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Abstract: Foreign Object Debris (FOD) refers to any foreign material on the airfield that may injure
and threaten the aircraft and airport system. Due to the complex background on the airfield pavement
and weak target echoes in long-distance monitoring, it is not easy to detect objects of various types
and sizes. The existing FOD radar system’s detection method has a short effective range, and the
detectable objects’ radar cross-section intensity is no less than −20 dBsm. In this paper, we propose
an integrated FOD automatic target detection algorithm for millimeter-wave (MMW) surveillance
radar to improve small target detection under long-range conditions of over 660 m. The signal
form of FOD and a clutter model of ground clutter received by millimeter-wave radar are primarily
utilized and established theoretically. The runway edge detection means that it is employed based
on the in-continuity features as the runway region of interest during the automatic extraction
step. Following the clutter map constant false alarm detection algorithm, we utilize a time-domain
algorithm that functions as the vital detection processor. Moreover, an explicit definition of the FOD
detection performance is developed in a characteristic quantitative way. This criterion involves an
absolute reference value for all FOD radar systems. The well-designed FOD frequency-modulated
continuous-wave MMW surveillance radar is utilized, and actual experiments are carried out in
a real airport in Beijing, China. The results validate the proposed method’s effectiveness and the
superior performance of FOD target detection in long-range situations.

Keywords: FOD; automatic target detection; millimeter-wave radar; clutter modeling; clutter map
CFAR; long-distance detection

1. Introduction

Foreign Object Debris (FOD) at an airport includes any objects found in an inappropri-
ate location that may damage equipment or poses risks to aircraft or airfield personnel [1,2].
According to a conservative estimate, the annual global loss caused by FOD to the aviation
industry is approximately USD 3 to 4 billion [3]. FOD has become the most common threat
to aviation security, second only to the hazards posed by birds. Following the International
Civil Aviation Organization’s recommendations, the explicit inspection of runways must
be performed at least four times per day [4]. While this strategy is not efficient, with high
time consumption and costs associated with the manual inspection, an automated FOD
detection system could provide an inspection tool that is 100% effective in guaranteeing
the security of all flights.

The Federal Aviation Administration (FAA) classifies FOD programs into four areas [5]:
detection, removal, evaluation, and prevention. Detection is the most critical part, and
advanced sensor systems are developed to detect even millimeter-sized targets on the
airfield. Typical examples of FOD include aircraft parts, twisted metal strips, metallic
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cylinders, spheres, screws, golf balls, plastic products, and so on. The above systems
mainly realize FOD detection through radars and optical–electronic combinations.

At present, in terms of FOD detection system resolution, there are four representative
and mature detection systems utilized worldwide [6–9]. They are Tarsier by QinetiQ, a
frequency modulation continuous-wave radar deployed at Southampton and Vancouver
airport; FOD Finder by Trex, a millimeter-wave (MMW) radar with a video camera that
covers a 180 m range with high-speed turnoffs, which is deployed at Boston airport in the
United States; FODetect by Xsight, an MMW radar and optical NIR illumination sensor
used in Israel; iFerret by Stretch, a camera that can perform image processing under clear
weather conditions at airports in Singapore; iFerret, which uses a high-fixed-resolution
camera for foreign object detection. The remainder all take MMW radars as the primary
detection sensors. While optical equipment will be weakened in inclement weather, radars
can provide all-time and all-weather inspection for runways. In comparison, MMW radar
is applied with minimal disruption to airport operations and robustness to hazardous
weather, even in drizzling rain or light snow conditiona. The FOD finder can only detect
targets as short as 2.5 cm × 2.5 cm (diameter × height), and its detection probability is the
highest among the three MMW radar systems. Therefore, effective small target detection
under long-distance conditions is an ongoing challenge.

To solve the FOD detection problem, researchers have proposed several practical
algorithms recently. The algorithms are based on different sensors, including video cam-
eras, active FMCW radar, and wide-band MMW radar, which could achieve good results
under different weather conditions. Researchers mainly focus on image processing and
radar signal processing. Traditional image processors utilize statistical and texture features,
which often include a de-nosing filter. Gabor, bilateral filters, and texture segmentation
are performed [10]. The constitutional neural network (CNN) algorithm [11,12] consists of
a region proposal network and spatial transformer network. It utilizes a CNN classifier
that can distinguish between screws and stones, while its target images have an average
coverage of 80× 80 pixels. The multi-directional, multi-scale weighted morphology FOD
image de-noising method [13] can be applied by adjusting the structuring element. How-
ever, images obtained at night or in inclement weather are not ideal due to the influence
of brightness and aliasing. In long-range scenarios, the targets would occupy only a few
pixels; this is an insufficient coverage size to achieve acceptable performance.

