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Abstract: Pixel-based semantic segmentation models fail to effectively express geographic objects
and their topological relationships. Therefore, in semantic segmentation of remote sensing im-
ages, these models fail to avoid salt-and-pepper effects and cannot achieve high accuracy either.
To solve these problems, object-based models such as graph neural networks (GNNs) are considered.
However, traditional GNNs directly use similarity or spatial correlations between nodes to aggregate
nodes’ information, which rely too much on the contextual information of the sample. The contextual
information of the sample is often distorted, which results in a reduction in the node classification
accuracy. To solve this problem, a knowledge and geo-object-based graph convolutional network
(KGGCN) is proposed. The KGGCN uses superpixel blocks as nodes of the graph network and com-
bines prior knowledge with spatial correlations during information aggregation. By incorporating
the prior knowledge obtained from all samples of the study area, the receptive field of the node is
extended from its sample context to the study area. Thus, the distortion of the sample context is
overcome effectively. Experiments demonstrate that our model is improved by 3.7% compared with
the baseline model named Cluster GCN and 4.1% compared with U-Net.

Keywords: remote sensing images; semantic segmentation; geo-object prior knowledge; graph
neural network

1. Introduction

With the development of convolutional neural networks (CNNs), pixel-based se-
mantic segmentation models have achieved impressive results in dealing with remote
sensing images. These models execute convolution operations on pixels to aggregate
information from areas covered by convolution kernels and attach semantic labels to each
pixel [1–4]. However, these approaches cannot exploit high-level semantic information.
Additionally, receptive fields in convolution are limited (generally 3 × 3) [5] and unevenly
distributed [6], so it is hard to obtain effective contextual information.

To address the above problems, some approaches have been proposed. For example,
the non-local method [7] calculates the feature similarity between each pixel and other
pixels on the feature map. Therefore, the information of global pixels is integrated into
the center pixel. Although the non-local method can more effectively use the context
information of the sample, it is computationally expensive and lacks high-level semantics
such as topological relationships of geo-objects.

Recently, with the development of graph neural networks, object-based semantic
segmentation models that use GNNs have attracted increasing attention. Compared with
pixel-based methods in remote sensing images, GNNs use geo-objects as nodes of the graph.
Geo-objects are superpixels in which every object is a set of pixels with similar spectral
and textural features. The transformation from remote sensing image into geo-objects can
avoid salt-and-pepper effects and is beneficial to extracting features of spatial correlation
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effectively as well. However, the following problem urgently needs to be solved to apply
GNNs in remote sensing recognition.

According to Tobler’s first law of geography, everything is related to everything else,
but near things are more related to each other. However, there are some exceptions during
feature aggregation in GNNs.

According to Figure 1, the aggregation of the center node can be expressed as Formula (1):

o′c = ∑ w1
ci ∗ o1

i + ∑ w2
cj ∗ o2

j + ∑ w3
ck ∗ o3

k (1)

where w is the aggregation weight. As the perimeter of the outer polygon becomes larger,
the number of adjacency objects becomes larger as well. If there is a large number of
geographic objects with same category in the far distance, the aggregation of them may
cause greater impact on the center node, even more than the nearby category. This may lead
to the problem of “reversal of the first law of geography” and cause the misclassification of
the center node. Samples facing this problem can be divided into two kinds:

(1) Samples with “different objects with the same spectrum”.
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Figure 1. Demonstration of the center node and its neighbors with different spatial distances.
The center node is oc, o1

i , o2
j and o3

k represent the neighboring nodes with spatial distances of 1, 2,
and 3, respectively.

“Different objects with the same spectrum” is a common phenomenon in remote
sensing images, and nodes with similar features might be classified into different categories.
During aggregation of center nodes, different nodes with the same spectrum are irrevelant
neighbors. If there are a large number of these neighbors, these irrevelant neighbor nodes
will have a greater impact on the center nodes, so the center node can be misclassified.
Figure 2 demonstrates some of these samples.
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Figure 2. Examples of “different objects with the same spectrum”. (a,c) are two samples; (b,d) are corresponding surrounding
environment of (a,c). In (a,c), the feature of city grass (in B) is similar to flat_field (in A). Meanwhile, in (c), the city_grass
(in D) is similar to flat_field (in C).

As in Figure 2, flat_field and city_grass are “different objects with the same spectrum”,
a large number of flat_fields will cause the misclassification of city_grass.
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(2) Samples with “scene distortion”.

During the process of making samples, improper sample clipping may result in
incomplete neighbors of some objects in the sample; then, the surrounding environment
of these objects in samples might be different from the actual situation. For example,
forest and city_forest are all actually composed of trees, and the difference between them is
that city_forest only exists in the urban scene. Due to improper clipping, there might be
a large area of urban scene around the forest. As introduced before, objects in the urban
scene will have a greater impact on the forest object. Then, this will lead to misclassification.
Figure 3 demonstrates some of these samples.
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sponding surrounding environment of (a,c). In (a), the forest object A is clipped improperly, and there
is a large area of urban scene in B. Similarly, in (c), the urban scene D is near forest C.

Considering the above problems, the contextual information of one sample might be
improper and limited; thus, the prior geographic knowledge of the entire study area is
urgently needed. In this situation, the KGGCN model, which is an object-based remote
sensing semantic segmentation model that integrates image features, spatial correlations,
and prior knowledge with graph convolution, is proposed. This object-based method is
free from the salt-and-pepper effect. Additionally, it can express high-level semantic infor-
mation, for example, spatial correlations and prior geographic knowledge. Thereby, it can
effectively recognize objects distributed by the above problem.

According to the above information, this paper has the following innovative aspects:

• This paper proposes a spatial correlation Recognition Module with mutual relation
space to recognize spatial correlations between nodes and then automatically generate
a spatial adjacency matrix.

• A mechanism of prior knowledge embedding that integrates the prior geographic
knowledge of the study area by graph transformation is proposed.

• A semantic segmentation model of remote sensing images based on a graph neural
network is designed and implemented. This model can organically integrate the
spatial correlations of nodes with prior geographic knowledge so that the node’s
receptive field is extended and the limitation of the sample context is broken through.

The next part of this paper is organized in the following sections: Section 2 discusses
related work. Section 3 introduces the methods of our model. Section 4 is about the
experiments. Section 5 analyses the model performances on specific samples. Section 6
analyses the performance of our model on the Hyperspectral Image Dataset. Finally, Section 7
expresses the conclusions.

2. Related Work
2.1. Geographic Object-Based Image Analysis (GEOBIA)

Different from the traditional pixel-based approach, GEOBIA is based on a geographic
object and aims to divide remote sensing imagery into meaningful image-objects and
then obtain information [8], as the object-based methods can provide richer semantic
information and typological relations than pixel-based methods.

With the development of high-spatial resolution (H-res’) satellite sensors, it is more
convenient to obtain high-resolution remote sensing images, which makes it urgent to
propose effective methods of GEOBIA. Currently, the GEOBIA methods are widely applied
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in multi-scale studies [9–11], change analysis [12,13], and landslide detection [14]. Due to
the nature of image analysis, GEOBIA benefits greatly from knowledge such as the work
in [15], which surveys the kinds of urban problems from big data and discovers the knowl-
edge of urban informatics. To facilitate effective knowledge exchange and management,
the GEOBIA community has started to embrace ontologies and develop ontology-driven
models [16] based on object-oriented remote sensing technology.

2.2. Graph Neural Network

CNN [17] has shown impressive ability to represent images and achieved great
progress. However, these models fail to deal with non-Euclidean structure data such
as social networks, chemical compounds, and knowledge graphs. Hence, GNN is proposed
to conduct convolution on non-Euclidean data [18]. Among GNNs, the graph convolutional
network (GCN) [19] plays an important role, which has been applied to many graph-based
applications. However, it is still challenging in training a large-scale GCN model. Con-
sidering this problem, ref. [20] proposes a Cluster-GCN model, which samples the node
blocks associated with the dense subgraph identified by the graph clustering algorithm,
restricting the neighborhood search in the subgraph, and adds residual blocks in the graph
convolution to achieve better performance in information aggregation. By reducing the
amount of computation, this model is also suitable for a large graph process. The attention
mechanism is significant in deep learning, and graph attention networks (GATs) [21] are
proposed to focus on neighbor nodes’ features, which applies different weights to different
nodes in a neighborhood and does not need costly matrix operation.

