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Abstract: Renewable energy microgeneration is rising leading to creation of prosumer communities
making it possible to extract value from surplus energy and usage flexibility. Such a peer-to-peer
energy trading community requires a decentralized, immutable and access-controlled transaction
system for tokenized energy assets. In this study we present a unified blockchain-based system for
energy asset transactions among prosumers, electric vehicles, power companies and storage providers.
Two versions of the system were implemented on Hyperledger Fabric. Assets encapsulating an
identifier or unique information along with value are modelled as non-fungible tokens (NFT), while
those representing value only are modelled as fungible tokens (FT). We developed the associated
algorithms for token lifecycle management, analyzed their complexities and encoded them in smart
contracts for performance testing. The results show that performance of both implementations are
comparable for most major operations. Further, we presented a detailed comparison of FT and
NFT implementations based on use-case, design, performance, advantages and disadvantages. Our
implementation achieved a throughput of 448.3 transactions per second for the slowest operation
(transfer) with a reasonably low infrastructure.

Keywords: blockchain; prosumer; fungible; NFT; peak shaving; smart grids; trading; demand
response

1. Introduction

Renewable energy, especially solar energy is being increasingly integrated into the
energy grid as photo voltaic installations continue to mushroom in residential contexts.
This rise in adoption is fuelled partly by financial incentives like government programs
and monetary benefits of local energy production [1] and in part by rising environmental
awareness [2]. A new category of energy users called the prosumers [3] has been created,
who generate a portion of the energy they consume through their local microgeneration
devices. Several prosumers, when collocated give rise to prosumer communities or micro-
grids [4] and can create a local market for sale and purchase of surplus renewable energy.
This creates a scenario for peer to peer energy transactions. Pilot studies in peer to peer
prosumer trading [5], have been conducted with different business models [6] and have
shown its importance in facilitating local power and energy balance [7]. Prosumer commu-
nities can also choose to store surplus energy for later use by exploring energy storage at
the community level. Energy Storage as a service [8] is a burgeoning new business that
takes over the logistics of setting up and maintaining a large scale storage facility and
offers storage credits to the users for purchase. Such an arrangement can offer significant
economic benefits [9]. Community level energy storage can facilitate energy transactions as
energy can be supplied from the seller to the buyer via this storage, thus reducing the need
for wired connections between all the members of the community. In addition, surplus
stored energy can be used for powering Electric Vehicle (EV) charging stations, thus offer-
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ing more opportunities for monetizing the surplus energy. EV batteries, when not in use
can be rented out to the community level storage provider to add to the storage capacity.
Mahmud et al. [10] proposed a system for using community level storage for charging EVs
and presented a decision tree based algorithm for peak load reduction through coordinated
management of EV, photovoltaics and community level storage.

Peak demand periods [11] present a challenge to the grid operator as they may require
them to over provision grid capacity in order to maintain grid stability, thus increasing the
marginal cost of electricity. Peak shaving strategies such as demand side response [12] are
thus of particular importance to grid operators. An incentive based, direct to consumer
demand response mechanism can be considered, allowing the power company to offer
reward tokens to their customers in exchange for energy flexibility. As the prosumers
are located in close proximity to each other, considering them as a prosumer community
will allow the grid operator or power company to consider the required energy flexibility
for the community as a whole [13]. In addition, the community structure can be used to
increase interest and engagement by offering game based energy flexibility tasks [14].

Prosumers, EV owners, Power Companies and Storage Providers, by virtue of their
relationships are stakeholders in a business network for transacting energy assets such as
energy units, storage credits and reward tokens. An integrated solution is required to on-
board the stakeholders and encapsulate the business network and relationships. As several
small scale producers and consumers will constitute the network, a decentralized system
is necessary in order to prevent the management from being concentrated in the hands
of a single central entity. Moreover, all stakeholders must agree on the business logic
and the transactions of energy assets must be immutable, transparent and verifiable to
all. Provenance tracing of assets should also be enabled in order to make the system
more trustworthy.

Blockchain [15] is a distributed shared ledger that fulfils these requirements [16,17].
Due to its characteristics of decentralization and immutability it prevents any member
from unilaterally making decisions on the network [18,19]. Members are required to seek
consensus before adding any transactions to the ledger and transactions are transparent
to all members. Transaction history of assets on the blockchain can be readily traced for
establishing provenance.

Blockchain implementations can be broadly categorized as permissioned or permis-
sionless. Blockchain platforms such as Bitcoin [15] and Ethereum [20] are permissionless
and allow anyone to join the network and perform transactions. Due to the anonymity
inherent in these systems, computationally expensive consensus mechanisms such as Proof
of Work are used due to the lack of any trust between transacting parties. Permissioned
blockchain platforms such as Hyperledger Fabric [21] only permit authenticated parties to
join the network and can have defined access permissions to dictate the privileges of each
network member. As transactions are traceable to the invoking member, dependence on
resource intensive consensus mechanisms is eliminated, thus reducing the operating cost.

Authentication of clients also helps the network satisfy know your customer and anti
money laundering requirements [22] imposed by many countries. Moreover, Hyperledger
Fabric supports the encoding of business logic into smart contracts using popular general
purpose programming languages such as Golang [23] to create and modify assets or
tokens on the network where a token is defined as anything of value. The algorithms
defining the business logic encoded as smart contracts in this work have been presented in
Algorithms 1–11 .

Hyperledger Fabric’s modular architecture allows the operator to tailor implemen-
tation of trust models, transaction format and consensus mechanisms to the use case.
Gur et al. [24] used Hyperledger Fabric to implement an energy metering system with
privacy protection for smart grids. Che et al. [25] implemented a prosumer transaction
system using Hyperledger Fabric with a focus on transaction authentication mechanisms.
These features of Hyperledger Fabric thus, make it particularly suited for developing a
peer to peer energy transaction system.
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Such a system would involve three main actors/organizations. The Transaction
Platform would be the first organization and it would include all the small scale energy
prosumers and EV owners. The Power Company that supplies electricity to the community
would be the second organization. Finally, the Storage Provider which stores the renewable
energy generated by the prosumers would be the third organization in this network. In our
previous work [26] we highlighted the need for an energy transaction system for prosumer
communities and discussed the applicability of blockchain to build such a transaction
system. Subsequently [27], we identified the potential stakeholders in this organization
and proposed and defined tokens to encapsulate different types of energy assets.