In radar signal processing methods, the constant false alarm rate (CFAR) detection
methods and some classification methods for detection are commonly used as FOD detec-
tion processors [14,15]. The CFAR algorithm comprises two kinds of resolution: spatial-
domain and time-domain management. The Cell Average (CA) method has good detection
performance with a homogeneous background; the The Greatest Of (GO) method works
better at the clutter edges; the The Smallest Of (SO) method is best suited under condi-
tions involving the appearance of many adjacent targets. The time-domain representative
method Clutter Map (CM) CFAR algorithm could estimate the clutter power through mul-
tiple self-iterations [16,17]. As for classifiers, researchers have proposed a support vector
domain description (SVDD) classifier with particle swarm optimization to detect [18]. It
aims to gain high performance in detecting targets as small as a 2 cm metal ball within
50 m range. Though it serves as an MMW radar system, its process relies little on the
extraction features; thus, the first-order and second-order central moment are utilized in
the paper. This kind of processing algorithm is supervised detection, and the dataset is
often unbalanced because the positive samples of FOD are far fewer than the negative
samples of background. Another similar work used a higher-order statistic and SVDD
classifier to improve the detection of five golf balls within a 70 m range [19,20]. The second-
order central moment and fourth-order cumulants are fed to the classifier, which helps to
distinguish false alarms among the detection candidates. Typical FOD RCS measurements
are necessary for the design and data processing in a millimeter-wave radar system [21–25].

The background clutter severely deteriorates the target echoes, and this in turn in-
terferes with the FOD detection process. The clutter inevitably restricts the performance
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of ground-based surveillance radar. At a long inspection distance, the grazing angle of
the radar line of sight trails off. The Tarsier developer suggests an optimal grazing angle
of around 2 degrees [26]. There are several interrelated clutter analyses for FOD systems.
Researchers took into consideration a low grazing angle scenario and long-distance condi-
tions of up to 200 km [27]. Their model comprised Rayleigh distribution as the amplitude
modeling and Gaussian distribution for the power spectrum density, whereas simulated
data of only four types of terrain relief were included and the resolution range of the
results was not high in this work. In addition to the statistical approach, there are also zero
memory nonlinear methods, such as the Weibull distribution model, and spherically invari-
ant random process methods, such as the K distribution model [28]. Although geometric
relationships are considered, this study lacks actual data to verify its validity. Reference [29]
presented a new method for measuring the full-polarization scattering intensity of different
road surfaces using a millimeter-wave radar. It is suitable for scenes with large elevation
angles, but it is not suitable for settings with a low grazing angle. The comparison of
various road surfaces was carried out using backscatter coefficients.

The valid inspection of the detection system results in a settlement plan and simul-
taneous work efficiency. As for a video monitoring system relying only on optical image
processing, the iFerret system can detect targets of a height no shorter than 4 cm and
it is restricted in terms of the weather conditions. As for the outstanding MMW radar
systems, they have the capacity to detect FOD with a minimum radar cross-section (RCS)
of −20 dBsm and a different coverage range of less than 300 m. Only the Tarsier claims up
to a range of 2 km [26] without quantitative detection details. The RCS parameter is also an
essential factor to consider as a reference for an FOD detection system. The critical factor of
the inspection range is determined by many factors, e.g., system SNR, antenna, target RCS,
and signal processing parameters. Therefore, it represents a promising means by which to
improve the capacity of low RCS targets in long-distance detection application scenarios.

In this paper, we achieved the automatic target detection of remote and small debris
on airfield pavements for an FOD surveillance radar. The process flowchart is presented in
Section 3. It comprises runway ROI extraction based on signal form analysis, background
clutter map establishment in the time domain, observation data registration, and clutter
map detection processing. The experiment was carried out in an actual civil airfield runway
in Beijing, China. Then, we measured the methods’ performance, and our designed FOD
MMW surveillance radar presented an inspection radius of over 660 m of the runway
distance. Rather than performing qualitative evaluation of the results, we assessed the
performance with our explicitly defined evaluation indicators. It was validated that the
method performs well to detect golf balls in long-range monitoring. The comparison results
also demonstrated the superiority and explicitness of the proposed method.

A preliminary work of this paper was presented in [30,31]. The highlights and poten-
tial extensions of this paper can be summarized as follows.

1. An end-to-end automatic FOD detection resolution for the MMW surveillance radar
is developed. It aims to resolve the difficulty of long-distance detection for smal-sized
and typical low RCS targets such as golf balls.

2. The runway region of interest (ROI) extraction algorithm is employed based on
the edge features of the background clutter model. The ROI zone can improve the
efficiency and concentrate on the meaningful detection area.

3. The time-domain detection constant false alarm ratio processor is utilized and it per-
forms better in terms of its higher detection probability, lower false alarm probability,
and robustness of the airfield scenario.

4. An explicit criterion definition is demonstrated to evaluate the performance of the
FOD detection system. Together with actual experiments in a real airport in Beijing,
the proposed method is evaluated and discussed in detail.

The rest of this paper contains six main sections. In Section 2, the overall FMCW signal
form and clutter modeling are given in detail, providing information for further automatic
target detection. In Section 3, the runway ROI auto-extraction algorithm is employed
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based on in-continuity features of the clutter model, and the clutter map CFAR detection
processor is utilized on account of the FMCW signal form of FOD targets. Section 4 further
analyzes the experimental results and discusses the performance evaluation of our method.
Section 5 provides a discussion of different target detection methods and their features
regarding the defined criterion. Lastly, in Section 6, we briefly conclude this paper and
provide some research directions for our future work.

