the remaining pixels until
all remaining pixels are linked. The pixel redistribution step is calculated in Equation (4) as:

Istep =
Ngray

Ncr
, (4)

where Ncr is the number of truncated pixels remaining. Furthermore, by using the Rayleigh
transform in each region the intensities values are refined in Equation (5) as:

Iy = Imin +

√
2α2ln

(
1

1− Pin

)
Istep, (5)

where Pin is the cumulative probability which is used to develop transfer function, Imin is
represents the lower bound of pixel values and α is the scaling parameter. The output
probability density of each intensity value is given in Equation (6) as:

Irox =
(Iy − Imin)

α2 .exp

(
−
(Iy − Imin)

2

2α2

)
f orIy ≥ Imin. (6)

Greater value of α shows more notable contrast enhancement in an image, however it
will increase saturation value and amplify the noise levels. By rearranging the output of
the obtained transfer function using linear contrast stretching, the effect of sudden changes
can be suppressed. The linear contrast stretching can be expressed in Equation (7) as:

Ii =
Irox − wmin

wmax − wmin
, (7)

where Irox is the obtained transfer function, wmax and wmin represents the maximum and
minimum transfer function value. Ii is employed to green channel extraction images to
obtain the contrast enhanced images. Contrast enhancement results in improved edges in
the input images.
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Figure 4 illustrates the contrast enhancement from the green channel. From the
images, it can be observed that after applying our modified contrast enhancement method,
the image gradients are greatly enhanced. On completion of this phase, the proposed
method enters the third stage, which is elaborated in the below subsection.

Figure 4. The retinal fundus image for contrast enhancement. Left: Green channel extraction, Right:
Final contrast enhancement.

3.3. 3D CNN Based Segmentation Model

The 3D CNN based framework is proposed for the hemorrhage detection. This ar-
chitecture deals with 3D images for the calculation of features, while passing the input to
other layers in the form of multiple corrections. The architecture of the proposed 3D CNN
is displayed in Figure 5. We take a source image I(x, y) having dimensions M × N × P
where M = 512, N = 512, and P = 3, respectively. N, M, and P represents the row pixels,
column pixel values, and the number of channels which are 3 in this study, respectively.
Given that ξ represents a color block of size 32 × 32 × 3 and V denotes the i-th color block,
the convolutional layer is expressed in Equation (8) as:

ξ
q
i = Ii

[
κ−1

∑
m=1

χm,n
i × ξ

q
i−1 + ϑ

q
i

]
, (8)

where ξ
q
i represents the current layer, χm,n

i denotes the weighted matrix, ξ
q
i−1 represents

the precursory layer, and ϑ
q
i is each patches bias value. The hidden layer of each weighted

matrix χm,n
i is learned and returns a matrix for the 4D kernel. The kernels are linked

together in 4D as: [
ξm,1

i , ξm,2
i , ξm,3

i , ..., ξm,κ−1
i

]
. (9)

After the convolutional layer the ReLu activation feature is used to quickly perform the
training. This function returns the identities of all positive values and zeros for all negative
characteristics. The following expression in Equation (10) provides a more complex image
model that will be used later to better determine the nature of the pixel.

ξi−1 = ξ1
i−1, ξ2

i−1, ξ3
i−1, ..., ξκ−1

i−1 . (10)

In addition, this function helps eliminate the overfitting problem which is mathemati-
cally computed in Equation (11) as:

T = max(0, ξ). (11)
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Figure 5. Architecture of the proposed 3D-CNN for hemorrhage extraction.

Afterwards, a max-pooling layer is down sampled in CNN layers that reduces the
spatial size of the feature map. In our proposed work, two max-pooling layers are created
to reduce the features dimension and remove redundant spatial information as displayed
in Figure 6.

(a) (b)

(c) (d)

(e) (f)

Figure 6. Cont.
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(g) (h)

Figure 6. The retinal fundus image. (a,b) Proposed modification to contrast enhanced images,
(c,d) Background estimated results using OTSU method corresponding to the 1st row, (e,f) Pro-
posed 3D-CNN segmentation results corresponding to the 1st row, (g,h) Extraction of hemorrhages
corresponding to the 1st row.