Assets on the blockchain are represented by tokens in order to facilitate transactions.
Tokens are broadly categorized into two categories fungible tokens (FT) and non fungible
tokens (NFT), based on whether they are identical and interchangeable or not. FT are
interchangeable and identical in all respects and are divisible. On the other hand NFT
cannot be substituted for other tokens of the same type and are indivisible. In an energy
transaction system, energy assets with an attached Guarantee of Origin [28] have a unique
identifier and are not interchangeable and can be implemented as NFT. Conversely, if energy
assets are considered interchangeable, then tokens representing them can be broken up
and traded in parts and can be implemented as FT. Both implementations are relevant in
energy transaction systems.

Implementation of NFT and FT requires defining the lifecycle of the tokens from
being issued to being redeemed. Methods and algorithms to take the tokens through the
lifecycle need to be created and implemented and any challenges that arise need to be
identified and suitably addressed. Comparative analysis of both types of tokens in terms
of design, implementation, performance and limitations can provide a guide for future
implementations of a transaction system. Mezquita et al. [29] proposed an architecture
for transaction of fungible energy transactions on the Ethereum blockchain. However,
this work did not feature an implementation of their proposal. Pop et al. [30] proposed a
blockchain based peer to peer energy market for NFT focusing on aspects such as prosumer
access control, automation of bids and offers matching. However, to the best of the our
knowledge, a comparative analysis of the design, performance and limitations of FT and
NFT based on an implementation has not been studied.

The motivation of this study is to design, implement and performance test a unified
transaction system for energy assets represented as Fungible and Non Fungible Tokens
that incorporates all the stakeholders and business relationships into a transparent and
decentralized solution in order to address the identified gap in literature. Such a system
would enable transactions of energy assets over a decentralized peer to peer network.
A transparent system with inherent characteristics of immutability, authentication, access
control and provenance tracing as well as the ability to encode business logic into smart
contracts would enable automation of transactions and can be adapted for future imple-
mentations of microgrid transaction systems. Finally, performance is an essential aspect
of a transaction system, which can be characterized based on metrics such as transaction
throughput and latency.

Based on the aspects discussed in this section and the motivations outlined, the main
contributions of this work include the following:

1. A Transaction Platform that includes the Prosumers and the EV owners, the Power
Company and the Storage Provider were identified as stakeholders and represented
as the three organizations in this business network. The trading relationships and
energy assets that are transacted in this system were outlined. The energy assets
were encapsulated in a blockchain token structure with token level consensus policies
reflecting the identified stakeholders.

2. The main stages in the lifecycle of all tokens were defined as Create, Bid, Transfer and
Redeem. The methods and algorithms in order to take the token through the lifecycle
were separately developed for NFT and FT due to the different characteristics of these
token implementations.
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3. A proof of concept was implemented on the Hyperledger Fabric blockchain platform
and the developed algorithms were encoded as smart contracts. Experiments were
designed and executed in order to performance test the implementation based on
transaction throughput and transaction latency metrics.

4. The limitations of the study, proposed solutions and future avenues for investigation
were identified.

5. Based on the experiments and analysis, NFT and FT implementations were critically
compared in terms of design, performance and limitations.

The remainder of the work has the following structure: Section 2 presents an overview
of the system, describing the design rationale, the system participants and tokens and the
relations between them. In Section 3, we delve deeper into the design and implementa-
tion of the tokenized energy assets, describe the design requirements and address those
requirements by presenting methods and algorithms that will take the token through the
lifecycle for both NFT and FT versions. Section 4 describes the experimental infrastructure
and presents the execution details of our experiments and the results obtained, as well as a
comparative analysis of NFT and FT based on performance and limitations. In Section 5
we present the contributions of our work in the context of related works. Section 6 presents
the salient conclusions from this study.

2. System Overview

The blockchain network consists of three organizations- the Transaction Platform,
the Power Company and the Storage Provider. Each organization can have several client
identities. A client identity is used by a registered user of the organization in order to
identify themselves and access the network resources. The identity determines a user’s
access within the system.

System Participants and Tokens

Prosumers who want to sell their excess energy or buy energy from other prosumers,
as well as EV owners who want to charge their batteries can be registered users of the
Transaction Platform organization. As members of the network, prosumers can earn reward
tokens for participating in demand response tasks, while EV owners can earn reward tokens
for renting out their batteries as temporary storage devices. Moreover, prosumers can also
use the Transaction Platform to access the Storage Provider and store or withdraw their
excess stored energy.

Power Companies can directly enlist customers in their demand response efforts by
offering reward tokens. Incentivization tokens can be offered to the prosumers for accom-
plishing tasks such as estimating their own consumption accurately in advance. Presenting
tasks such as not running the air conditioner on a hot day in a gamified context can increase
engagement and be rewarded by Gamification tokens. Representatives of power companies
can create and offer Incentivization and Gamification tokens, with associated penalties for
reneging, for the prosumers to bid on. We consider bidding upon a token as registering
binding interest in the token without negotiating the price or value. If the Power Company
has access to the energy stored with the Storage Provider, this may further aid their demand
response efforts.

The Storage Provider organization handles all the complexities and tasks of setting
up a community level energy storage and abstracts away the details from the prosumers.
The Storage Provider can be a separate business or can be owned by the Power Company.
Pilot studies on the use of community level batteries for peak shaving are currently un-
derway and in this case, often the community battery is also owned and operated by the
Power Company [31].

In this system we consider, six different types of tokens in the system in order to fulfil
six different functionalities.

1. EUnit energy tokens for transacting renewable energy between prosumers
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2. EVUnit energy tokens for battery charging transactions between prosumers and
EV owners.