2. FMCW Signal Form and Clutter Modeling

The FMCW scheme and clutter modeling aimed at runway and grasslands are utilized
for millimeter-wave FOD surveillance radar systems. While the advantages of the FMCW
application include its lower peak power compared to the pulse radar, the reduced costs,
and low-profile hardware. Moreover, millimeter-wave radar has a large resolution range
that reaches to centimeters and high sensitivity to targets. Considering the FOD system’s
illumination geometry and scattering coefficient, we established a complex envelope of the
airfield clutter model.

2.1. Signal Form of FMCW Radar

In every sweep cycle, the FMCW signal emitted by the FOD detection radar is per-
formed as:

s(t) = A exp
[

j2π

(
fct +

1
2

ut2
)]

(1)

where A is the envelope form, fc is the carrier frequency, u = Br/Tr is the frequency
modulation ratio, also known as the sweeping slope. Br is the bandwidth of the continuous
wave, and Tr is the duration of a single frequency sweep. For a stationary target on
the airfield runway, the received echo signal of radar after the target reflection can be
expressed as:

sr(t) = Kσ A exp
{

j2π

[(
fc(t− τ) +

1
2

u(t− τ)2
)]}

(2)

where Kσ is the reflection coefficient related to the target RCS and τ = 2R/c is the two-way
time delay for a certain FOD target located in the range R. Submitting τ into the above
Equation (2), the form is revised as follows:

sr(t) = Kσ A exp
{

j2π

[(
fct +

1
2

ut2
)]}

exp
[
−j2π

(
u

2R
c

t− u
2R2

c2 +
2R
λ

)]
(3)

The echo signal is processed by down-conversion with the transmit signal filtering
process; then, the beat frequency form is performed as:

sr(t) = Kσ A2 exp
[
−j2π

(
u

2R
c

t− u
2R2

c2 +
2R
λ

)]
(4)

Performing an N point fast Fourier transform (FFT) on Equation (4), the signal fre-
quency is characterized as:

Sr(n) = Kσ A2N sin c
(

n− 2uR
c

N
fs

)
exp

[
−jπ N−1

N

(
n− 2uR

c fs
N

N−1

)]
exp

[
j2π
(

u 2R2

c2 − 2R
λ

)] (5)

where fs is the sample frequency, sinc(x) = sin(πx)/(πx) and n = 1, 2, 3, ..., N − 1,
whereas the range of the FOD target can be estimated from the spectrum of the Sr(n)
signal form.

A single beat frequency denoting fbeat = 2uR/c. Thus, the distance of each FOD
can be obtained via R =

(
c fbeat

2u

)
. The returned echo also contains noise components and

clutter components.
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2.2. Ground Clutter Modeling

As in our previously published work [30], clutter modeling in the airfield runway
scenario comprises the non-Rayleigh distributed amplitude of clutter and the Gaussian
distribution as the power spectrum density. It is based on the backscattering coefficient
spatial correlated model; the long-range detection condition leads to a low grazing angle
and FOD millimeter-wave radar format. In detail, the considered surface features are
grassland and regular runway. We utilize Weibull distribution as the runway clutter
amplitude and log-normal distribution as the grassland clutter amplitude.

There are two main types of FOD radar observation scenarios, namely airfield runway
and nearby grass. Specifically, the grassland has non-homogeneous properties and the
runway terrain is a quasi-smooth concrete surface. The surveillance radar system is
expected to have a longer detection region, and the height of the equipment is strictly
limited by the security rules. These combined factors lead to a small grazing angle when
processing long-range detection conditions. It is vital to take into account the clutter
scattering density and concise geometry relations. As shown in Figure 1, R1 is the distance
from the near edge of the runway to the radar’s location, R2 is the breadth of the airfield
pavement, θaz denotes the azimuth scanning angle, φ represents the pitching beamwidth,
and θ expresses the grazing angle.

Figure 1. Geometry of FOD radar system.

Considering the relationship between the radar antenna pattern and the clutter distri-
bution scenario, the radar backscattering intensity in every two-dimensional resolution
unit is defined as:

σ = σ0 As (6)

The intensity comprises the normalized backscatter coefficient and two-dimensional
resolution cell. To go one step further, the resolution cell can be divided into the wave
beamwidth part, determined by the antenna pattern, and the slant range part. Projected
onto the plane of the ground moment, the basic clutter resolution cell is demonstrated as:

As = ∆R sec(θ)Rθaz =
c

2B
sec(θ)Rθaz (7)

where θaz denotes the azimuth beamwidth related to the antenna pattern. B represents
the bandwidth of the signal form. θ expresses the grazing angle, which also equals the
supplementary angle of the incident angle of the radar irradiation direction.