However, that the current GNN network directly stacks more layers can cause an over-
smoothing problem, which can lead to the representations of GNN output nodes tending
to be consistent. In this situation, the expressivity of the network is limited. To solve
this problem, many researchers have conducted considerable explorations. Research such
as [22] proposes a novel normalization layer that is based on a careful analysis of the graph
convolution operator, which prevents all node embeddings from becoming too similar.
Refs. [23,24] propose to use a jump connection and attention mechanism during graph
convolution. Some other studies alleviate over-smoothing problems by deleting some
edges in the graph; for example, ref. [25] proposes a DropEdge mechanism to randomly
remove a certain number of edges from the input graph at each training epoch and reduces
the convergence speed of over-smoothing or relieves the information loss caused by it.

Apart from these, combining prior knowledge with GNN models for vision tasks
also attracts increasing attention. Ref. [26] constructs a graph by using co-occurrence of
categories counting from the dataset to learn image features and explore their interactions
via graph information propagation. Ref. [27] proposes a novel architecture called the Self-
Constructing Graph (SCG), which can generate embeddings and construct the underlying
graphs directly from the input features without relying on manually built prior knowledge
graphs. Research such as [28] finds that the statistical correlations between object pairs
and their relationships can improve performance in recognition and make prediction less
ambiguous. To achieve this goal, it incorporates these statistical correlations into deep
neural networks to facilitate scene graph generation by developing a knowledge-embedded
routing network.

Recently, there have been relatively few studies on knowledge in the graph network.
Additionally, the acquisition and utilization of knowledge in these methods are complex.

2.3. Remote Sensing with GNN

With the development of computer vision, remote sensing analyses are mostly based
on deep learning algorithms. Traditional deep learning models for remote sensing analysis
mostly use a full convolution structure [2–4]. However, these models are pixel-based so
that it is difficult to extract high-level semantic information and typological relation of
geo-objects. In this situation, the applications of GNNs in remote sensing have attracted
increasing attention.
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With the development of remote sensing technology, an increasing number of high-
resolution remote sensing images have appeared. Some researchers have started to use
GNNs to achieve remote sensing image analysis. Ref. [29] investigates the use of GCN in
order to characterize spatial arrangement features for land use classification from high-
resolution remote sensing images. The work [30] proposes a novel attention mechanism
including horizontal and vertical directions and a graph convolution integration algo-
rithm to achieve better performance on hyperspectral remote sensing image classification.
Ref. [31] proposes a sampling technique, structure-aware sampling (SAS), which lever-
ages the intra-class and global–geodesic distances between nodes and considers global
information during message propagation. Recently, ref. [32] proposed a novel attention
graph convolution network (AGCN) to perform superpixel-wise segmentation in big SAR
imagery data. However, AGCN is prone to errors when segmenting some geo-objects with
a small scale, such as rivers and roads.

In remote sensing images, the actual sizes of various geo-objects are quite different.
Thus, understanding scale information [33] is essential for remote sensing image interpreta-
tion. Ref. [34] proposes a self-adaptive segmentation (SAS) method, which bridges the gap
between the inherent scale and segmentation scale of each object. For better modeling of the
multi-scale information of land-cover classes in remote sensing images, ref. [35] integrates
high-dimensional multi-scale guided filter (MSGF) features with the superpixel-level guid-
ance image. Ref. [36] applies thematic maps derived from image classification to improve
multiscale segmentation and assist with scale selection. However, due to the rich seman-
tics and complex topological relationship between geo-objects in remote sensing images,
these methods cannot define the optimal scale in an unsupervised manner effectively.

Currently, some researchers start to integrate the geographic prior knowledge into
remote sensing analysis. The work [37] proposes a simplified graph-based visual saliency
model for airport detection in panchromatic remote sensing images, which introduces the
concept of near parallelism for the first time and treats it as prior knowledge that can fully
exploit the geometrical relationship of airport runways. The work [38] proposes to use
prior knowledge provided by Volunteered Geographic Information (VGI) and extract the
total extent of the roads using remote sensing images.

In summary, the combination of prior knowledge and geo-object-based graph convo-
lutional network is a promising exploration in GEOBIA. On the one hand, the object-based
method is able to alleviate the salt-and-pepper effects. On the other hand, the prior knowl-
edge reflects the characteristic of the whole dataset; the integration of prior knowledge can
expand the receptive field of the geo-object that needs to be analysed.

3. Methods

Unlike pixel-based image segmentation algorithms, we use an object-based graph
convolutional algorithm. Image features are transformed into node features, and a spa-
tial adjacency matrix is generated with correlation recognition. Then, the network will
update the node features by integrating spatial adjacency matrix and prior knowledge.
Finally, the updated node features are used for classification. The next sections will intro-
duce the structure of the network and implementation details.

3.1. Network Structure

Our network is composed of five modules, including the superpixel segmentation
module, node feature extraction module, spatial correlation recognition module,
KGGCN module, and classifier module, to carry out semantic segmentation on remote
sensing images, as shown in Figure 4. The input is the original image, and the output is
the prediction.
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As shown in Figure 4, our approach is composed of five modules and can be divided
into three steps: pre-processing, processing, and decision.

Pre-processing: It is important to explain that our model is not end-to-end, and the
pre-processing step is before training the network. This step is composed of the superpixel
segmentation module, the purpose of which is generating superpixel blocks and masks.
First, the original image is divided into many superpixel blocks. Then, masks are generated
according to the position of corresponding superpixel blocks in the image.

Processing: This step is composed of three modules: the node feature extraction
module, spatial correlation recognition module and KGGCN module. The inputs of this
step are the original image, masks, and prior knowledge. The outputs are updated node
features, which incorporate geographic prior knowledge.

(1) The node feature extraction module extracts node features from the image. Inputs of
this module are the original image and masks; outputs of this module are node
features. First, the remote sensing image is extracted through a CNN to obtain the
global feature. Then, masks are used to obtain the feature of each superpixel block.
Finally, these features are passed through a global average pooling layer to obtain
node features.

(2) The spatial correlation recognition module can recognize the spatial correlation of
nodes and then generate the spatial adjacency matrix. Inputs of this module are
masks, and the output of this module is a spatial adjacency matrix. First, features of
two masks are extracted to obtain feature embedding of spatial correlation. Then, the
embedded feature is decoded to obtain correlation of these masks. Finally, a spa-
tial adjacency matrix is generated by traversing all pairs of masks and recognizing
correlations.

(3) The KGGCN Module integrates graph convolution with prior knowledge to update
node features. Inputs of this module are node features, a spatial adjacency matrix,
and the prior knowledge. Outputs of this module are new node features. The KG-
GCN Module embeds prior knowledge into graphs for feature aggregation and then
updates node features.

The details of these modules are introduced in Sections 3.3–3.5 in our paper, respectively.
Decision: This step is composed of a classifier. Inputs of this module are new node

features from KGGCN Module. The output of this module is the classification result. The
classifier is composed of a fully connected layer, which decodes node features to obtain
predictions of nodes and the classification result.

3.2. Superpixel Segmentation Module

The superpixel segmentation module aims to divide images into superpixel blocks
and extract masks of them. The structure of this module is demonstrated in Figure 5.
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Figure 5. The structure of the superpixel segmentation module. The input is the image, and the
outputs are masks.

In Figure 5, we use the simple linear iterative clustering (SLIC) [39] method to perform
superpixel clustering on the remote sensing image and divide images into many superpixel
blocks according to spectral and textural similarity. Then, the masks are established to
reflect the position of the corresponding superpixel blocks in the image.

Details of this module are introduced next.