3. InUnit reward tokens offered to prosumers by the Power Company for tasks such as
consumption estimation.

4. GaUnit reward tokens offered to prosumers by the Power Company for energy
flexibility in a gamified context.

5. StUnit energy storage tokens for managing the community level energy
storage transactions.

6. EStUnit reward tokens for managing the use of EV batteries as energy storage.

Figure 1 presents an overview of the system participants and the relationships be-
tween them.

Figure 1. System Participants.

The implementation of the tokens as FT and NFT is done in two separate chaincodes,
written in Golang v1.16 [23], each with smart contracts for functionalities that correspond to
the lifecycle of the token, which are create, bid, transfer and redeem. Endorsement policies
in Hyperledger Fabric stipulate how many or which organizations must endorse transac-
tions. The chaincode level endorsement policies override the network level endorsement
policies. The chaincode level endorsement policies for both of the chaincodes is that two
out of the three organizations must endorse each transaction. This chaincode level policy
will apply at token creation time for FT as well as NFT implementations. After the token is
created, i.e., the key-value pair corresponding to the token is created in the world state, key
level endorsement policies for the given token can be configured which will override the
chaincode level endorsement policy. For each token, we configure the issuer organization
as the organization of the client that invokes the token creation. We also configure a en-
dorser organization for each token that is required to endorse all transactions involving
that token. We add both these organizations as required endorsers to each token’s key
level endorsement policy. In Table 1, we present a mapping for token types and required
issuer and endorsing organizations. We ensure by encoding into the smart contract, that
only a client of the stipulated issuer organization is permitted to create a token of the
corresponding token type. This mapping is the same for FT and NFT implementations.

As shown in Table 1, for EUnit and EVUnit, the Storage Provider along with the
Transaction Platform must endorse each transaction. We envision that the prosumers do not
have any local storage and use the community storage to store their energy, and it is from
here that the energy is supplied to a buyer. Thus, before being allowed to transact a token,
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the Storage Provider must check if the energy is actually physically stored for the mentioned
amount. Also, the Storage Provider must make sure that the change of ownership occurs
successfully at their end and then approve the transaction. Moreover, for StUnit and
EStUnit, the Storage Provider as the issuer and the Transaction Platform as the place where
the user interacts with these units, must endorse. Similarly, for all transactions involving
InUnit and GaUnit, the Power Company and the Transaction Platform must endorse.
The Power Company is the issuer and the Transaction Platform is where the prosumers
access the system, so both must approve.

Table 1. Token issuers, endorsers and usage.

Token Type Issuer Endorser Use

EUnit Transaction Platform Storage Provider Prosumers
EVnit Transaction Platform Storage Provider Prosumer to EVs
InUnit Power Company Transaction Platform Prosumer Incentivization
GaUnit Power Company Transaction Platform Prosumers Gamification
StUnit Storage Provider Transaction Platform Storage token

EStUnit Storage Provider Transaction Platform EV Reward token

3. Design and Implementation

A token is acted upon by four operations in its lifecycle as shown in Figure 2. First
the token is created by a seller. A buyer then bids upon the token, whereupon the seller
transfers the value of token to the buyer. The owner of a token can redeem the value of
the token.

Figure 2. Operations of the token.

3.1. Structure of the Token

Each token, whether FT or NFT in our implementation consists of a key value pair
where the key is the ID of the token and the value consists of fields with information
about the token as shown in Figure 3. However, there are differences in the the design
and implementation of the contents of the token fields for FT and NFT and is described in
Sections 3.3 and 3.4.

Figure 3. Structure of token.

The fields in the token are:

• ID uniquely identifies the token in the network.
• AvailableAssets lists the count of energy assets included in this token
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• Notforsale is a Boolean flag that is set to TRUE if the token is not for sale.
• Owner stores the identity of the owner of the token.
• Bid field accepts a bid on the token. This field is implemented as a string in the case of

NFT in order to receive a single bid and as a hashmap in case of the FT implementation
in order to accept multiple bids. A bid in this system registers a binding interest in
a token.

• Notes field is a placeholder to store other details of the token such as price or terms
and conditions that may be needed in the exact use case but are not general enough
for our work.

3.2. Design Requirements

The following are the requirements of such a system:

• Methods and algorithms must be provided to take the token through its entire lifecycle
with four main operations: create, bid, transfer and redeem.

• The user must be able to query the entire list of all tokens of each type owned by them
without having to remember the token ID.

• Only a member of the designated issuer organization of each type of token as defined
in Table 1 must be permitted to initiate token creation. Moreover, token level en-
dorsement must be configured on each created token so that the designated endorser
organizations of each type of token are required to endorse transactions for that token.

• After the token is created, a designated owner is defined which can be either the issuer
or the recipient of the token and only they must be allowed to initiate any transactions
to the token. This is with the exception of placing a bid upon the token. For this
purpose, another user must be able to access the token and register their bid.

• A user must be able to designate any of their tokens as not for sale and others should
not be able to bid upon it.

• When a buyer bids upon a token, their client identity must be recorded, so that a
transfer to them can be processed.

• If the token is NFT, then only one bid is permitted on a given token for the entire
value of the token.

• For FT tokens, multiple bids are permitted and each must be recorded with the bid
amount of energy assets and bidder identity. After each bid on a FT, the value of
the available tokens should be updated and bidding should be allowed until all the
energy assets in the token have been bid upon. If the same buyer bids multiple times
on the same token, the older bid amount must not be lost. The new bid amount must
be added to the buyer’s bid.

• In FT tokens, the token must be able to accept further bids on the remaining value,
without requiring the owner to transfer the value right away. Moreover, the owner
should not have to wait for the entire value of the token to be bid upon before
initiating transfer.

• The owner of the token must not be able to spend the token value that has been bid
upon. For NFT tokens, the owner of a token with a bid on it must not be able to
redeem that token at all. Similarly, for FT tokens, the owner must only be able to
redeem value that is still available, i.e has not been bid.