The received signal intensity is determined by the backscattering characteristics of
different scenes and surface types—refer to the backscatter coefficient model proposed
by Kulemin [32]. Through collecting a large amount of experimental data, this model is
appropriate for the frequency range of 3–100 GHz and a grazing angle of no more than
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30 deg. As for different pavement surfaces, it can be applied to several common types,
including rough with and without vegetation, quasi-smooth concrete, and city areas. The
backscatter coefficient is expressed in the form:

σ0 = A1 + A2 logϕ/20 + A3 log f /10 (8)

where f denotes the carrier frequency in GHz form. ϕ is the grazing angle in degree form.
The values of the A1 − A3 coefficients for various surfaces are given in [30,32].

Modeling for complex scattering zones, we consider the Weibull and log-normal
distribution as the clutter amplitude model. Existing test data have proven that the
amplitude of ground clutter does not take the form of Gaussian or Rayleigh distribution [33].
Therefore, the long-tailed distribution is preferred to be used when describing the clutter
amplitude. With consideration of the fact that the grassland fluctuations are much more
severe than those of runways, the Weibull distribution is applied for the runway surface
amplitude form. The actual experimental data also could be utilized to adjust these two
kinds of distribution parameters.

3. Automatic Target Detection Method

With our proposed method, the clutter map was the critical detection processor. The
flowchart of automatic FOD detection processing is shown in Figure 2. We adopt the point
clutter map technique without spatial reference cells. We also realize the two-dimensional
clutter map CFAR detection processor, but there are fewer gains and more false alarms in
the clutter edges than in the one-dimensional case. The reason for this is the presence of
small targets in the long-range scenarios.

Figure 2. The processing flowchart of our automatic detection for FOD MMW radar.
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3.1. Runway ROI Automatic Extraction

In order to decrease the unnecessary detection calculation and improve the efficiency,
the runway ROI area should be extracted first. Typically, this is done by setting a fixed
mask through as an interactive way to interpret the radar images. When the observation
scenes change, they need to adjust again. The automatic ROI extraction algorithm will be
illustrated next.

After match filtering of the beat frequency signal and servo scans of a full cycle,
the two-dimensional azimuth-range images could be acquired—projected to the ground
range according to the FOD system settlement geometry relation. In every inspection
period, we utilize automatic ROI extraction processing. Taking into consideration the two
kinds of terrain in the airfield, grassland and runway involve a different plural envelope
distribution, which is analyzed in Section 2.2. Their backscatter amplitude varies in the
edge between runway and grassland. Here, we utilize a bilateral filter for the de-noising of
images and an edge detection algorithm based on the amplitude gradient information.

Bilateral filtering is a non-linear filter that incorporates a filtering model considering
the amplitude value of neighboring pixels in Gaussian weight. It not only considers the
Euclidean distance of pixels but also considers the radiation difference in the pixel range,
which can achieve the effects of maintaining boundaries and smoothing noise. The formula
for bilateral filtering is as follows:

f (x, y) =
∑i,j∈S w(i, j)g(i, j)

∑i,j∈S w(i, j)
(9)

where (i, j) is a two-dimensional index value, g(i, j) is the data before filtering, and S is the
processing window.

As for the edge detection processing, we take the Canny second-order difference
operator as a detector. The structural operators can be calculated in the horizontal and

vertical directions. Then, we can obtain the gradient modulus
√

G2
x + G2

y and angle θ =

arctan
(
Gy/Gx

)
. The smoothing factor is adjusted for de-noising, and the edge points

are disposed of by the lagging threshold. The true edge points are obtained after non-
maximum suppression value treatment, and a thin edge line would be obtained in the
form of a ridge, which prevents the occurrence of a double edge due to the second-order
difference operator. In fact, the initial state of the FOD radar system is often located in
a vertical direction to the airfield runway. Current knowledge indicates that the runway
edges’ gradient angle is close to 90◦ or 0◦ in rectangular coordinates. When the airfield
pavement is not clean, there could be some targets on the surface that cause unwanted
edges inside. In this case, extra morphological corrosion and dilation processing would be
utilized to eliminate the inner edge lines. Within the inspection range of the radar system,
we can extract a minimum outer rectangle of the runway as a certain ROI area for further
detection handling.

3.2. Spatial Domain Methods

The constant false alarm rate (CFAR) algorithm is a typical auto-target detection method
for the FOD system. Considering a cell average (CA) CFAR detector, the basic principle is
expressed in Figure 3. The received beat frequency signal is operated by the FFT calculator
and fed into the CFAR processor. Except for the guard cell, also called the cell under test
(CUT), other reference cells participate in estimating ground clutter power. The detection
threshold can be demonstrated as Equation (12). γ is the threshold multiplication coefficient
that maintains the detection of false alarms.