3.2.1. Scale of Superpixel Segmentation

Understanding scale information [33] is crucial for remote sensing image interpre-
tation. It is very important to determine the segmentation scale when using the SLIC
algorithm to perform superpixel segmentation on the sample. In order to follow the
principle that each superpixel block contains only a single category of pixels, ensuring
the category label of superpixel block unique, we choose a small segmentation scale.
Next, we will introduce the relative parameter settings of SLIC.

The Relative Parameter Settings of SLIC

The main parameters are k (number of clusters) and m (allows weighing the relative
importance between colors). According to the following reasons, we finally set experience
value (k = 15, m = 35) for small segmentation scale.

(1) The size of sample in our dataset is 224 × 224 with 0.59 m spatial resolution, with an
actual distance about 134 metres. Therefore, the number of clusters does not need to
be too large.

(2) The scale fits as closely as possible to the natural size of the small class of objects.
(3) Otherwise, the number of graph nodes in GCN should not be too large, avoiding very

large computational consumption.

In order to better show the advantages of small-scale segmentation, we compared the
segmentation between large scale and small scale on specific sample.

Comparison of the Segmentation between Large Scale and Small Scale

In order to illustrate the reason for choosing a small segmentation scale, we compared
the small-scale segmentation (k = 15, m = 35) with a large-scale segmentation (k = 5, m = 20)
on the same sample. The results are shown in Figure 6.
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According to GT, the superpixel blocks f1 and f2 in (b) are forest, and superpixels
g1, g2, and g3 in (b) are grass. Although large forest object F and large grass object G are
divided into pieces, this still conforms to the principle that each superpixel block contains
only a single category of pixels. However, the superpixel A in (c) contains two kinds of
category pixels (grass and forest); the category label of A is not unique. Therefore, A is not
suitable for effectively training the model.

3.2.2. Establishment of Masks

After small-scale superpixel segmentation, the image is divided into superpixel blocks.
The size of the masks of the superpixel block is 224× 224, which is the same as image.
In each mask, pixels within the range of the superpixel block are set as 1 and all other pixels
are set as 0. Figure 7 demonstrates the establishment of masks.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 34 
 

 

 
Figure 6. Comparison of the segmentation between two scales. (a) denotes original image; (b) 
denotes the result of small scale segmentation; (c) denotes the result of large scale segmentation; (d) 
denotes GT. 

According to GT, the superpixel blocks f1 and f2 in (b) are forest, and superpixels g1, 
g2, and g3 in (b) are grass. Although large forest object F and large grass object G are 
divided into pieces, this still conforms to the principle that each superpixel block contains 
only a single category of pixels. However, the superpixel A in (c) contains two kinds of 
category pixels (grass and forest); the category label of A is not unique. Therefore, A is not 
suitable for effectively training the model. 

3.2.2. Establishment of Masks 
After small-scale superpixel segmentation, the image is divided into superpixel 

blocks. The size of the masks of the superpixel block is 224 × 224, which is the same as 
image. In each mask, pixels within the range of the superpixel block are set as 1 and all 
other pixels are set as 0. Figure 7 demonstrates the establishment of masks. 

 
Figure 7. Demonstration of masks. Mask 1–4 reflects the position of superpixel block 1–4 in image 
respectively. 

3.3. Node Feature Extraction Module 
The structure of the node feature extraction module is demonstrated in Figure 8. 

 
Figure 8. The structure of the node feature extraction module. (a) is the original image; (b) is the 
image feature; (c) are resized masks; (d) are two-dimensional features of nodes; (e) are one-
dimensional features. 

Figure 7. Demonstration of masks. Mask 1–4 reflects the position of superpixel block 1–4 in
image respectively.

3.3. Node Feature Extraction Module

The structure of the node feature extraction module is demonstrated in Figure 8.
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As shown in Figure 8, CNN is used to extract the image feature (b). The size of (b) is
H
4 ×

W
4 × 32, where 32 is the feature dimension.

Masks are obtained from the superpixel segmentation module. To reflect positions of
superpixel blocks in the image feature, masks are resized to H

4 ×
W
4 .

The features extracted by masks are used as the features of nodes in the graph network.
Masks are multiplied by the image feature to obtain features of nodes.

Features of nodes are passed through a global average pooling (GAP) layer and
changed from two-dimensional features (d) to one-dimensional feature vectors (e).
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3.4. Spatial Correlation Recognition Module

Inspired by the mutual relation space in [40], we design a spatial correlation recog-
nition module. The spatial correlation recognition module aims to recognize the spatial
correlations of nodes to construct the spatial adjacency matrix. The details of this module
will be introduced next.

3.4.1. Mutual Relation Space

In traditional relation space, (o1, p1, o2) is object triples, where o1 and o2 are objects and
p1 is the relation between them. The feature of object triples is used for recognizing relation.

p1 is the relation from o1 to o2, and p2 is the relation from o2 to o1. The relation of p1
and p2 is denoted as mutual interaction.

Visual relationships have great potential to be learned better with the knowledge from
the mutual interactions between paired objects. However, traditional relation space fails to
exploit the mutual interaction between objects. Therefore, we construct a mutual relation
space, and the mutual interaction of relations is considered during feature extraction.

3.4.2. Spatial Adjacency Matrix

Before introducing the spatial adjacency matrix, we firstly introduce the means of
node feature aggregation in GCN [19], as shown in Formula (2).

f ′i =
N

∑
j=1

aij f j (2)

f ′i is the feature of node i after the update, and f j is the feature of neighbor node j.
aij∈A0, A0 is the spatial adjacency matrix, as shown in Formula 3.

A0 =

a11 · · · a1N
...

. . .
...

aN1 · · · aNN

, A0 ∈ RN×N (3)

In Formula (3), A0 is the spatial adjacency matrix and the value in the adjacency matrix
represents the spatial correlation between two nodes. For example, aij represents the spatial
correlation between node i and node j.

• If mask i and mask j are directly adjacent, the spatial correlation of node i and node j
is ‘closely next to’, corresponding to the value aij = 0.5 in the adjacency matrix;

• If i and j are separated by one node, the spatial correlation of i and j is ‘next to’,
aij = 0.25;

• If i and j are separated by two nodes, the spatial correlation of i and j is ‘near’,
aij = 0.125;

• If there are more than two nodes separating i from j, the spatial correlation of i and j is
‘far from’, aij = 0.

According to the definition of the adjacency matrix, the correlation of nodes is the
relationship between one node and another node. In order to generate the spatial adjacency
matrix, the spatial correlation recognition module needs to recognize the spatial correlation
between two nodes.

3.4.3. Structure of the Spatial Correlation Recognition Module

The spatial correlation recognition module aims to effectively recognize spatial corre-
lations in mutual relation space, as shown in Figure 9.
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This module extracts features of masks and union masks. Then, these features are
used to obtain the feature embedding of spatial correlation. Finally, the embedded features
are used for correlation recognition.

The processes of this module are denoted as Algorithm 1, as follows

Algorithm 1. For recognizing the spatial correlation.