3.3. Implementing Energy Assets as NFT

When a NFT is put up for sale, or to be won as a reward, the bidder must bid upon
the token in its entirety. This allows the sellers to set different prices for different tokens of
the same token type. Also, it allows the Power Company to set up different conditions for
tokens of the same token type as per their business need.

LevelDB is used as the state database in this work as it offers better performance
than CouchDB which is the other supported state database in Hyperledger Fabric [32].
As mentioned before, the ID field should be unique and each client must be able to query
for a list of tokens they own, without having to remember token IDs. However, LevelDB
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does not support rich querying. So, we accomplish this with the use of range queries in
Hyperledger Fabric which takes a start and end value of the ID and returns the list of
tokens that have IDs that fall between the values or are equal to the provided values. This
means that the client would be expected not only to create IDs having a lexically serialized
order, but also remember the first and last token IDs to provide to the query function. If a
client were to forget the range to use they would lose access to tokens outside that range.
This would be untenable, so our smart contract takes over the task of generating IDs. When
creating the the ID of any token, the client identifier and token type must be included in
the ID so as to enable range queries allowing the user to query for all tokens they own of a
particular type.

In case of NFT, this poses a challenge as multiple tokens can have the same owner
and token type, so we need to add in a unique identifier to the ID to distinguish between
different tokens each having the same client and token type. We could have saved the
maximum value ID used in the system, or per client as a token and refer to that each
time a token is created, ensuring that the number is unique across the entire system.
Setting a centralized maximum value would need that token to be referred in every single
transaction involving that client, creating a bottleneck and slowing down the process.
Instead, the transaction ID which uniquely identifies the transaction within the scope of
the channel was used and the ID for NFT of is the form:

ID: clientid_tokentype_transactionID

3.3.1. Creating a NFT

Algorithm 3 describes the creation of NFTs. The algorithm starts by checking the
client’s identity and the identity of the organization of which the client is a part. It then
conducts a check to make sure that the invoker organization is permitted to create the
requested token type and sets value of the additional organization apart from the invoker
that must be added to the endorsement policy. The ID and Owner of the token will depend
on whether the token is being created as part of a transfer to a buyer or is being created for
the invoker. Algorithm 5 uses Algorithm 3 in order to create a token for a buyer, as will be
described in Section 3.3.3. After creating and committing the new token, Algorithm 1 is
called to set the key level endorsement policy to override the chaincode level policy. This
algorithm accepts the ID of a token in the world state and the organizations that will be
included in the new endorsement policy. It instantiates a new policy, adds the requested
organizations and commits it.

Algorithm 1 SetTokenStateBasedEndorsement

1: function SETTOKENSTATEBASEDENDORSEMENT(id string, issuerorg string, en-
dorserorg string)

2: endorsementPolicy← statebased.NewStateEP()
3: endorsementPolicy.AddOrgs(statebased.RoleTypePeer, issuerorg, endorserorg)
4: policy← endorsementPolicy.Policy()
5: SetStateValidationParameter(id, policy)
6: end function

Algorithm 2 ReadToken

1: function READTOKEN(id string)
2: tokenJSON ← GetState(id)
3: token← json.Unmarshal(tokenJSON)
4: return token
5: end function
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Algorithm 3 Create a NFT

1: function CREATENFT(tokentype string, creatingfortransfer bool, buyer string, avail-
ableassets int)

2: invokerorg← GetClientIdentity().GetMSPID()
3: invokerclient← GetClientIdentity().GetID()
4: test← tokentype + “_” + invokerorg
5: switch test
6: “EUnit_Org1MSP”or“EVUnit_Org1MSP”
7: endorserorg = “Org3MSP”
8: “InUnit_Org2MSP”or“GaUnit_Org2MSP”
9: endorserorg = “Org1MSP”

10: “StUnit_Org3MSP”or“EStUnit_Org3MSP”
11: endorserorg = “Org1MSP”
12: Default: “Invoker Organization and Token Type combination invalid”
13: if creatingfortransfer == true then
14: idval ← buyer + “_” + tokentype + “_” + GetTxID()
15: owner ← buyer
16: else
17: idval ← invokerclient + “_” + tokentype + “_” + GetTxID()
18: owner ← invokerclient
19: end if
20: tokennew ← NewToken(ID ← idval, TokenType ← tokentype,

AvailableAssets← availableassets, Owner ← owner)
21: tokenJSON ← json.Marshal(tokennew)
22: PutState(idval, tokenJSON)

. Saving new token
23: SetTokenStateBasedEndorsement(tokennew.ID, invokerorg, endorserorg)

. Calling Algorithm 1
24: end function

3.3.2. Bidding on a NFT

Algorithm 4 illustrates how a buyer can bid upon a token of their choosing. The re-
quested token is read using Algorithm 2 and checked if it is for sale and that there is no bid
on this token already. If there is no bid, then the algorithm updates the bid field with the
client identity of the buyer and commits it to state. As the token must be purchased in its
entirety, there is no mention of the amount of energy assets in the bid.

Algorithm 4 Bid on a NFT

1: function BIDNFT(id string)
2: token← ReadToken(id) . Calling Algorithm 2
3: if token.NotForSale == true then
4: return “Token ID not for sale”
5: end if
6: bidderclient← GetClientIdentity().GetID()
7: if token.Bid == “” then
8: token.Bid = bidderclient
9: else

10: return “There is already a bid on this token by token.Bid”
11: end if
12: tokenJSON ← json.Marshal(token)
13: PutState(id, tokenJSON)

. Saving updated token
14: end function
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3.3.3. Transferring a NFT

Using Algorithm 5 the owner of a token can transfer the token to the buyer who has
bid upon it. The token is read using Algorithm 2 and it is checked that the invoker client is
in fact the owner of the token and there exists a bid on the token. If the token exists, is bid
upon and the transfer is requested by the owner, the transfer can take place. We will need
the newly transferred token to be reflected when the new owner checks their list of tokens
using Algorithm 7 which will use the ID of the token stored on the world state. However,
we cannot actually edit the ID of the token on the world state, so we create a new token
owned by the buyer for the same value using Algorithm 3 and destroy the original token
owned by the seller.