Like other interpolation methods, i.e., bicubic, bilinear, nearest neighbor, etc., the trans-
posed convolution layer is used for the upsampling. This layer contains numerous pa-
rameters which learned and helped to create a new image. Finally, add a pixel label
classification layer to segment the hemorrhages according to the cross-entropy function
shown in Equation (12).

ψ(ξ, Q) = − 1
V

V

∑
i=1

ln(RQ), (12)

where ξ represents the dimension patches of 32 × 32 × 3, C represents the complementary
true labels, V denotes the i-th patches of an image, and RQ represents the hind probabilities
for actual class Q. On completion of this stage, the proposed method enters the fourth
stage, which is elaborated in the below subsection.

3.4. Training Models

The input layer of patch 32 × 32 × 3 is selected with center normalization of 0.
The first layer of convolution is created, stride is [1 1] and padding is [1 1 1 1]. Afterwards,
the max pooling layer of 2 × 2 added of stride [1 1] and padding [0 0 0 0]. Then a second
convolutional layer is selected of stride [1 1] and padding [1 1 1 1]. The second max pooling
layer is created of stride [2 2] and padding [0 0 0 0]. The detailed description of all the
layers are displayed in Table 1, where the neural network (NN) is trained. To train the NN,
activate the parameters, such as the sigmoid activation function. The minimum batch size
is 64, the learning rate is 0.001, the number of epochs is 100, and a total of 500 iterations
are executed. A ReLu activation function is employed after each networks layer except
the last layer where a sigmoid activation function is employed. The Sigmoid function Sι is
mathematically expressed in Equation (13) and in Equation (14) as:

S = ∑
i=1

πi + ηiχi. (13)

Sι =
1

1 + e−S (14)

The trained CNN is registered as a new network and used in the testing method.
The final achieved results are then improved using morphological operations (opening
and closing). Figure 6 displayed the obtained results of segmentation by using our pro-
posed technique.
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Table 1. Proposed 3D-CNN architecture layers.

Layers Types Number
of Feature
Maps

Kernel Size
to Form
each Feature
Map

Stride Padding

1 Input Layer 3 32 × 32 × 3

2 Convolutional Layer 16 3 × 3 [1 1] [1 1 1 1]

3 ReLU

4 Max Pooling Layer 32 2 × 2 [1 1] [0 0 0 0]

5 Convolutional Layer 32 3 × 3 [1 1] [1 1 1 1]

6 ReLU

7 Convolutional Layer 64 3 × 3 [1 1] [1 1 1 1]

8 ReLU

9 Max Pooling Layer 64 2 × 2 [2 2] [0 0 0 0]

10 Transpose Convolu-
tional Layer

64 4 × 4 [2 2]

11 Convolutional Layer 128 1 × 1 [1 1] [0 0 0 0]

12 Softmax Layer

13 Classification Layer Cross
entropy
loss

On completion of this phase, the proposed method enters the fifth stage, which is
elaborated in the below subsection.

3.5. Deep Learning Features

In this work, the deep learning features were obtained using the pre-trained CNN-
model VGG19 [44]. The VGG19 model is also trained on ImageNet dataset. The motivation
behind choosing this model is that the VGG19 network has learned rich feature repre-
sentations for a wide range of images and the VGG19 model has achieved significant
performance in the image competition. The modified VGG19 contains 16 layers of convolu-
tion, 19 layers of learnable weights, 3 fully connected layers, and output layer, which are
used for the transfer learning. The size of the source image for the modified model is
224 × 224 × 3. The first convolutional layers are 1 × 1 × 64 and 3 × 2 × 3 × 64 for the
bias and learnable weights. For the first convolution layer, the total learnable weight is
1792 and for second the learnable weight are 36,928. This layer extracts local features from
the image.

Hι = Sι +
M−1

∑
n=1

ηι,n × ϕM−1
m , (15)

where Hι represents the output layer. Sι denotes the bias value, ηι,n denotes the k-th feature
value of map filter, and ϕm is the output layer of M− 1.