Input: maski of superpixel block i, maskj of superpixel block j.
Output: spatial correlation between maski and maskj

1. Begin
2. // use mask to extract feature of maski
3. fi ← f c1(maski); // f c1 is a fully connected layer1
4. // use mask to extract feature of maskj

5. f j ← f c1

(
maskj

)
; // f c1 is a fully connected layer1

6. // obtain union mask of maski and maskj

7. maskij ← union
(

maski, maskj

)
; // union is the operation of directly add by pixels

8. // use union mask to extract feature of mask pair

9. fij ← f c1

(
maskij

)
; // f c1 is a fully connected layer1

10. // obtain feature embedding of correlation (i, p1, j)

11. V ← f c2

(
concat

(
fi, fij, f j

))
; // f c2 is a fully connected layer2

12. f ← f c3

(
concat

(
fi, V, f j

))
; // f c3 is a fully connected layer3

13. // obtain feature embedding of correlation (j, p2, i)

14. V′ ← f c2

(
concat

(
f j, fij, fi

))
; // f c2 is a fully connected layer2

15. f ′ ← f c3

(
concat

(
f j, V′, fi

))
; // f c3 is a fully connected layer3

16. // recognize spatial correlation between i and j
17. y← argmax( f c4( f )); // f c4 is a fully connected layer4
18. // recognize spatial correlation between j and i
19. y′ ← argmax( f c4( f ′)); // f c4 is a fully connected layer4
20. Return y, y′;
21. End

This algorithm is the feature extraction process used for correlation recognition,
and feature extraction is optimized by using mutual relation loss.
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3.4.4. Mutual Relation Loss

As shown in Formula (6), the mutual relation loss function is composed of loss1
(cross-entropy loss) and loss2 (margin loss calculates the similarity of f and f ′).

loss1 = − 1
N(N − 1)

N(N−1)

∑
i

yi ∗ log yi (4)

loss2 = max
(
0, (0.5− l2( f )− l2

(
f ′
))

(5)

loss = loss1 + loss2 (6)

In above formulas, f and f ′ are feature embeddings of spatial correlation, as described
in Algorithm 1. Loss1 is used for the training module to predict accurate spatial correlations.
Loss2 is used to optimize the process of feature extraction.

3.5. KGGCN Module

As discussed in Section 1, directly using spatial correlations during feature aggre-
gation fails to effectively solve problems of “the reversal of the first law of geography”.
Prior knowledge that expresses characteristics from all samples in the study area is urgently
needed. Therefore, the KGGCN Module uses the co-occurrence probability of various cate-
gories as prior knowledge, embeds prior knowledge into graphs for feature aggregation,
and then extends the receptive field from a single sample to all samples in the study area.
This section introduces the co-occurrence matrix and structure of the KGGCN Module.

3.5.1. The Co-Occurrence Matrix

The co-occurrence matrix represents the probability of pairs of categories occurring in
the same sample and describes the statistical characteristics from all samples in the study
areas by calculating the frequency of two categories occurring in the same sample.

In our dataset, categories include flat_field, landslide, grass, waterbody, village, road,
highway, city, terraces, strip_field, city_grass, forest, and city_forest. M ∈ RC×C represents
the co-occurrence matrix used to describe co-occurrence between categories, and C is
the number of classes. The following formulas explain the calculation of co-occurrence
probability. Class α and β influence each other; thus, the co-occurrence probability of α
and β is bidirectional. mαβ represents the probability that class β appears near class α,
and mβα represents the probability that class α appears near class β. If mαβ is the direct
co-occurrence probability, then mβα is the corresponding reverse co-occurrence probability.

mαβ =
nαβ

nα
(7)

mβα =
nβα

nβ
(8)

In Formula (7), nαβ represents the number of samples that simultaneously include
class α and class β, nα represents the number of samples that include class α, and mαβ

equals to nαβ divided by nα. mβα is calculated similarly in Formula (8). After calculating
the co-occurrence probability between all classes, the co-occurrence matrix is used as prior
knowledge, as shown in Figure 10.
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Figure 10. The co-occurrence matrix. Values in this matrix indicate the co-occurrence probabilities of various categories.

In Figure 10, mcity,city_grass = 0.42 and mcitygrass , city = 0.95. It is easy to notice that city is
most likely to occur near city_grass, because we denote grass as city_grass only if there is a
city nearby. However, there may be no city_grass near city. Therefore, mαβ 6= mβα.

3.5.2. Structure of KGGCN Module

The KGGCN Module belongs to the processing step of our model. The inputs of
KGGCN Module include prior knowledge, node features, and the spatial adjacency matrix.
Prior knowledge is the co-occurrence matrix. Node features are the outputs of the node
feature extraction module. The spatial adjacency matrix is the output of the spatial correla-
tion recognition module. Outputs of the KGGCN module are the updated node features.
The structure of KGGCN module is shown in Figure 11.
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In Figure 11, the KGGCN module is composed of two KGGCN layers (T = 2) with the
same structure:

(1) The first KGGCN layer. Inputs of this layer are node features (obtained from the node
feature extraction module), the spatial adjacency matrix (obtained from the spatial
correlation recognition module), and prior knowledge (the co-occurrence matrix).
The output is updated node features of the first layer.

(2) The second KGGCN layer. Inputs of this layer are updated node features of the first
layer, the spatial adjacency matrix (obtained from the spatial correlation recognition
module), and prior knowledge (the co-occurrence matrix). The output is updated
node features of the second layer.

The Structure of the KGGCN Layer

The purpose of the KGGCN layer is to integrate prior knowledge into graph convolu-
tion. The structure of the KGGCN layer is shown in Figure 12.
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Figure 12. Structure of KGGCN layer. The input of the KGGCN layer includes four parts: X0 denotes the node features
in the original graph, X0 ∈ RN×D, where N is the number of nodes, and D is the dimension of the feature. M denotes the
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As demonstrated in Figure 12, the structure includes three parts: constructing a new
graph, feature aggregation, and restoring the new graph. The purpose and implementation
of these parts will be introduced next.

Mechanism of Prior Knowledge Embedding Based on Graph Transformation

Before the introduction of the KGGCN layer, the idea of prior knowledge embedding
is explained first. In our model, the co-occurrence probability of various categories is prior
knowledge. M is the matrix of co-occurrence probability, as introduced in Section 3.5.1,
and M ∈ RC×C, where C is the number of categories. One specific sample is expressed as
original graph Gori in Formula (9).

Gori = (Vori, Eori) (9)

Vori is the set of nodes that is superpixel blocks obtained from one sample; Eori is the
set of edges that represent spatial correlations of nodes obtained from the spatial correlation
recognition module, as in Formulas (10) and (11).

Vori = {vi, i ∈ {1, · · · , N}} (10)
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Eori =
{

eij, i, j ∈ {1, · · · , N}
}

(11)

In Formula (11), eij = aij, where aij represents the spatial correlations of nodes. It is
important to notice that the prior knowledge is a general knowledge.

While training the graph convolution network with Gori, the category of nodes is
unknown, and the matrix of co-occurrences expresses the relation of categories, so it
is unable to directly embed prior knowledge into graph convolution. To address this
problem, we propose a mechanism of prior knowledge embedding. Therefore, to realize
the embedding of knowledge in the training process, we traverse all nodes in the original
graph and consider the case in which a node is any class in C categories. Thus, Vori is
duplicated based on the number of categories.

Gnew = (Vnew, Enew) (12)

In Figure 13, from (I) to (II), Gnew is constructed by duplicating the nodes of Gori based
on the number of categories, as shown in Formula (13) and (14), where N is the number of
nodes in Gori and C is the number of categories.

Vnew = {viα, i ∈ {1, . . . , N}, α ∈ {1, . . . , C}} (13)

Enew =
{

e(iα,jβ), i, j ∈ {1, . . . , N}, α, β ∈ {1, . . . , C}
}

(14)
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new graph Gnew with prior knowledge embedding, as expressed in Formula (12); (III) is a classifier for classifying nodes,
which is a simple multi-layer perceptron (MLP). (IV) is the restoration of Gnew after classifying nodes.

In Formulas (13) and (14), viα denotes node vi with category α, vjβ denotes node vj
with category β, and e(iα,jβ) is the edge of viα and vjβ.

As explained in Section 3.5.1, the co-occurrence relation between categories is bidirec-
tional, so edges in new graph are bidirectional as well. Direct edges represent the effect
of neighboring nodes on the center node, and reverse edges represent the effect of center
nodes on neighboring nodes.

Thus, e(iα,jβ) = a(iα,jβ) or a′(iα,jβ), as expressed in Formula (15) and (16).

a(iα,jβ) = aij ×mαβ, mαβ ∈ M (15)

a′(iα,jβ) = aij ×mβα, mβα ∈ M (16)

In Formula (15) and (16), a(iα,jβ) denotes a direct edge that multiplies the spatial
correlation by the direct co-occurrence probability, and a′(iα,jβ) denotes a reverse edge that
multiplies the spatial correlation by the reverse co-occurrence probability.