Algorithm 5 Transfer a NFT

1: function TRANSFERNFT(id string)
2: token← ReadToken(id) . Calling Algorithm 2
3: invokerclient← GetClientIdentity().GetID()
4: if invokerclient != token.Owner then
5: return “The client invokerclient is not authorized to transfer token owned by

token.Owner”
6: end if
7: if token.Bid == “” then
8: return “No bid yet”
9: end if

10: CreateNFT(token.TokenType, TRUE, token.Bid, token.availableassets)
. Calling Algorithm 3, to create new token with buyer’s id

11: DelState(id) . Delete the token with seller’s id
12: end function

3.3.4. Redeeming a NFT

When the token is redeemed it is deleted from the world state, but the record of
transactions remain in the ledger. The Algorithm 6 for redeeming a token, starts by getting
the invoker client’s identity to make sure they are the owner of the token being redeemed.
Also, a owner should not be able to redeem a token that already has a bid, so the algorithm
checks to make sure there is no bid on the token being redeemed. If a token with no bid is
being redeemed by the owner, the redeem operation goes through as requested.

Algorithm 6 Redeem a NFT

1: function REDEEMNFT(id string)
2: token← ReadToken(id) . Calling Algorithm 2
3: invokerclient← GetClientIdentity().GetID()
4: if invokerclient != token.Owner then
5: return “The client invokerclient cannot redeem token owned by token.Owner”
6: end if
7: if token.Bid != nil then
8: return “The client invokerclient cannot redeem token as it has a bid”
9: end if

10: DelState(id)
. Deleting token

11: end function

3.3.5. Querying for a List of Owned NFTs

As mentioned in Section 3.2, an important design consideration is that the user must
not be required to remember the IDs of all the tokens they own and the system must
provide an easy way to query that. Algorithm 7 uses a range query to return a list of all
tokens of the specified type owned by the invoking client. The algorithm takes the token
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type queried for as input and gets the invoker client’s ID to create start and end values
for the range query by padding to the right to create alphanumeric strings of the same
length as the transaction ID in order to get the smallest and largest possible transaction IDs.
This returns an iterator which loops through to produce the list of tokens to be returned to
the user.

Algorithm 7 Get my NFT

1: function GETMYNFT(tokentype string)
2: ownerclient← GetClientIdentity().GetID()
3: checkstr ← ownerclient + “_” + tokentype + “_”
4: resultsIterator ← GetStateByRange(checkstr + pad(0, 64), checkstr + pad(z, 64)
5: defer resultsIterator.Close()
6: var tokens []*Token
7: for resultsIterator.HasNext() do
8: queryResponse← resultsIterator.Next()
9: token← json.Unmarshal(queryResponse.Value)

10: tokens← append(tokens, token)
11: end for
12: return tokens . Returns all tokens of tokentype for requesting client
13: end function

3.4. Implementing Energy Assets as FT

FT are those that are for all intents and purposes identical. Thus they can be broken up
and traded in parts, and added up like currency. Each client will have at most six tokens,
one of each type of tokens EUnit, EVUnit, InUnit, GaUnit, StUnit and EStUnit. Additional
tokens, whether created or purchased will be added to this token value. Tokens redeemed
or sold will be reduced from the token value. Thus tokens for a given client in the FT
implementation act as accounts, where each client has at most six accounts. The ID of the
token in the FT implementation is of the form:

ID: clientid_tokentype
Also, as mentioned in Section 3.1, in the FT implementation a token can have multiple

bids from the same or different buyers. In order to accomplish this we implemented the
Bid field as a hashmap. The hashmap stores a list of key value pairs where key stores the
identity of the bidder and the value stores the bid amount. The Bid field thus takes bids on
the token and keeps adding bids to the hashmap. If the same bidder bids multiple times
on a token, the value for that client key is updated with the total of the bids.

3.4.1. Create a FT

Algorithm 8 for creating a FT first verifies that the invoking client is from an organiza-
tion that is allowed to create the requested type of token.

Additionally, it sets the appropriate additional organization needed to endorse this
token as described in Table 1. The token ID depends on whether the token is being created
for the invoker or for transfer to a buyer. Next, the algorithm will check if the token exists
by trying to read it. As this is a FT implementation, if the token exists already, a new token
will not be created but the requested energy asset count will be added to the existing token.
If it is not found, this means that the invoker (if creating for self) or buyer (if creating for
transfer) does not already own a token of this type. If so, a new token is created with the
appropriate ID, supplied token type and energy asset count and added to the world state.
Moreover, the applicable key level endorsement policy is set using Algorithm 1.
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Algorithm 8 Create a FT

1: function CREATEFT(tokentype string, creatingfortransfer bool, buyer string, available-
assets int)

2: invokerorg← GetClientIdentity().GetMSPID()
3: invokerclient← GetClientIdentity().GetID()
4: test← tokentype + “_” + ownerorg
5: switch test
6: “EUnit_Org1MSP”or“EVUnit_Org1MSP”
7: endorserorg = “Org3MSP”
8: “InUnit_Org2MSP”or“GaUnit_Org2MSP”
9: endorserorg = “Org1MSP”

10: “StUnit_Org3MSP”or“EStUnit_Org3MSP”
11: endorserorg = “Org1MSP”
12: Default: “Invoker Organization and Token Type combination invalid”
13: if creatingfortransfer == true then
14: id← buyer + “_” + tokentype
15: owner ← buyer
16: else
17: id← invokerclient + “_” + tokentype
18: owner ← invokerclient
19: end if
20: token← ReadToken(id) . Calling Algorithm 2
21: if token! = nil then
22: token.AvailableAssets← token.AvailableAssets + availableassets
23: tokenJSON ← json.Marshal(token)
24: PutState(id, tokenJSON)
25: else
26: tokennew ← NewToken(ID ← id, TokenType ← tokentype,