The weights and the bias that can be learned from the first fully connected layer are:
4096 × 25,088 and 4096 × 1. A dropout layer is created among the fully connected layers,
and the compression ratio is 50%. The total number of learnable features in fully connected
layers 7 is 16,782,313, and the weights that can be learned are 4096 × 4096. In the final
fully connected layer, the total learnable numbers are 4,097,000 and the learning weight is
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1000×4096. Therefore, when activated, a feature map vector of size 1 × 1 × 1000 is returned.
The perfect combination of layer 1 and layer 2 results in a map vector size of 1 × 1 × 4096.

On completion of this phase, the proposed method enters the sixth stage, which is
elaborated in the below subsection.

3.6. Feature Extraction Using Transfer Learning

The transfer learning based feature extraction is used to retrain the modified VGG19
based CNN model on our datasets. The modification to the VGG19 architecture is displayed
in Figure 7. The input and output convolutional layers are determined as feature mapping.
The 55:45 (training:testing) strategy is used with labeled data. The first layer of convolution
is selected as input, and fully connected layer 7 as output. After completing the activation
of CNN, we acquired the training and testing vectors. The training and testing vector are
used in the next process of feature fusion. The final feature vector is achieved with the size
1 × 4096 on the fully connected 7 feature layer.

Figure 7. The modified VGG19 architecture for the features extraction.

On completion of this phase, the proposed method enters the seventh stage, which is
elaborated in the below subsection.

3.7. Feature Selection

The feature selection is used to achieve improvement in the accuracy of classification,
eliminate the redundancy between features and pass only robust features for accurate
classification, and help us to reduce the number of predictions and complete the testing
process faster. The Multi Logistic Regression Controlled Entropy Variance (MRCEV) [45]
approach is used for feature selection. The partially derived based activation function is
utilized to remove inconsequential properties and transfer the remaining trusted properties
to the entropy distribution function. This will be a new vector with only positive values.
The mathematical expression is computed in Equation (16) and in Equation (17) as:

`i =
n

∑
k=1

∂i,k$k, (16)

s(τ|υ) = exp(`i)

∑l
k=1 ∂i,kexp(`i)

, (17)

where τ represents the corresponding labels and τεR and υ is the probability of i-th class.
The regression parameter `i = `0,`i1,`2,...,`n−1 is acquired by reducing the possibility of
negative properties.

If the features are independent, the polynomial distribution is calculated as:

RΨ = −
m

∑
j

n

∑
i=1

τilns(τ|υ), (18)

T(=) = RΨ + ∂R�, (19)
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R� =
k

∑
j=1
|`i|, (20)

where `i is the regularization parameter which is connected to obtain the sparse model and
R� denotes the function called entropy variance.

We pass the selected features to this function to clearly distinguish all features for
classification. On completion of this phase, the proposed method enters the final and eighth
phase, which is elaborated in the following subsection.

3.8. Feature Fusion and Classification

This is the hot topic in the application area of pattern recognition. Finally, the Convo-
lutional Sparse Image Decomposition (CSID) fusion method [46] is used to concatenate
the feature vectors selected in the matrix to acquire a feature vector for the classification.
The final fusion is computed in Equation (21) as:

ςr,s = minζr,s

1
2

∥∥∥∥∥R� −
Sq

∑
s=1

hq,s ∗ ζq,s −
Ur

∑
u=1

hr,s ∗ ζr,s

∥∥∥∥∥
2

2

+ λr

St

∑
s=1
||ζq,r||1. (21)

Continue this process until all pairs have been compared. ςr,s is the final fused vector.
This step is time consuming but our main aim is to improve the accuracy. The fused vector
is further used for the final classification using an extreme learning machine (ELM) [47].
The formulation of ELM is computed in Equation (22) as:

V

∑
j=1

ΥjΠj(χj) =
V

∑
i=1

ΥjΠ(χjχ(k) + Wν), (22)

where V represents the hidden layers, Υj represents weighted output vector, χj represents
the weighted input vector, and Wν represents the offset value. We further minimize the
function to enhance the stability of ELM as computed in Equation (23):

min
1
2

Υj +
1
2

x
M

∑
j=1
||φj||2, s.t.Υy = 0, Υy(χj) = uj − φj, (23)

where x represents the penalty parameter, φj represents the errors in training, and uj
represents samples corresponding labels.