Thus, co-occurrence probability as prior knowledge is embedded into the graph
network by combining with spatial correlations. Then, node features will aggregate in Gnew
to consider spatial correlations along with the co-occurrence probability.

From (II) to (IV), Gnew is restored to Gori with updated node features. In this process,
nodes in Gnew, each of which is generated by duplicating the same node in Gori for C times,
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are concatenated. Therefore, the updated node features will contain the information of all
categories. Then, these node features are projected into a hidden dimension. After classifi-
cation, the information of irrelevant categories in node features will be removed, and the
restoration from Gnew to Gori is accomplished.

The implementation of prior knowledge embedding is introduced in the next section.

Processes of Prior Knowledge Embedding

To better explain the details of the process, we use a flowchart in Figure 14 to express
our idea.
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Figure 14. Flow chart of knowledge embedding. The inputs include a spatial adjacency matrix A0, node features X0,
and co-occurrence matrix M. The output is updated node features X after knowledge embedding.

According to the process in Figure 14, the implementation of the above processes
includes four main steps: constructing the nodes of the new graph, constructing the edges
of the new graph, feature aggregation in the new graph, and graph restoration.

Step 1: Construct nodes of the new graph
X0 = { fi, i ∈ {1, . . . , N}} is a set of all node features in the original graph, where fi

is the feature of node vi. As mentioned before, we duplicate the feature of vi C times to
obtain { fi1, fi2, . . . , fic} corresponding to new nodes {vi1, vi2, · · · , vic}. This step is shown
in Formula (17).

X0 =


f1
f2
...

fN


N×D

, X = repeat
(

X0, C
)
=



f11
f12
...

f1C
f21
...

fNC



NC×D

(17)

In Formula (17), fN is the feature of the N-th superpixel blocks with dimensions of D,
and X0 ∈ RN×D are the features of nodes in the original graph. X ∈ RNC×D are features
of all nodes in the new graph obtained by repeating the process C times from the original
graph, so that the number of nodes in the new graph is N × C.
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Step 2: Construct edges of the new graph
New edges are obtained by the direct product operation between spatial correlations

of nodes and the co-occurrence probability of categories. As mentioned in the ’mechanism
of prior knowledge embedding’ section, the constructed edges of the new graph include
bidirectional edges:

(a) Construct direct edges of the new graph
As shown in Formula (18), A represents all direct edges and is obtained by the direct

product of A0 and M.

A= A0 ⊗M =

 a11 · · · a1N
...

. . .
...

aN1 · · · aNN


N×N

⊗

 m11 · · · m1c
...

. . .
...

mCC · · · mCC


C×C

=

 a11M · · · a1N M
...

. . .
...

aN1M · · · aNN M


N×N

=

 a(11,11) · · · a(11,NC)
...

. . .
...

a(N1,11) · · · a(NC,NC)


NC×NC (18)

In Formula (18), A =
{

a(iα,jβ)

}
, where i, j = 1, 2, . . . , N, α, β = 1, 2, . . . , C. After the

direct product is constructed, the direct edges of all nodes in the new graph are generated.
(b) Construct reverse edges of the new graph
Similar to direct edges, the construction of reverse edges is a direct product of A0 and

MT . MT ∈ RC×C is the transpose of M, and AT = A0 ⊗MT is executed to represent all
reverse edges. AT =

{
a′(iα,jβ)

}
.

After generating new nodes and new edges, the new graph is constructed.
Then, prior knowledge is integrated with the spatial adjacency matrix for aggregation.

Step 3: Feature aggregation in the new graph
As shown in Figure 14, fiα denotes the feature of the center node viα, and viα ∈ Vnew.

It is important to note that feature aggregation includes two processes. The first process is
feature aggregation with direct edges, and the second process is feature aggregation with re-
verse edges. After the loop operation, aggregated features with direct edges and aggregated
features with reverse edges are concatenated to obtain the center nodes’ integrated features:

(a) Aggregate neighbors’ feature ( f jβ) with direct edges.
Feature aggregation with direct edges represents the effect of neighbor nodes to center

node, as shown in Formula 19.

f direct
iα =

N

∑
j=1

C

∑
β=1

a(iα,jβ)· f jβ (19)

In Formula (18), f direct
iα is the aggregated feature of node vic with direct edges, and the

aggregation includes twice traverse. The first is single node with all categories, β = 1, . . . , C.
The second traverse is in all nodes, j = 1, . . . , N. Then obtain f direct

iα ∈ R1×D, i in 1, . . . , N.
(b) Aggregate neighbors’ feature ( f jβ) with reverse edges.
Feature aggregation with direct edges represents the effect of the center node on

neighboring nodes. This operation is expressed in Formula 20, similar to Formula (19).

f reverse
iα =

N

∑
j=1

C

∑
β=1

a′(iα,jβ)· f jβ (20)

In Formula (20), f reverse
iα is the aggregated feature of node viα with reverse edges.

Then, f reverse
iα ∈ R1×D is obtained, i in 1, . . . , N.

(c) Concat Bi-directional Feature
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After feature aggregation of the bi-edges, the aggregated features are concatenated in
Formula (21). fiα is the aggregated feature of node viα.

fiα = concat
(

f direct
iα , f reverse

iα

)
(21)

After concatenation, aggregated feature fiα is obtained, where fiα ∈ R1×2D, with i
in 1, . . . , N. The aggregated feature contains the effect of center nodes on neighboring nodes
and the effect of neighboring nodes on center nodes.

Step 4: Graph Restoration
As introduced before, Gnew needs to be restored to Gori. Firstly, new graph nodes that

are generated by duplicating from nodes in the original graph for C times are concatenated,
as shown in Formula (22).

X_restore = { fi} = {concat( fi1, fi2, · · · , fic)}, i = 1, 2, · · · , N (22)

In Formula (22), fi is the feature of node vi, ( fi1, fi2, · · · , fic) is a set of feature compo-
nents of fi, and X_restore ∈ RN×2CD represents node features after concatenation.

Then, X_restore is projected to the output dimension with trainable parameters as
shown in Formula (23).

X_new = X_restore ∗WGCN (23)

In Formula (23), WGCN ∈ R2CD×D′ represents trainable parameters used to project
features into the hidden dimension, and X_new ∈ RN×D′ represents node features where
D′ is the output dimension of the node features.

Finally, all nodes are classified, and the redundant information of irrelevant categories
is removed through the classifier shown in Formula (24).

Output = ϕ(FC( f1, f2, · · · , fN)) (24)

In Formula (24), ( f1, f2, · · · , fN) represents the updated node features, FC represents
a fully connected layer with SoftMax that obtains probability vector for prediction, and ϕ
represents the argmax operation that selects the category with the highest probability as
the predicted category.

3.6. Discussion

Unlike the traditional aggregation mechanism, our KGGCN model proposes a mech-
anism of prior knowledge embedding before graph convolution. Then, after feature
projection, node features integrate spatial correlations and prior geographic knowledge.

3.7. Depth of Network and Loss Function
3.7.1. Depth of Graph Neural Network

The Cluster-GCN model has three graph convolution layers and is our baseline model.
The first two layers of graph convolution aim to update nodes’ feature. Every node in the
graph is traversed as a center node, neighboring node features are aggregated with the
center node, and then graph convolution is performed to update the center node feature.
The third graph convolution layer is used for classification, and the output of this layer is
the classification probability matrix of nodes.

The KGGCN Module in our model is composed of two KGGCN layers and one fully
connected layer (fc layer). The two graph convolution layers are used to embed prior
knowledge into the graph to extract node features with geographic prior knowledge,
and the fc layer aims to achieve node feature classification.

3.7.2. Loss Function

Loss functions in our model can mainly be divided into two different parts.
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As introduced in Section 3.4, one part of loss is used for spatial correlation learning in
the spatial correlation recognition module. This part is composed of cross-entropy loss and
margin loss (Formulas (4)–(6)). Cross entropy loss is used to classify spatial correlations,
and margin loss aims to improve the performance of module feature extraction with
positive and inverse relationships in the relative position. This part of the loss is used for
pretraining so that the parameters of spatial correlation recognition will not be optimized
in the next modules.