AvailableAssets← availableassets, Owner ← owner)
27: tokenJSON ← json.Marshal(tokennew)
28: PutState(id, tokenJSON)
29: SetTokenStateBasedEndorsement(tokennew.ID, ownerorg, endorserorg)

. Calling Algorithm 1
30: end if
31: end function

3.4.2. Bid on a FT

Algorithm 9 for bidding on a FT accepts the ID of the token as well as the number of
energy assets in the bid. It reads the token using Algorithm 2 and checks if the token is
available for sale and that the number of energy assets in the bid do not exceed the value
of the token. If the same buyer has bid on the token before, the new bid value is added
to the old bid value in the existing key value pair of the hashmap. If this is a new buyer,
a new key value pair is created in the hashmap to accept the bid, where the key is the client
identity and value is the amount of the bid. Finally, the count of available assets in the
token is reduced by the amount of the bid and the updated token is committed to the state.
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Algorithm 9 Bid on a FT

1: function BIDFT(id string)
2: token← ReadToken(id) . Calling Algorithm 2
3: if token.NotForSale == true then
4: return “Token ID is not for sale”
5: end if
6: if token.AvailableAssets < bidvalue then
7: Return “Available value token.AvailableAssets is less than bid bidvalue”
8: end if
9: bidderclient← GetClientIdentity().GetID()

10: if token.Bidmap[bidderclient]! = nil then
11: token.Bidmap[bidderclient]← existingval + bidvalue
12: else
13: token.Bidmap[bidderclient] = bidvalue
14: end if
15: token.AvailableAssets = token.AvailableAssets− bidvalue
16: tokenJSON ← json.Marshal(token)
17: PutState(id, tokenJSON) . Saving updated token
18: end function

3.4.3. Transfer a FT

Algorithm 10 for transferring a FT, first reads the token using Algorithm 2 and verifies
that the invoker client is the owner of the token being transferred. Then for each bid in
the bid hashmap, it processes the value transfer to the buyer, using Algorithm 8. If the
token for the buyer exists already, it is updated with the transferred value. Otherwise a
new token is created for the buyer and a key level endorsement policy is set. The processed
bid is now removed from the map.

When all the bids have been processed and deleted, finally, it updates the token
that was being transferred with the newly empty bid field into the state. As the value of
available energy assets on the token is reduced by the value of the bid whenever a bid
is placed, as explained in Section 3.4.2, the count of available assets on the token already
reflects the value after deducting the bid amounts.

Algorithm 10 Transfer a FT

1: function TRANSFERFT(id string)
2: token← ReadToken(id) . Calling Algorithm 2
3: invokerclient← GetClientIdentity().GetID()
4: if invokerclient != token.Owner then
5: return “The client invokerclient is not authorized to transfer token owned by

token.Owner”
6: end if
7: for key, value← range(token.Bidmap) do
8: CreateToken(token.TokenType, TRUE, key, value) . Calling Algorithm 8
9: delete(token.Bidmap, key)

10: end for
11: tokenJSON ← json.Marshal(token)
12: PutState(id, tokenJSON) . Save updated token after transfers
13: end function

3.4.4. Redeem a FT

Tokens in the FT implementation work like accounts, so when a FT is redeemed, some
or all of the available energy assets may be redeemed, but the token itself not deleted as
is the case for the NFT implementation described in Section 3.3.4. The Algorithm 11 for
redeeming FT begins by reading the token using Algorithm 2 and checking that the invoker
client owns the token and that the requested redeem amount is not greater than the total



Sensors 2021, 21, 3822 14 of 32

available energy assets in the token. As the available assets count is reduced by the bid
amount for every bid on the token as described in Section 3.4.2, it reflects the true count of
the assets available to the token owner for redeeming. Next, the available energy assets on
the token is reduced by the redeem value and the updated token is then committed to the
world state.

Algorithm 11 Redeem a FT

1: function REDEEMFT(id string, redeemcount int)
2: token← ReadToken(id) . Calling Algorithm 2
3: invokerclient← GetClientIdentity().GetID()
4: if invokerclient! = token.Owner then
5: return “The client invokerclient is not authorized to redeem token token.ID

owned by another”
6: end if
7: if redeemcount > token.AvailableAssets then
8: return “The token token.ID has token.AvailableAssets assets, which is less than

requested redeem value redeemcount”
9: end if

10: token.AvailableAssets← token.AvailableAssets− redeemcount
11: tokenJSON ← json.Marshal(token)
12: PutState(id, tokenJSON)
13: end function

3.4.5. Querying for a List of Owned FT

For any client there will be six FT at most, one corresponding to each of the types
of tokens in the system which are EUnit, EVUnit, GaUnit, InUnit, StUnit and EStUnit.
The Algorithm 2 provides the list of FT of the specified token type owned by the invok-
ing client.

3.5. Complexity of the Algorithms

The complexity of an algorithm describes its efficiency in terms of the size of the
input. The two main complexity measures of the efficiency of an algorithm are time
and space complexity. Time complexity describes the time taken to execute an algorithm
independently of factors that are unrelated to the algorithm. Factors such as programming
language, memory cache, type of processing capacity and compiler optimization are not
related to the algorithm itself but can affect the actual time taken to execute the algorithm.
Similarly, space complexity describes the amount of memory space needed to execute an
algorithm independently of the actual hardware used.

NFT has operations, NFT Create (Algorithm 3), NFT Bid (Algorithm 4), NFT Trans-
fer (Algorithm 5), NFT Redeem (Algorithm 6) and NFT BulkRead (Algorithm 7). Simi-
larly, FT has the operations FT Create (Algorithm 8), FT Bid (Algorithm 9), FT Transfer
(Algorithm 10) and FT Redeem (Algorithm 11).

In Algorithm 8 for FT, if a token exists already, then the token will simply be updated
and the key level endorsement policy will not be set again. In order to distinguish between
the two types of create operations in FT, we call the operation FT ReCreate if the token is
updated and the endorsement policy is not set again. If the token is created and the key
level endorsement policy is configured, we call it FT Create. Similarly, for the Algorithm 10,
we have two operations FT Transfer, if the token is created and FT ReTransfer if the token
is updated with the transferred value.