4. Performance Evaluation
4.1. Environment and Datasets

The proposed method is compared with some of the other techniques to clarify the
efficacy and the perfection of the algorithm. The experiments are executed on a laptop
with a Intel(R) Core(TM) i7− 9750H 2.6 GHz processor with 12 GB RAM. All models
are developed and experiments are implemented in TensorFlow v1.12 and trained on the
NVIDIA GeForce GTX 1650 GPU.

To evaluate the performance of our proposed system for hemorrhage detection,
we used High Resolution Fundus Image (HRF) [48], Digital Retinal Images for Vessel
Extraction (DRIVE) [49], STructured Analysis of the Retina (STARE) [50], MESSIDOR [51],
DIARETDB0 [52], and DIARETDB1 [53] databases. In this experiment, we used total of 1509
color fundus images, in which HRF dataset contain 30 images of dimension 3304 × 2336
pixels, 40 images are taken from the DRIVE dataset of size 565 × 584 pixels, 20 images from
the STARE dataset of size 700 × 605 pixels, 1200 images from the MESSIDOR dataset of
resolution 1440 × 960, 130 images from the DIARETDB0 dataset of size 1500 × 1152 pixels,
89 images from the DIARETDB1 dataset of resolution 1500 × 1152 pixels.
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The testing dataset is classified into two classes, i.e., healthy images and DR images
identified by given datasets specialist ophthalmologists, who split the 1509 images showing
hemorrhages into 573 images. When the proposed method was tested on healthy images,
no hemorrhages was detected. Table 2 shows a complete description of all used datasets.
Figure 8 shows an example of digital retinal imaging with hemorrhages present.

Table 2. Complete description of database.

Database Number of Images Normal DR

HRF 30 15 15

DRIVE 40 33 7

STARE 20 12 8

MESSIDOR 1200 851 349

DIARETDB0 130 20 110

DIARETDB1 89 5 84

Total Images 1509 936 573

Figure 8. Example of a retinal image with hemorrhages. The color bars show the relative intensity of
the image.

4.2. Performance Evaluation Criteria

The results of our proposed method are analysed using several metrics, i.e., accuracy
(Acc), sensitivity (Sn), specificity (Sp), Area under Receiver Operating Characteristic (ROC)
curve also known as Area Under Curve (AUC), Positive Predicted Value (PPV) and F1
score (F1). These parameters are used to compare the performance of the proposed system
with other algorithms. These metrics are defined as follows:

Acc =
(TP + TN)

(TP + FP + TN + FN)
× 100%, (24)

Sn =
TP

(TP + FN)
× 100%, (25)
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Sp =
TN

(TN + FP)
× 100%, (26)

PPV =
TP

(TP + FP)
× 100%, (27)

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

, (28)

where TP stand for True Positive values, TN stand for True Negative values, FP stand for
False Positive values, and FN stand for False Negative values.

4.3. Results and Discussion

The proposed method is performed using different evaluation metrics such as Acc,
Sn, Sp, PPV, and F1. A total of 1509 retinal fundus images are used using six different
databases. The evaluation of the proposed system is performed for the detection of the
hemorrhages. The results are also compared with some existing state-of-the-art methods for
each dataset to check superiority and effectiveness. Each experiment is replicated 10 times
and their mean results are considered. Table 3 displayed the results of hemorrhage detection
using different datasets. HRF and DRIVE mainly have normal subjects and contain good
quality images therefore the proposed method showed 100% results. Although using other
datasets, the accuracy of our proposed method is still above 95%.

Table 3. Summary of hemorrhage detection.