Another part of loss is used for the KGGCN Module. This part of the loss is cross-
entropy loss, which aims to calculate the error between the node prediction probability
vector and the node label one-hot vector, as shown in Formula (25).

loss = − 1
N

N

∑
i

yi ∗ log yi (25)

4. Experiments
4.1. Study Area and Introduction of Samples

This study involves Wenchuan County, Sichuan Province, and the surrounding
study area, with dimensions ranging from North 30◦28′41′′ to North 30◦32′29′′ and East
114◦22′42′′ to East 114◦28′11′′. We select a total of 1680 patches from the research area to
obtain enough samples to train and validate the network. We randomly divided all samples
into a training set with 1280 samples and a validation set with 400 samples. Each sample is
composed of a remote sensing image with a size of 224 × 224, a manually classified ground
truth image with the same size of 224 × 224, and an object segmentation image from a
remote sensing image processed by an open-source superpixel algorithm.

4.2. Experimental Environment and Hyper-Parameters

We conduct experiments with the hardware environment of RTX 3080 GPU and
64G RAM. Meanwhile, the software environment includes ubuntu16, cuda10.1, and py-
torch 1.6.0.

Experiments involve a traditional semantic segmentation model named U-Net,
the Cluster-GCN model, used as the baseline of graph convolution, and our model (KG-
GCN). According to previous experiments, the feature dimension of the last layer in U-Net
is set as 512, batch size is 32, the learning rate is 3e-4, and the total training number of epochs
is 300; the baseline model Cluster-GCN needs graph convolution to be performed three
times, the output dimension of the two first graph convolution layers is 64, and the output
dimension of the last graph convolution layer is 13 (number of classes). Our KGGCN
model requires two graph convolution layers and one fully connected layer. The output
dimensions of the graph convolution layers are all 64, and the dimension of the fully
connected layer is 13 (number of classes). For Cluster-GCN and KGGCN, batch sizes are
all 1, learning rates are 1 × 10−3, the numbers of training epochs are 500, and dropout rates
are 0.2.

4.3. Loss Curves

We use the Adam optimizer in the three models and the loss curves are demonstrated
in Figure 15.

The loss curve expresses the convergence tendency of the model. As the number
of iterations increases, the loss decreases and finally tends to be stable. U-Net basically
converges after training for up to 300 epochs. Cluster-GCN and our KGGCN both converge
when they reach 500 training rounds. Therefore, fewer training rounds are needed for
U-Net to converge than for Cluster-GCN and KGGCN to converge. For U-Net, the number
of the training epoch is 300. For Cluster-GCN and KGGCN, the numbers of training
epochs are 500. When all models converge, the losses of U-Net and Cluster-GCN are nearly
0.95, and the loss of KGGCN is approximately 0.5. Therefore, the KGGCN model is more
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effective than the U-Net and Cluster-GCN models in the semantic segmentation of remote
sensing images.
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4.4. Analysis of Total Accuracy

To confirm the effectiveness of our KGGCN model, we compare the classification
confusion matrices of U-Net, Cluster-GCN, and our KGGCN model using our dataset.
Figures 16–20 are confusion matrices. To compare with U-Net, the object-based confusion
matrix is converted to a pixel-based confusion matrix.
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According to the confusion matrices in Figures 16–20, the pixel segmentation accura-
cies of U-Net, Cluster-GCN, and the KGGCN (our model) are 0.8667, 0.8709, and 0.9074,
respectively. The object classification accuracy of Cluster-GCN is 0.7665, while that of the
KGGCN (our model) is 0.8496. U-Net is a pixel-based model, so it does not have object
classification accuracy. According to the pixel segmentation performance, our model’s
accuracy is 4.1% higher than that of U-Net and 3.7% higher than that of Cluster-GCN.
According to the object classification performance, our model’s accuracy is 8.3% higher
than that of Cluster-GCN. Thus, our model achieves better performance in the semantic
segmentation of remote sensing images.

Additionally, we further compare the three networks in other classification metrics,
and the results are shown in Table 1.

Table 1. The mIOU, Kappa, and F1-Score of the three models.

Accuracy mIOU Kappa F1-Score

U-Net 0.867 0.699 0.850 0.806
Cluster-GCN 0.871 0.769 0.872 0.855

KGGCN(ours) 0.907 0.832 0.916 0.905

As shown in Table 1, the KGGCN model also has a significantly better accuracy, mIOU,
Kappa, and F1-score than the other models. The bold indicates the result of our model.

Table 2 shows the pixel-based accuracies of categories in three models.

Table 2. The pixel-based accuracies of the three models in segmentation for all classes.

Flat_Field Landslide Grass Waterbody Village Highway Road City Terraces Strip_Field City_Grass Forest City_Forest

U-Net 0.931 0.913 0.760 0.973 0.830 0.794 0.649 0.925 0.925 0.928 0.288 0.851 0.670
Cluster-GCN 0.930 0.965 0.695 0.965 0.859 0.787 0.649 0.942 0.905 0.894 0.320 0.911 0.516

KGGCN 0.921 0.934 0.852 0.949 0.923 0.899 0.846 0.924 0.900 0.924 0.764 0.911 0.833

According to Table 2, we can find that:

• U-Net and Cluster-GCN obtain bad results when classifying city_grass; their accuracies
are 0.288 and 0.320, respectively. According to the confusion matrices in Figures 16 and 17,
in all samples where city_grass was classified incorrectly, more than 50% of the
city_grass samples were classified as grass. However, the KGGCN accuracy for
city_grass classification is 0.764, and only a few city_grass samples are misclassified
as grass.
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• U-Net and Cluster-GCN also obtain bad results when classifying city_forests; their ac-
curacies are 0.670 and 0.516, respectively. According to the confusion matrices in
Figures 16 and 17, among all samples that were classified incorrectly, most city_forest
samples were classified as forest. In Figure 18, KGGCN’s accuracy for city_forest
classification is 0.833, and only few city_forest samples are misclassified as forest.

Additionally, we add the performance and system resource requirements of the three
networks, as shown in Table 3. Params represents the size of the model. Mem represents
the training GPU memory consumption. FLOPs represents the calculation amount. Inf ime
represents the inference speed of model, which can refer to the execution times of models.

Table 3. The performance and system resource requirements of three networks.

Model Params (M) Mem (GB) Flops (G) Inf Time (FPS)

U-Net 8.64 8.85 12.60 43.01
Cluster-GCN 0.08 1.07 1.21 88.21

KGGCN (ours) 0.08 1.05 1.11 89.43

As shown in Table 3, the KGGCN model has obvious advantages in model size,
resource occupation, calculation amount, and inference speed.

In a word, compared with U-Net and Cluster-GCN, KGGCN achieves better perfor-
mance in semantic segmentation in remote sensing images.

5. Analysis of Typical Samples

As expressed in Section 1, the problem of “the reversal of the first law of geography”
cannot be solved by directly using spatial correlation as edges. By integrating prior
knowledge with spatial correlations, these problems can be effectively solved. To further
analyze the advantage of the KGGCN model, we compare the result of Cluster-GCN
(baseline) and KGGCN (ours) in atypical samples. According to Section 1, samples facing
with “the reversal of the first law of geography” can be divided into two kinds:

One is samples with “different objects with the same spectrum”; superpixel blocks
with similar textures and spectra might be different classes. Samples are demonstrated in
Figure 21.
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Then, we compare the performance of KGGCN model with Cluster-GCN by analyz-
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(1) Analysis of a sample with “different body with the same spectrum object” 

As shown in Figure 23, node 1 is city_grass, misclassified as flat_field in Cluster-GCN 
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Figure 21. The result of two models in samples with “different objects with the same spectrum”.
In (a), city_grass (B) is misclassified as flat_field in Cluster-GCN and classified correctly in KGGCN.
In (b), city_grass (D) is misclassified as flat_field in Cluster-GCN and classified correctly in KGGCN.