Table 2 shows the time and space complexities of all the algorithms described in
Sections 3.3 and 3.4.
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Table 2. Time and space complexities of algorithms

Token Type Operation Time Complexity Space Complexity

NFT Create O(1) O(1)
NFT Bid O(1) O(1)
NFT Transfer O(1) O(1)
NFT Redeem O(1) O(1)
NFT Read O(1) O(1)
NFT BulkRead O(n) O(n)
FT Create O(1) O(1)
FT ReCreate O(1) O(1)
FT Bid O(1) O(1)
FT Transfer O(n) O(n)
FT ReTransfer O(n) O(n)
FT Redeem O(1) O(1)
FT Read O(1) O(1)

In Hyperledger Fabric, create, update, endorsement policy configurations and deletes
are all processed as writes to the state. Thus, NFT Create involves no read operations
and two write operations, one to create the token and one to configure the endorsement
policy. Also, this operation only uses space to store that one token. The time and space
complexities for this algorithm are O(1), as for any invocation, only one token will be
created using the mentioned operations. Similarly, NFT Bid (one read, one write), NFT
Transfer (one read, three writes) NFT Redeem (one read, one write), NFT Read (one read),
FT Create (one read, two writes), FT ReCreate (one read, one write), FT Bid (one read,
one write), FT Redeem (one read, one write) and FT Read (one read) will have a constant
number of operations as well as space usage for any invocations and thus have both time
and space complexities of O(1).

NFT BulkRead will execute read operations, which will depend on and grow with the
number of tokens owned by the invoking client. Here, each token returned by the range
query is considered to be a separate read. Similarly, the space used will also depend on the
number of tokens returned. Thus, the time and space complexities of NFT BulkRead are
both O(n).

FT Transfer and FT ReTransfer will execute one read in order to read the seller’s token.
Then, both operations will execute a loop based on the number of bids present. For each
bid, they will execute one read to check if the buyer’s token exists and one write to either
create (FT Transfer) or update (FT ReTransfer) the buyer’s token. FT Transfer will execute
an additional write in order to set the key level endorsement policy for the buyer’s token.
In each execution of the loop, both operations will use the space required to operate upon
two tokens, the buyer’s token and the seller’s token. As the number of times this loop is
run will depend on the number of bids present, the time and space complexities of both FT
Transfer and FT ReTransfer are O(n). Finally, at the end of the loop, the seller’s token will
be updated with a single write, which is constant for any invocation.

Multiple transfers that originate from a single FT perform transfer of value to multiple
distinct recipients in a FT Transfer operation. In order to complete comparable transfers in
NFT, we would need to perform multiple separate transactions, one for each bid. Thus,
even though the time and space complexities of the presented algorithms for FT Transfer
and ReTransfer are O(n), we do not consider them to be a bottleneck as they cannot be
considered equivalent to a single NFT transfer. A fair comparison, between the value
transfer operations Transfer and ReTransfer for FT and Transfer for NFT, should thus
consider a single bid per token. We performance test and make a comparison between
these three algorithms in Section 4.2.

For NFT, retrieving all tokens of a type owned by a client is expected to be a bottleneck
if executed on chain. We experimentally investigate this in Section 4.2 and the results of
our experiments are shown in Figure 10.
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3.6. Token Lifecycle

The algorithms developed for managing token lifecycles for both NFT and FT, have
been described in detail in Sections 3.3 and 3.4 respectively. The overall token lifecycle
and the associated algorithms called at different stages from create to redeem have been
summarized as flowcharts in Figure 4. The sequence of experiments shown later on in
Figure 5 were developed based on this workflow in order to performance test and compare
the implementations of the specific algorithms.

Figure 4. Lifecycle for Fungible Tokens (FT) and Non Fungible Tokens (NFT).
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Figure 5. Sequence of experiments.

The left pane in Figure 4 shows the lifecycle of a NFT. First, the seller invokes
Algorithm 3 (Section 3.3.1) to create the token. If the invoke is valid, a check is performed
to see if the token is being created for a transfer to a buyer. At this stage in the lifecycle,
the token is being created for the invoker so the execution path highlighted in the flowchart
applies and the invoker is the owner of the token. The token is then created and the token
level endorsement policy is set. The token is now ready to accept a bid. The buyer calls
Algorithm 4 (Section 3.3.2) and if the token is for sale and no previous bid is present, the bid
is accepted. The seller then calls Algorithm 5 (Section 3.3.3), to transfer the token to the
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buyer who has bid upon it. In order to do so, a new token is created for the buyer by
calling Algorithm 3 and executing the path highlighted in the flowchart. This new token
has no bid on it. The original token owned by the seller is deleted. The current owner of
the token can redeem the token using Algorithm 6 (Section 3.3.4) if there is no existing bid
on it. A redeemed NFT is deleted from the state.

The right pane of Figure 4 summarizes the lifecycle of a FT. First, Algorithm 8
(Section 3.4.1) is invoked by the seller. At this stage of the lifecycle, the token is being
created for the invoker. If the invoke is valid, a check is performed to see if a token for
the same token type and owner combination exists. If such a token exists, the value of the
token to be created is added to the value of the existing token and no new token is created.
Otherwise, a new token with a token level endorsement policy is created. This token is
now ready to accept bids. A buyer uses Algorithm 9 (Section 3.4.2) in order to bid upon
the token. If the same bidder has already bid upon the token, the value of the new bid is
added to the existing bid, else a new bid is accepted on the token. In contrast to a NFT,
a FT can accept multiple bids on the available value, and after each bid the value of the
token is reduced by the bid amount. The seller, using Algorithm 10 (Section 3.4.3), for each
bid will create a new token for the buyer using Algorithm 8 and remove the bid from the
original token. This will be done until all the bids are removed from the token. A token
can be redeemed by its owner for the value available in the token. Thus, the buyer can
redeem the newly purchased token and the seller can redeem the value left on their token
using Algorithm 11 (Section 3.4.4). A FT that is redeemed is not deleted, but the value of
the token is reduced by the redeem amount.