Database Test Images Correctly Detected Accuracy (%)

HRF 15 15 100

DRIVE 40 40 100

STARE 20 19 95

MESSIDOR 349 347 99.42

DIARETDB0 110 105 95.45

DIARETDB1 84 81 96.42

Total 618 607 98.22

Table 4 displays the quantitative comparison of our proposed system with other state-
of-the-art methods and it can perceive that the proposed method outperforms the other
algorithms even for a large dataset. By comparison the results obtained by Tang et al. [20]
shows better performance than the remaining algorithms as it has the sensitivity of 93%,
Tan et al. [33] has the specificity of 96.93% which is even better than the remaining meth-
ods, and Qureshi et al. [40] has the highest accuracy of 98% but the proposed system
outperforms all the other state-of-the-art algorithms and shows the sensitivity of 97.54%,
specificity of 97.89%, and accuracy of 98.22% using HRF, DRIVE, STARE, MESSIDOR,
DIARETDB0, and DIARETDB1 datasets. Our proposed system has attained high values of
sensitivity, specificity, and accuracy when compared with other methods as highlighted in
bold text. The reason for the enhancement is the use of the modified contrast enhancement
algorithm, 3D CNN based model for the segmentation, feature extraction using transfer
learning, and feature fusion and classification which are not used by other authors. The de-
tection of the hemorrhages is much better than existing methods because of the proper
modeling of the hemorrhages rather than just detecting the dark region from the retinal
fundus image.
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Table 4. Performance comparison between our proposed method and other algorithms for diabetic
retinopathy detection. N.A—the data is not provided.

Authors Datasets Method Sensitivity Specificity Accuracy

Tang et al. [20] MESSIDOR Splat feature 93% 66% -

Mumtaz et al. [32] DIARETDB1 Scale based 84% 87% 89%

Tan et al. [33] CLEOPATRA CNN 62.57% 96.93% -

Qureshi et al. [40] EyePACS ADL-CNN 92.20% 95.10 98%

García et al. [54] MESSIDOR Four neural
network

86% - 83.08%

Sinthanayothin et al.
[55]

- Moat operator 77.5% 88.7% -

Acharya et al. [56] - Simple mor-
phological
operations

82% 86% -

Zhang et al. [57] DIARETDB1 Multi-scale
correlation
filtering

88.1% 89.3% 90.6%

Saleh et al. [58] - Decision sup-
port

87.53% 95.08% -

Our Proposed
Method

HRF, DRIVE,
STARE, MES-
SIDOR, DI-
ARETDB0,
and DI-
ARETDB1

3D CNN 97.54% 97.89% 98.22%

The performance of our proposed system is also demonstrated using Confusion Matrix
and ROC curves. The confusion matrix of HRF, DRIVE, STARE, MESSIDOR, DIARETDB0,
and DIARETDB1 datasets is shown in Figure 9. AUC is also a main quantitative metric
that is acquired from ROC curves. The ROC curves plot against the false-positive rates
(1-specificity) and true positive rate (sensitivity) by controlling the threshold values of
the acquired probability maps which are used to get the hemorrhages. The AUC values
are evaluated for the HRF, DRIVE, STARE, MESSIDOR, DIARETDB0, and DIARETDB1
datasets. The ROC curve plot is shown in Figure 10.

Grading results of hemorrhage detection (with statistical 95% confidence intervals) are
given in Table 5. The table displayed data from the aforementioned datasets (HRF, DRIVE,
STARE, MESSIDOR, DIARETDB0, and DIARETDB1). The proposed system gives PPV,
F1 and AUC of 99.99%, 99.98% and 99.99% on HRF, 99.98%, 99.97% and 99.98% on DRIVE,
95.12%, 95.03% and 95.04% on STARE, 99.38%, 99.41%, and 99.42% on MESSIDOR, 95.53%,
95.45% and 95.46% on DIARETDB0, and 97.46%, 96.46% and 96.45% on DIARETDB1
databases, respectively.
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Figure 9. Confusion matrices for retinal HRF, DRIVE, STARE, MESSIDOR, DIARETDB0, and DI-
ARETDB1 datasets.

Figure 10. Receiver operating characteristic (ROC) plot for retinal HRF, DRIVE, STARE, MESSIDOR,
DIARETDB0, and DIARETDB1 datasets.
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Table 5. Hemorrhage detection results with 95% confidence interval (CI).