E =
1

2N

N

∑
i=1

(Xi + Yi) (10)

γ = 2N
(

P−1/2N
f a − 1

)
(11)
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T = γE = γ
1

2N

N

∑
i=1

(Xi + Yi) (12)

Meanwhile, the GO, SO, WCA, OS CFAR processors are calculated in a different
estimation method by the front and the back reference cells. They all make use of spatial
information. CA CFAR is effective under conditions of homogeneous or stationary interfer-
ence. GO CFAR takes the maximum of {Xi, Yi}N , which are also known as the leading and
lagging parts. It works effectively in the clutter edges but results in detection loss when
encountering multiple targets. SO CFAR utilizes the minimum part to estimate the noise
power of {Xi, Yi}N . It can resolve multiple target detection conditions but has difficultly in
maintaining a constant false alarm rate in marginal clutter conditions. At the same time,
WCA CFAR represents a compromise between GO and SO handling. OS CFAR chooses the
kth cell as the detection threshold. It needs to sort the order first and is estimated without
guard cells. It also has a certain ability to counter targets’ obscuration effects, although it
could cause false alarms and loss of detection since it relies on the kth order.

Figure 3. Common CFAR processors.

3.3. Time-Domain Methods

As mentioned in Section 2, heavy background clutter is the primary interference for
FOD detection. Moreover, researchers and our practical process have shown that traditional
space-domain CFAR techniques such as CA are ineffective because the scattering character-
istic of ground clutter varies drastically in the space domain. For actual applications, the
scattering characteristics of a typical range of cells changes little in a certain period. Thus,
the time-domain CFAR, i.e., clutter map (CM) processors, will achieve better performance.

The clutter map CFAR processing method was initially proposed by Nitzberg [34]
and approved forms were put forward later. It considers the relative stability of the radar
clutter environment in the time domain. The main two steps are clutter map establishment
and clutter map detection. A schematic diagram is shown in Figure 4.
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Figure 4. Clutter map processor diagram.

The intrinsic property of the CM processor is a first-order autoregression model.
Operating on the previous echoes information, it performs as an exponential weighted
average process. The iteration function can be written as:

pn(k) = w
∞

∑
i=0

(1− w)iqn−i(k) (13)

qn

pn−1

≥H1

<Ho
T (14)

The self-adaptation judge threshold is expressed as Equation (14). Combining the
received signal, the clutter map could be established in the time sequence. To build a stable
clutter map, the iteration number L and weight w need to make a trade-off. The greater the
weight w is, the less time is needed to build up a stable clutter state, the less L is needed.
Here, the steady state refers to a condition that satisfies the false alarm probability, and
the detection performance is steady. The predefined threshold factor T is related to the
maintained false alarm ratio. Rohling [35] defines an average detection threshold (ADT)
to represent the performance of a detector. This means the average detection threshold
when achieving the same detection probability under certain circumstances. The ADT of
the clutter map technique is written as:

ADT = T
L

∑
i=1

w(1− w)i−1 = T
[
1− (1− w)L

]
(15)

The smaller the ADT, the better performance of the processor. Under a maintained
false alarm ratio condition, a more extensive w would increase the CFAR loss, decrease the
detection ratio, and need more time to reach a steady state. Therefore, in terms of limited
scan background period L conditions, decision-makers should consider the advantages and
disadvantages among iteration times and detection performance. The scan background
period is equal to the iteration number defined above since iterative processing is performed
with background data.

3.4. Explicit Definition of Quantitative Criterion

In order to evaluate the quantitative performance of the FOD surveillance radar, we
adopt a confusion matrix expressed as Table 1. Detection is assumed as a binary result. The
GT is the ground truth of the access data. Furthermore, the detection probability Pd, false
alarm probability Pf a, probability of correct classification PCC, and Kappa coefficient are
defined as Equations (16)–(21).
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Table 1. Definition of quantitative criterion.

Performance Detect Changed (P) Detect Non-Change (N)

GT Changed (T) TP FN
GT Non-changed (F) FP TN

Pd =
TP

TP + FP + FN
(16)

Pf a =
FP

TP + FP + FN
(17)

PCC =
TP + TN

N
(18)

KC =
Po − Pe

1− Pe
(19)

Po = PCC (20)

Pe =
TP + FN

N
× TP + FP

N
+

TN + FP
N

× TN + FN
N

(21)

where N = TP+ FP+ FN + TN is sum of the whole sample of results, Po is the observation
coincidence rate, which equals PCC, and Pe is the expectation coincidence rate.

Compared to the common definition, i.e., Pd is the ratio of true positive divided by true
FOD targets, Pf a is the exceeding true samples divided by true FOD targets. Our explicit
quantitative criterion is more objective and reasonable. PCC contains all true positive and
negative results that could reflect the constant false alarm ratio. Pd and Pf a are defined
among TP, FP, FN, which ensure that the ratio does not surpass probability 1. Kappa
coefficient KC is calculated by the detection coincidence rate and observation coincidence
rate. It is used to evaluate the overall degree of similarity between the detection results
and actual ground truth. It is more sensitive to the difference and indication performance
of detectors as well. The closer the KC value is to 1, the more accurate the detection
result that is measured. With this criterion, it is straightforward to depict the quantitative
characteristic of one FOD detection system.