The other is samples with “scene distortion”. Some geo-objects in these samples are
clipped improperly. Samples are demonstrated in Figure 22.
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Then, we compare the performance of KGGCN model with Cluster-GCN by analyzing
specific sample and discuss the advantage of embedding prior knowledge.

(1) Analysis of a sample with “different body with the same spectrum object”

As shown in Figure 23, node 1 is city_grass, misclassified as flat_field in Cluster-GCN
and classified as city_grass correctly in KGGCN. The two models both obtain correct
classifications for other nodes.
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Figure 23. Demonstration of one sample. (a) is raw remote sensing image, and superpixel blocks are marked in the image;
(b) is the ground truth of this image; (c) is the prediction of Cluster-GCN; (d) is the prediction of KGGCN.

The next analysis comes from two parts: nodes’ feature and the effectiveness of prior
knowledge embedding.

(a) Nodes’ feature—foreign body with the same spectrum.
As shown in Figure 24, flat_field is similar to city_grass in spectral feature. During the

feature update of city_grass, after aggregating a large number of flat_fields’ feature, city_grass
might be misclassified as flat_field.
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are ‘different objects with similar spectrum’.
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(b) The effectiveness of prior knowledge embedding.
According to our definition of weights in spatial adjacency matrix, weight represents

spatial correlation between neighboring node and center node.

f ′i =
n

∑
j=0

aij ∗ f j (26)

In Cluster-GCN, node features are aggregated in the Formula (26); f ′i represents
updated center node I; all neighboring nodes’ feature f j will multiply corresponding
weights aij to aggregate. Node 1 (city_grass) is the center node, and the weights of all
neighboring nodes are shown in Table 4. Nodes in Table 4 correspond to superpixel blocks
in Figure 23.

Table 4. Weights of all neighbor nodes.

Object 1
(City_Grass Itself) 2 (City) 3 (Road) 4 (Grass) 5

(Flat_Field)
6

(Flat_Field)
7

(Flat_Field)
8

(Flat_Field)
9

(Flat_Field)
10

(Flat_Field)

Weight 1 0.5 0. 5 0.25 0.25 0.25 0.125 0.125 0.125 0.125

As shown in Table 4, classes of neighbor nodes include city, road, grass, and flat_field.
Features of the same class tend to be similar, so the feature aggregation of node 5 can be
simplified as Formula (27).

f ′1 = f1 + a12 ∗ f2 + a13 ∗ f3 + a14 ∗ f4 + (a15 + a16 + a17 + a18 + a19 + a110) ∗ f5 = f1 + 0.5 f2 + 0.5 f3 + 0.25 f4 + f5 (27)

In Formula (27), f ′1 is the feature of node 1 after aggregation, f1 represents the orig-
inal feature of node 1, f2 represents the feature of city, f3 represents the feature of road,
f4 represents the feature of grass, f5 represents the feature of flat_field.

In our KGGCN model, the co-occurrence of probability between city_grass and neigh-
boring classes can be used as prior knowledge to guide feature aggregation. Table 5 shows
the comparison of weights of neighboring classes in Cluster-GCN (baseline) and KGGCN
(our model).

Table 5. Comparison of weights in Cluster-GCN and KGGCN.

City_Grass Itself City Road Grass Flat_Field

Co-occurrence probability 1 0.95 0.71 0.28 0.1
Weights in Cluster-GCN 1 0.5 0.5 0.25 1

Weights in KGGCN 1 0.475 0.355 0.07 0.1

As shown in Table 5, the weights of neighboring classes are changed after knowledge
embedding. Except for city_grass itself, all neighboring classes’ weights are decreased.
City!decreases from 0.5 to 0.475, road from 0.5 to 0.355, grass from 0.25 to 0.07, and flat_field
from 1 to 0.1. Apparently, in Cluster-GCN, during aggregation, the influence of flat_field is
far more than other classes, even equal to city_grass itself, so the model will distinguish
between city_grass and flat_field. However, after knowledge embedding in KGGCN,
the effect of flat_field is drastically reduced, the influence of “different objects with the same
spectrum” will be largely reduced, and then our model can achieve better performance.

(2) Analysis of a sample with “relation distortion”

As shown in Figure 25, node 1 is forest, classified as city_forest incorrectly in Cluster-
GCN and classified as forest correctly in KGGCN. Two models both obtain correct classifi-
cation for other nodes.
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According to the result, we analyze the effectiveness of prior knowledge embedding.
Similar to (1) in this section, the weight distribution of all neighbor nodes is expressed in

Table 6, and the comparison of weights in Cluster-GCN and KGGCN is shown in Table 7.

Table 6. Weights of all neighbor nodes.

Object 1
(Forest Itself)

2
(Waterbody)

3
(City_Forest)

4
(City_Forest) 5 (Forest) 6

(City_Forest) 7 (City) 8
(City_Forest) 9 (City) 10

(City_Forest)

Weight 1 0.5 0.25 0.25 0.25 0.25 0.25 0.125 0.125 0.125

Table 7. Comparison of weights in Cluster-GCN and KGGCN.

Forest Itself City_Forest Waterbody City Forest
(Neighbor)

Co-occurrence probability 1 0.044 0.2 0.096 1
Weights in Cluster GCN 1 1.125 0.5 0.25 0.25

Weights in KGGCN 1 0.0495 0.1 0.024 0.25

According to Table 6, classes of neighbor nodes include forest, city_forest, waterbody,
and city.

As shown in Table 7, the weights of neighbor classes are changed after knowledge
embedding. Except for forest, all neighbor classes’ weights are decreased. City forest
decreases from 1.125 to 0.0495, waterbody from 0.5 to 0.1, and city from 0.25 to 0.024.
As introduced before, city and city_forest are irrelevant classes to forest. In Cluster-GCN,
city_forest and city belong to city scene, and they will cause the misclassification of forest.
In KGGCN, the weights of city_forest and city are reduced to nearly zero.

Therefore, after knowledge embedding, the impact of irrelevant classes will be re-
strained, and then relevant classes will become more important. By embedding prior
knowledge, “the reversal of the first law of geography” can be effectively solved.

(3) Discussion

Compared with the baseline model (Cluster-GCN), by adding the co-occurrence
probability as prior knowledge into graph convolution, the KGGCN model can effectively
solve the problem of “the reversal of the first law of geography”.

6. Supplementary Experiments of Hyperspectral Image (HSI) Classification

The main work of our KGGCN network is the semantic segmentation of high-resolution
remote sensing images. To evaluate the generalization ability of the model, we have sup-
plemented the experiment of HSI classification.

HIC is a promising but challenging task, which has been a long-researched task with
wide applications such as weather forecasting, disaster prevention, and mineral exploration.
It is a meaningful attempt to apply our model in HSI classification. In order to evaluate the
performance of our model in HSI classification, we chose to train our model on the Indian
Pines dataset.



Sensors 2021, 21, 3848 26 of 33

6.1. Comparison of Datasets

Hyperspectral remote sensing images have a large number of bands. The spectral
resolution of these images is relatively high. For example, the spectral resolution of the
Indian Pines dataset is 10 nm. Because their spatial resolution is relatively low, the features
of hyperspectral images are concentrated on the spectral dimension instead of spatial
perspective.

The spatial resolution of high-resolution remote sensing images is generally at sub-
meter level. There are several bands inside these images, of which the spectral resolution is
relatively low at the same time. For example, the spectral resolution of the (Gaofen Image
Dataset) GID [41] dataset is about 100 nm. That is the reason why high-resolution remote
sensing images can contain abundant spatial features but relatively poor spectral features.

6.2. Dataset: Indian Pines Dataset

The scene is composed of 145× 145 pixels and 220 spectral bands. There are 16 land-
cover categories involved in this scene. Similar to methods in [42–48], we remove 20 water
absorption channels and noise channels and keep 200 channels.

6.3. The Division of Training Set and Test Set

Referring to the data set division in the related methods [42–47] of hyperspectral
image classification, the samples are divided into a training set and test set, as shown in
Table 8. For each category, 30 labeled pixels are randomly selected for the training set. If the
number of pixels in the corresponding category is less than 30, 15 pixels will be randomly
selected for the training set. All the remaining pixels are used as the test set.