Database Sensitivity (%) Specificity (%) Accuracy (%) PPV (%) F1 Score (%) AUC (%)

HRF 99.98
(99.96–99.99)

99.98
(95.96–99.99)

99.98
(99.97–99.99)

99.99
(99.98–99.99)

99.98
(99.95–99.99)

99.99
(99.97–99.99)

DRIVE 99.97
(99.96–99.98)

99.97
(99.94–99.98)

99.97
(99.94–99.98)

99.98
(99.96–99.99)

99.97
(99.95–99.98)

99.98
(99.97–99.99)

STARE 94.96
(94.92–94.98)

95.11
(95.07–95.15)

95.04
(95.01–95.07)

95.12
(95.08–95.16)

95.03
(95.00–95.07)

95.04
(95.02–95.06)

MESSIDOR 99.45
(99.42–99.47)

99.38
(99.35–99.41)

99.42
(99.39–99.45)

99.38
(99.36–99.41)

99.41
(99.39–99.43)

99.42
(99.40–99.43)

DIARETDB0 95.39
(95.36–95.42)

95.52
(95.50–95.55)

95.46
(95.43–95.49)

95.53
(95.51–95.55)

95.45
(95.42–95.47)

95.46
(95.43–95.48)

DIARETDB1 95.49
(95.45–95.54)

97.40
(97.44–97.37)

96.43
(96.40–96.46)

97.46
(97.44–97.49)

96.46
(96.49–96.43)

96.45
(96.42–96.47)

4.4. Computational Efficiency

Table 6 shows the time execution (in seconds) for each dataset image. Previous meth-
ods often have failed to provide the computational efficiency of their proposed approaches.
The results displayed in Table 6 reveal that the execution of our proposed method takes
16.78 (s) for HRF, 15.87 (s) for DRIVE, 16.01 (s) for STARE, 17.54 (s) for MESSIDOR, 16.44 (s)
for DIARETDB0, and 15.46 (s) for DIARETDB1 databases. However, authors of [20,33] re-
quired 18 (s) and 37.5 (s), respectively, to detect the hemorrhages. The study [20] used a com-
puter equipped with a two-core Intel X9650 processor running at 3.00 GHz. The study [33]
used a computer with Intel Xeon 2.20 GHz (E5-2650 v4) processor and 512GB RAM.
This study used a laptop with an Intel(R) Core(TM) i7− 9750H 2.6 GHz processor. So the
computer equipment was comparable (according to https://www.cpubenchmark.net/
(accessed on 29 May 2021), our computer’s CPU performance is similar to CPU used in
[33], but better than CPU used in [20]). Since our main aim is to enhance the visualization
to detect the hemorrhages, we will aim to further reduce the execution time in future work.

Overall by comparison the proposed method exhibits improved performance towards
the detection of the hemorrhages. The proposed method can be used for real-time evalua-
tion and help the ophthalmologists in automated retinal image analysis.

Table 6. Computational time for hemorrhage detection.

HRF DRIVE STARE MESSIDOR DIARETDB0 DIARETDB1

Time (in sec-
onds)

16.78 15.87 16.01 17.54 16.44 15.46

5. Conclusions

Various hemorrhage detection methods have been presented to extract hemorrhage
localization that is used to improve the medical analysis of retinal images. However,
these methods have numerous shortcomings, such as hemorrhages occurring in image
locations where the contrast is poor, false alert because of the existence of blood vessels,
and detection performance may vary by disparate sizes of MAs and hemorrhages.

This paper aimed to resolve the aforesaid concerns by the proposed 3D CNN based
segmentation model for hemorrhage detection and classification. Firstly, the input retinal
image is preprocessed using the modification to the legacy CLAHE method. Then by
using the proposed 3D CNN based architecture the hemorrhages are detected from the
retinal image and the transfer learning based feature extraction is used to retrain the
modified VGG19 based CNN model. Afterwards, the features are selected using the
MRCEV algorithm, and the ELM classifier is utilized to detect hemorrhages.