4. Experiments and Performance Evaluation

In this section, the runway ROI automatic extraction is applied to the complete al-
gorithm. We compare our detection performance results to the spatial-domain CFAR
algorithms with our defined quantitative characteristic criterion. In order to collect ac-
tual measured data, a surveillance FOD MMW radar system developed by AIRCAS was
deployed at a civil airport in Beijing, China. The airfield runways consisted of asphalt
pavement. The system description, operating mode, FOD targets, and the parameters of
the MMW radar are given in Table 2. In particular, the carrier central frequency is fc =
93 GHz, and the duration of a single frequency sweep is Tr = 1 ms with a coverage of more
than 700 m. The transmitting power is 27 dBm, the bandwidth of sweep frequency is Br =
2 GHz, and the processing of the ROI area is in both polar and rectangular coordinates.
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Table 2. AIRCAS designed FOD radar parameters.

Parameter Value, Description

Radar Waveform FMCW
Central Frequency 93 GHz

Transmit Power Level 27 dBm
Antenna Gain, Polarization 38 dBi, H Polarization

Azimuth/Elevation Beam Width 0.6◦/4◦

Range Resolution 0.07 m
Cross-range Resolution 5 m (maximum range)

Minimum Detectable RCS −28 dBsm
Detection Range 700 m
Runway Width 30 m
Runway Length 660 m

Radar Deployment 9 m above the ground and 120 m away from
the runway

Scan Period less than 1 min
Detect FOD Samples Described by FAA advisory circular [5]

An optical map of the implement airfield location, obtained from Google Earth, is
shown in Figure 5. Our designed FOD MMW radar was placed on a 9 m high platform
on the top of the terminal building. Its running state is depicted in Figure 6. The system
comprises a power module, servo module, radar module, and transmission lines. Rather
than one-dimensional detection, with a short inspection runway range and strong metal
target detection, the proposed method is focused on two-dimensional processing measure-
ment, non-metallic targets such as golf balls, and an extensive runway monitoring range of
over 660 m. Additionally, the region of interest runway pavement automatic extraction is
applied after azimuth-range image processing. The acquired background data are used for
clutter map establishment within several scanning circles. Then, the observation data are
registered geometrically and detected by the clutter map CFAR. For the comparison of the
detection performance, we perform a quantitative assessment using the explicit criterion
that was previously defined (see Section 5). Next, we conduct an analysis of the proposed
measurement method step by step.

Before collecting the data, the experimental scene was manually checked first to ensure
that no FOD targets were on the pavement. The servo module drove the other modules in
rotation. The millimeter-wave radar scanned the experimental scene and recorded the echo
data of the ground clutter and observation scene. Since we apply a time-domain algorithm,
the acquired background data would be used for clutter map establishment within some
scanning cycles. The observation data would be measured for further treatment.

Figure 5. The actual experiment scene at a civil airport in China: an aerial map of the studied airfield,
with the FOD millimeter-wave radar system’s location indicated by the letter R.
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Figure 6. The proposed FOD millimeter-wave surveillance radar.

We first obtained the imaging results, as depicted in Figure 7. In particular, in Figure 7b,
the scan mode is more visible to the human eye. Figure 7c shows the runway ROI area’s
amplification effect from Figure 7b. There are two intersecting runways: the main in-
spection one is perpendicular to the initial state (azimuth scan: 0 degrees) of the FOD
millimeter-wave radar. In Figure 7c, the point-like object on the left is the actual runway
light and the arc-shaped band is the interference zone formed around the scene. Further-
more, the other one is not the inspection runway. It is clear that there are several aircraft
parked on the latter sub-runway. As for background clutter map establishment, there is
no need to clear everything on the pavement altogether. The existing runway lights can
be established as a strong background with the clutter map and will not be detected as
targets in time series. In this experiment, we measured ten scanning circles in the form
of background data for clutter map establishment. Every piece of 2D imaging data was
processed with ROI extraction. During updating of the clutter map measurement, the ROI
area of a fixed bounding box can be set, which can then be used for the detection of the
registered observation data.

In order to validate the proposed method with non-metallic targets and in a long-
distance situation, the optical placement images are expressed in Figure 8 through two
different viewing angles. We used ordinary golf balls as detection objects, which are
highlighted in red rectangular boxes. The diameter of the golf balls was 43 mm, and
the radar cross-section was less than −28 dBsm. They were placed at the far-end of the
pavement. The airfield was slightly wet because of the drizzling weather. Due to the
tiny targets and the long distance of the runway, it was not easy to determine the targets’
location in the ROI figure.

We used ten scanning circles as background data to establish the time-iterative clutter
map. A view of a three-dimensional graph is shown in Figure 9. While we focus on a
long distance over the 500 m range, the runway’s amplitude is relatively lower than that
of grassland and other objects. The intensity of the runway pavement higlighted in blue
also shows absolute stability since the clutter map is iterated of ten calculations. In the next
detection process, the clutter map updating takes place.
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Figure 7. The azimuth range 2D imaging results. (a) Observation data in polar coordinates. (b)
Observation data transformed to rectangular coordinates. (c) The runway region of interest area.
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Figure 8. The golf balls placement on the pavement scene. Since the targets are too small in the image,
they are highlighted in red rectangular boxes.