Table 8. Indian Pines dataset samples statistics.

ID Class #Labeled #Unlabeled

1 Alfalfa 30 16
2 Corn–notill 30 1398
3 Corn–mintill 30 800
4 Corn 30 207
5 Grass–pasture 30 453
6 Grass–trees 30 700
7 Grass–pasture-mowed 15 13
8 Hay–windrowed 30 448
9 Oats 15 5

10 Soybean–notill 30 942
11 Soybean–mintill 30 2425
12 Soybean–clean 30 563
13 Wheat 30 175
14 Woods 30 1235
15 Buildings–grass–trees–drives 30 356
16 Stone–stell–towers 3 63

During training, 90% of the labeled examples are utilized to learn the network param-
eters, and the remaining 10% are used as validation set for hyperparameter tuning.

6.4. Network Training

Our KGGCN model is trained on the Indian Pines dataset. Data flow in our model is
shown in Figure 26.
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Figure 26. Data flow in our model. (a) is the original hyperspectral image. (b) shows the superpixels segmented by SLIC
algorithm. (c) are node features. (d) is a spatial adjacency matrix. (e) is the prediction result of our model.

The number of bands of the Indian Pine dataset is 220, and the spatial resolution is
generally at the meter level, so the characteristic information of hyperspectral images is
relatively concentrated in the spectral part. 2-D convolution in our model cannot effectively
extract spatial information.

We adjusted the feature extraction method in the network structure, similar to the feature
extraction method in these methods [42–46]. The feature of each node (i.e., superpixel) is the
average spectral feature of the pixels involved in the corresponding superpixel blocks. In this
case, the size of the node feature is 946× 200.

Apart from obtaining node features, all other parts are the same as our methods in
Section 3. Finally, the model outputs the prediction result.

6.5. Hyper-Parameter Settings

The KGGCN module requires two graph convolutional layers and a fully connected
layer. The output dimension of the graph convolutional layer is 64, and the output dimen-
sion of the fully connected layer is 16. Batch size is set to 1, learning rate is set to 1e-30.001,
and dropout is set to 0.4. The number of training rounds is 3000.

6.6. Experimental Results

The classification results of our model in the Indian Pines dataset are demonstrated in
Figure 27.
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Figure 27 represents the confusion matrix of our model in test set and demonstrates
the accuracy of all categories. According to Figure 27, our model is less effective in
classification for a few categories, such as grass-pasture-mowed and soybean–notill. For all
other categories, our model achieves good performance.

Additionally, we further analyse the results in other metrics, as shown in Figure 28.
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Figure 28 demonstrates statistical metrics, including precision, recall, and f1-score
of each category. Macro avg in Figure 28 denotes the arithmetic average of a metric in
all categories. Weighted avg in Figure 28 denotes the weighted average of a metric in
all categories.

The macro avg of precision is 0.87. Precisions of alfalfa, grass-pasture-mowed, and oats
are 0.5, 0.69, and 0.63, respectively, which are lower than 0.87. The reason for the poor
classification effect is the small number of samples in these classes. The weighted avg of
precision is 0.93. Similarly, f1-score of alfalfa, grass-pasture-mowed, and oats are 0.65, 0.76,
and 0.77, respectively, which are lower than macro avg of f1-score.

All these metrics reflect the classification effect of the model for each category. As shown
in Figure 28, our model is less effective in categories with small sample size, including al-
falfa, grass-pasture-mowed, and oats. For other categories, our model achieves good
performance in HSI classification. Then, we compared our model with other methods.

Several state-of-the-art methods are used for comparison with our model, includ-
ing S2GCN [44], MDGCN [45], MDGCN_AGL [46], and Fast_3D_CNN [47]. The results
of the Indian Pines dataset are shown in Table 9.

Table 9. The comparison of models in Indian Pines dataset.

OA AA Kappa

S2GCN 0.8849 0.9299 0.8800
MDGCN 0.9347 0.9624 0.9255

MDGCN-AGL 0.9466 0.9537 0.9392
Fast_3D_CNN 0.9775 0.9454 0.9744
KGGCN (ours) 0.9294 0.9350 0.9190

Table 9 demonstrates the comparison of the OA (overall accuracy), AA (average accu-
racy), and kappa coefficients of our model on the test set with other methods.
According to the table, Fast_3D_CNN is the most efficient model in the Indian Pines dataset.
The performance of our model is better than S2GCN and is inferior to other models.
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Additionally, we visualized the classification result of our model, as shown in Figure 29.
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Figure 29. The classification result of our model. (a) is the ground truth; (b) is the classification result
of our model.

In a word, our model achieves good performance in HSI classification, but at the same
time, there is still room for improvement.

Meanwhile, in order to check the quality of labeled training examples and their effects
on final classification, we trained our model with the number of labeled samples that is set
to be 5, 10, 15, 20, 25, and 30. Results are shown in Figure 30.
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Figure 30. OA, AA, and kappa under different numbers of labeled examples per class.

In Figure 30, it can be seen that the model can achieve better performance with the
larger number of labeled examples.

To check the quantity of labeled training examples and their effects on the final result,
we randomly allocated the total sample into labeled and unlabeled samples in the same
proportion as the previous experiment and conducted 10 independent Monte Carlo trials,
as shown in Figure 31.

In the 10 experiments, the mean values of OA, AA, and kappa are 0.925, 0.935,
and 0.918, respectively, and the standard deviations are 0.0025, 0.0024, and 0.0016,
respectively. These prove that the quality and quantity of labeled training examples
are reasonable in our experiments, and the experimental results are stable and reliable
as well.
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6.7. Analysis of Results

We analyzed the experimental results from the following two aspects:

• Feature extraction. The main work of KGGCN is the semantic segmentation of high-
resolution remote sensing images, where 2-D convolution is used to extract image
features. However, in HSI, each pixel position contains rich spectral information,
which is different from high-resolution remote sensing images. Compared with the
method of feature extraction in our model, 3-D convolution has stronger capabilities
for extracting the spectral information of HSI.

• Geographic prior knowledge. In experiments of semantic segmentation of remote
sensing images, the dataset contains 1680 images, as expressed in Section 4. We can
count the co-occurrence probability of each category based on all samples as geo-
graphic prior knowledge. In the HSI dataset, there is only one single image, and the
co-occurrence probability of each category cannot be effectively obtained. The geo-
graphic prior knowledge is ineffective in this experiment. Thus, in HSI classification,
the performance of our model is limited.

7. Conclusions

In this paper, to deal with the problem of insufficient application of geographic
object-level semantic information (prior knowledge) and spatial correlations in semantic
segmentation of remote sensing images, we propose a graph neural network model based
on geo-object prior knowledge. This model uses the mechanism of prior knowledge
embedding to integrate graph convolution with co-occurrence probability. Then, the node’s
receptive field is extended, and the limitation of the sample context is broken through.
Experimental results prove that our KGGCN model improves the pixel accuracy by almost
3.7% compared to that of Cluster-GCN, which is treated as the baseline model. The analyses
of the results in Section 5 prove that the integration of prior knowledge will achieve better
performance, especially in dealing with atypical samples. In addition, we evaluate our
model in the HSI dataset, and the performance of our model is slightly inferior to state-of-
the-art models, as shown in Section 6.

In further research, we will focus on the following aspects:

• Scale of segmentation. In remote sensing images, different types of geo-objects
always come with different segmentation scales, so that it is important to exploit the
approaches of balancing them.

• Automatic acquisition of knowledge. In this paper, prior knowledge is based on man-
ual statistics and analysis, which tend to be affected by subjective factors, and they are
also not efficient. To improve the method of obtaining prior knowledge, an automatic
learning and adjustment method will be planned in our further research.
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• Extension of the model in HSI. In future work, we will study the interpretation of
HSI and conduct 3-D convolution to extract features. Meanwhile, we will explore the
approach of integrating prior geographic knowledge with HSI.
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