The proposed method was applied to 1509 color fundus images from the six (HRF,
DRIVE, STARE, MESSIDOR, DIARETDB0, and DIARETDB1) datasets, and achieved an
accuracy of 99.98%, 99.98%, 95.12%, 99.38%, 95.53%, and 97.46% respectively. Moreover
our proposed method provides visually pleasant and high-quality results and is more

https://www.cpubenchmark.net/
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efficient for the automatic detection of the hemorrhages and outperforms other methods.
The hemorrhages are detected accurately with less amount of computation time, and the
proposed method produces superior results.

In the future, the proposed system will be further analyzed and improved for other
application areas of biomedical image processing such as breast cancer and brain tu-
mour detection.
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Eye Res. 2018, 67, 1–29, doi:10.1016/j.preteyeres.2018.07.004.

13. Abràmoff, M.D.; Garvin, M.K.; Sonka, M. Retinal Imaging and Image Analysis. IEEE Rev. Biomed. Eng. 2010, 3, 169–208.
14. Assem, M.; Glasser, M.F.; Van Essen, D.C.; Duncan, J. A Domain-General Cognitive Core Defined in Multimodally Parcellated

Human Cortex. Cereb. Cortex 2020, 30, 4361–4380, doi:10.1093/cercor/bhaa023.
15. Hood, D.C.; Raza, A.; de Moraes, C.G.V.; Liebmann, J.M.; Ritch, R. Glaucomatous damage of the macula. Prog. Retin. Eye Res.

2013, 32, 1–21, doi:10.1016/j.preteyeres.2012.08.003.
16. Rahim, S.S.; Palade, V.; Shuttleworth, J.; Jayne, C. Automatic screening and classification of diabetic retinopathy and maculopathy

using fuzzy image processing. Brain Informatics 2016, 3, 249–267, doi:10.1007/s40708-016-0045-3.
17. Solomon, S.D.; Chew, E.; Duh, E.J.; Sobrin, L.; Sun, J.; VanderBeek, B.L.; Wykoff, C.C.; Gardner, T.W. Diabetic Retinopathy:

A Position Statement by the American Diabetes Association. Diabetes Care 2017, 40, 412–418, doi:10.2337/dc16-2641.



Sensors 2021, 21, 3865 20 of 21

18. Hyun, C.M.; Baek, S.H.; Lee, M.; Lee, S.M.; Seo, J.K. Deep learning-based solvability of underdetermined inverse problems in
medical imaging. Med. Image Anal. 2021, 69, 101967, doi:10.1016/j.media.2021.101967.

19. Vanagas, G.; Engelbrecht, R.; Damaševičius, R.; Suomi, R.; Solanas, A. eHealth Solutions for the Integrated Healthcare. J. Heal. Eng.
2018, 2018, 3846892, doi:10.1155/2018/3846892.

20. Tang, L.; Niemeijer, M.; Reinhardt, J.M.; Garvin, M.K.; Abramoff, M. Splat Feature Classification With Application to Retinal
Hemorrhage Detection in Fundus Images. IEEE Trans. Med. Imaging 2012, 32, 364–375, doi:10.1109/tmi.2012.2227119.

21. Srivastava, R.; Duan, L.; Wong, D.W.; Liu, J.; Wong, T.Y. Detecting retinal microaneurysms and hemorrhages with robustness to
the presence of blood vessels. Comput. Methods Programs Biomed. 2017, 138, 83–91, doi:10.1016/j.cmpb.2016.10.017.

22. Frame, A.J.; Undrill, P.E.; Cree, M.J.; Olson, J.A.; McHardy, K.C.; Sharp, P.F.; Forrester, J.V. A comparison of computer based
classification methods applied to the detection of microaneurysms in ophthalmic fluorescein angiograms. Comput. Biol. Med.
1998, 28, 225–238, doi:10.1016/s0010-4825(98)00011-0.

23. Ramasamy, L.K.; Padinjappurathu, S.G.; Kadry, S.; Damaševičius, R. Detection of diabetic retinopathy using a fusion of
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