In order to validate the proposed method with non-metallic targets and in a long-distance situation,334

the optical placement images are expressed in Figure 8 through two different viewing angles. We used335

ordinary golf balls as detecting objects, which were highlighted in red rectangular boxes. The diameter336

of golf balls is 43mm, and its radar cross section is less to −28dBsm. Meanwhile, the placement was337

Figure 7. The azimuth range 2D imaging results. (a) Observation data in polar coordinates. (b) Ob-
servation data transformed to rectangular coordinates. (c) The runway region of interest area.
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Figure 7. The azimuth range 2D imaging results. (a) Observation data in polar coordinates. (b)
Observation data transformed to rectangular coordinates. (c) The runway region of interest area.
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Figure 8. The golf balls placement on the pavement scene. Since the targets are too small in the image,
they are highlighted in red rectangular boxes.

In order to validate the proposed method with non-metallic targets and in a long-distance situation,334

the optical placement images are expressed in Figure 8 through two different viewing angles. We used335

ordinary golf balls as detecting objects, which were highlighted in red rectangular boxes. The diameter336

of golf balls is 43mm, and its radar cross section is less to −28dBsm. Meanwhile, the placement was337

Figure 8. Location of the golf balls on the pavement. Since the targets are too small in the image, they are highlighted in red
rectangular boxes.

Figure 9. The establishment of background clutter map in 3D view.

Based on the bilateral filtering, edge strength, and edge direction, we could acquire
the main inspection runway expressed in Figure 10. Here, we have the square boundary
frame in the whole range, as Figure 10a shows. A illustrated by the geometry in Figure 1,
the azimuth scanning angle is not beamwidth, but the angle is formed with a fixed initial
direction. The direction of runway edges is approximately parallel or perpendicular to the
radar zero scanning angle. The radar system is located in the X-axis zero position. The
amplification of the runway ROI extracted from the clutter map is complete and ’clean’
in Figure 10b. The strip lights on the left of the runway pavement are considered as
inherent background clutter. It can be observed that the directions of the edges are not
strictly perpendicular to each other. The reason for this is associated with the radar’s initial
installation position. There is a certain amount of redundancy when using edge direction
information to minimize the lack of boundaries.

The azimuth resolution becomes 5 m at a long detection distance, and the resolution
range remains the same. The detection results are given in Figure 11. The results are
converted to the Cartesian coordinate system. In order to display the detection results of
the ROI area more clearly, we also show the detection results on the ROI radar image in
Figure 11b. While the targets occupy smaller cells compared to the resolution cells, the
targets perform as banded pixels, as Figure 11b shows. Though the detected targets take
up a specific area in the intensity graph, we selected the centroid of the identical object as
the final position feedback that is depicted in Figure 11a. It can be seen that nearly all the
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golf balls were identified correctly within the system resolution. The minimum interval of
detectable target placement was less than 5 m. The processing indicators show that our
designed FOD millimeter-wave radar system is superior to the requirements outlined by
the FAA [5].
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Figure 10. The runway ROI extraction results. (a) The extracted main inspection runway in the whole
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Figure 10. The runway ROI extraction results. (a) The extracted main inspection runway in the whole
range. (b) The local amplification of extracted runway.
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Figure 11. The detection results. (a) Taking one centroid point for every same object. (b) The detection
points together with amplification of local runway ROI.
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to classify the false alarm and actual targets to get higher performance. Because the target occupies378

little pixel unit in long-range condition, which means taking statistical information to extract features379

will no longer work. It is also verified that a typical range cell’s scattering characteristics change little380

Figure 11. The detection results. (a) Taking one centroid point for each object. (b) The detection
points together with amplification of local runway ROI.

For further quantitative assessment, we adopt the defined criterion (see Section 5) to
evaluate the performance of the FOD surveillance radar. Compared with the CA, GO, and
SO CFAR algorithms, the experimental measurement criterion is expressed in Table 3. Since
the former three algorithms are spatial-domain processors, the processing parameters are
set to be the same: Pf a = 10−6, ten guard cells, and 16 reference cells. Among them, the GO
obtained a larger value of both Pd and Pf a than CA. The SO detected the most placed objects
TP, but there existed many false alarms regarding objects FP on the runway edge, which
led to a low Pd. Overall, the Kappa coefficient KC indicator shows the general performance
of the detectors. According to the detection rate Pd, the false alarm rate Pf a of the golf
balls at different ranges from 590 m to 670 m, and KC, the detection rate of the CM CFAR
algorithm is better, and the false alarm rate is lower as well. The PCC values are more
relevant to the setting parameters Pf a. Although its value is closer to 1, the reference value
is not too large. Therefore, there is no need to classify the false alarm and actual targets
to achieve better performance, because the target occupies few pixel units in long-range
conditions, which means that the use of statistical information to extract features will no
longer work. It is also verified that a typical range cell’s scattering characteristics change
little in a certain period for actual applications. This criterion result is consistent with our
previous analysis in Section 3.3.
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Table 3. Performance with quantitative criterion.

Performance Pd (%) Pf a (%) PCC (%) KC

CA CFAR 73.68 2.63 99.9573 0.85
GO CFAR 76.92 5.13 99.9554 0.87
SO CFAR 57.14 41.27 99.9361 0.73
CM CFAR 94.59 0 99.9989 0.97

5. Discussion

In this study, we investigated the current research on the FOD MMW radar system
and target detection method of common debris at airports. We found that there are
shortcomings in existing FOD radar systems and detection algorithms, i.e., the lack of
remote object detection and low processing efficiency. Consequently, we proposed an
automatic target detection method for small FOD objects in a long inspection range and
defined the explicit performance criterion. Inspired by the confusion matrix for image
classification, we provided a new quantitative index for evaluating performance. It could
be utilized as a new and explicit criterion suited to FOD target detection evaluation.

The experimental results in Section 4 manifest the effectiveness of our method. The
comparison experiment was performed under the same detection parameters. Concerning
the spatial domain, algorithms employ the same guard cells, reference cells, and threshold
set Pf a = 10−6, while the CM processor does not need guard or reference cells and the
threshold is set to the same Pf a for comparison. Compared with the other algorithms, this
paper’s time-domain processor has advantages in terms of detection probability, detection
false alarm probability, and overall performance coincidence rate between ground truth
and detection results. As for the small targets, the experimental targets are standard objects
in accordance with FAA [5]. The proposed method could still obtain robust results when
other objects are greater than or equal to the RCS of the experimental object.

The proposed approach is robust with regard to climate conditions. The used exper-
imental data were collected under drizzling rain. Figure 8 shows the wet surface on the
pavement. From the perspective of actual application, the runway has a structure with a
certain slope, meaning that the central line is high and the two sides are low (see Figure 1).
This sloped structure could help water to flow to the grassland on both sides, so it would
not come into contact with stagnant water. However, snow conditions would cover the
pavement, reduce the friction coefficient of the runway surface, and prevent the aircraft
from taking off. Under foreseeable circumstances, snow coverage of the target will hinder
the detection process, especially small-sized targets. From the perspective of the radar
signal, water and snow in the air would cause a decay in signal amplitude. Referring to the
Radar Handbook, the millimeter-wave band signal attenuation caused by rain or snow is
less than 2 dB in moderate rain and snow conditions within a 1 km range. The impact for
the target amplitude and detection process is limited. As for the clutter map establishment,
the pavement would merely be a thin layer of water on the surface. The processed clutter
map will automatically update in the time domain. Our measured rainy data could validate
the robustness of the method while the snowy measurement is analyzed.

To conclude, we achieved the automatic target detection of remote and small debris
on airfield pavement for an FOD surveillance radar. It comprises runway ROI extraction
based on signal form analysis, background clutter map establishment in the time domain,
observation data registration, and clutter map detection processing. The experiment was
carried out in an actual civil airfield runway in Beijing, China. Here, we measured the
method’s effectiveness, and the designed FOD MMW surveillance radar has an inspection
radius covering 660 m of the runway distance. Rather than qualitative evaluation of the
results, we assessed the performance with our clearly defined evaluation indicators. The
experimental results demonstrate that our method performed well in the remote inspection
and non-metallic debris detection scenario with automatic processing. In the near scenes
and for large-scale debris objects, it was showed excellent detection performance. At
the same time, this method does not require manual data segmentation processing or
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prior information of the runway position. The high automation level and high working
efficiency make it more competitive in real-time applications. It also offers processing
support for the fusion with information acquired through radar and other sensors such as
optical–electronic equipment and further decisions by airfield personnel.

6. Conclusions

In this paper, we proposed the complete automatic target detection of small debris in a
long-distance scenario and a quantitative criterion for an FOD surveillance radar. We found
that there are shortcomings in some existing systems and detection algorithms among the
current FOD surveillance radar system methods, i.e., the lack of remote object detection
and the low processing efficiency. In this regard, we proposed an automatic target detection
method for small FOD objects at a long inspection distance and defined the explicit perfor-
mance criterion. In accordance with FMCW signal form and clutter modeling of the airfield
scenes, a runway ROI extraction algorithm is employed to concentrate on the meaningful
areas, which could improve the efficiency. Through time-domain processors, the clutter
map CFAR detection algorithm performed better in terms of detection probability, false
alarm probability, and airfield scenario robustness. Experimental data were acquired to
verify its superiority at a civil airport in Beijing, China. Compared to standard spatial
CFAR algorithms, the results demonstrate that the proposed automatic detection method
can provide precise criterion indicators with small targets at long inspection distances
covering up to 660 m of the runway. It also has excellent detection performance in near
scenes and higher target RCS than golf balls since this is more helpful for object detec-
tion. In the future, we will continue to improve our method so that it can be applied to
a more complicated pavement environment. Moreover, we will attempt to apply some
super-resolution techniques to overcome the limitations of azimuth resolution or increase
the FOD radar system’s complexity. Other target classification approaches will also be
taken into consideration as supplementary approaches.
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