4. Experimental Setup, Results and Discussion

The experimental infrastructure included 5 Virtual Machines (VM) created on a cloud
environment. Each VM used Ubuntu 20.04 and had 32 GB RAM, 4 dedicated virtual CPUs
and a 100 GB SSD. The nodes of the network were implemented as Docker containers with
Docker version 19.03 and Docker Compose version 1.26 connected in a Docker Swarm
for availability. Hyperledger Fabric v2.3.0 was the blockchain platform and Hyperledger
Caliper v 0.4.2 was used to generate the load and measure the performance. Both are
the latest stable versions at the time of writing. The Ordering service was implemented
using the RAFT [33] consensus algorithm and had 3 Ordering Service Nodes (OSN) as
recommended in the Hyperledger Fabric official documentation [34]. LevelDB was the
state database due its performance advantage. The three organizations in our network are
implemented with one peer node each and run on separate VMs. One VM is dedicated
to running the Hyperledger Caliper and another VM runs the Ordering Service which is
implemented as a separate Orderer Organization. In a production implementation, cloud
security issues and mitigation strategies would need special consideration. Singh et al. [35]
conducted an extensive survey of specific threats and solutions to be considered for better
security management for a cloud based service.

4.1. Experimental Setup

In order to performance test the implementation of each algorithm, the sequence
of experiments shown in Figure 5 were designed based on the token lifecycle shown in
Figure 4 and explained in Section 3.6, for NFT and FT algorithms.

A client, Bob was created for the Transaction Platform and another client Alice was
the created for Storage Provider. The left pane on Figure 5 shows the sequence of op-
erations for experimental evaluation of the NFT implementation. Using Algorithm 3
Alice creates 10,000 NFT each with value of 10 assets. Bob bids upon each of these to-
kens using Algorithm 4 and as this is a NFT implementation, the bids are for the whole
value of the asset. Alice then initiates transfer to Bob using Algorithm 5, which involves
creating 10,000 NFT owned by Bob each with the value of 10 assets and deleting all
10,000 NFT owned by Alice. Finally, using Algorithm 6, Bob redeems the complete value of
all 10,000 NFT.
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Similarly in the FT implementation, clients Alice and Bob are created for the Storage
Provider and the Transaction Platform respectively. The sequence of operations for ex-
perimental evaluation of the FT implementation is shown in the right pane of Figure 5.
In order to have a fair comparison between FT and NFT implementations, and because it
was not feasible to implement thousands of distinct clients in order to create 10,000 tokens
of the predefined token types, Alice creates 10,000 separate FT with 10 assets each using
Algorithm 8, effectively creating 10,000 accounts owned by Alice. Bob places one bid per
FT with 5 assets per bid on all 10,000 FT using Algorithm 9. Alice initiates transfer using
Algorithm 10 which creates 10,000 FT for Bob, each with value 5 assets and reduces the
value of Alice’s FT by the bid amount, in this case 5 assets. Bob redeems 10,000 FT for
2 assets each using Algorithm 11 leaving a balance of 10,000 FT with 3 assets each for Bob.
Alice’s balance at this point is 10,000 FT with 5 assets each.

Alice again initiates creation of 10,000 FT with the same IDs as before with 10 assets
each using Algorithm 8. This time, however, as the FT already exist, the created value is
added to the existing FT. In order to distinguish this operation from the create operation
executed before, we call this ReCreate. Bob again bids on all 10,000 FT with 1 bid per FT
and 5 assets per bid using Algorithm 9. Alice initiates transfer using Algorithm 10. Bob’s
FT exist already, as they were created before. So, the algorithm adds the value of the bid to
Bob’s FT making Bob’s balance 10,000 FT with 8 assets each. Alice’s balance after transfer
is 10,000 FT with 10 assets each. In order to distinguish this from the transfer done before,
we call this ReTransfer. Finally, Bob redeems all 10,000 FT for the value of 2 assets each
leaving a balance of 10,000 FT with 6 assets each.

In case of FT, the number of key operations in each operation depend on the number
of bids received on each token as explained in Section 3.5. However, for a fair comparison,
for both NFT and FT, we place only one bid on each token as described above and in
the right pane of Figure 5. Hyperledger Caliper was used to drive the load and measure
performance as mentioned before. The load was driven with four worker processes and
the fixed load rate control mechanism was configured. The fixed load rate controller starts
with a configured transaction send rate in transactions per second (TPS) and maintains
a defined queue length of unfinished transactions in the network by modifying the send
rate. The starting send rate was set to 1000 TPS for all our experiments, while the queue
length was varied. The sequence of operations between Alice and Bob described above
was conducted 10 times each for NFT and FT implementations by varying the queue length
from 100 unfinished transactions to 1000 unfinished transactions with equal increments
of 100 TPS. In addition, experiments were conducted on the Read operation described in
Algorithm 2 for both NFT and FT with 1 read per query and 10,000 queries in one iteration,
with a total of 4 iterations with queue lengths varying from 100 unfinished transactions to
400 unfinished transactions with a step size of 100. Increasing the queue length beyond
this point did not show any increase in throughput. Moreover, in case of NFTs, each
client can have several tokens, which can be retrieved using Algorithm 7. In order to
test this algorithm, experiments were conducted for the bulk read operation by running
4 iterations with 10,000 bulk read queries in one iteration with each bulk read query
returning 10,000 NFT. The queue lengths were varied from 100 to 400 over the 4 iterations
with a step size of 100. Queue lengths of more than 400 unfinished transactions did not
result in any improvement in throughput. Table 3 shows a summary of key transactions
such as read, write and key level endorsement policy configuration that were involved in
each operation conducted in the experimental evaluation.
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Table 3. Summary of key operations involved in each operation for experimental evaluations.

Token Type Operation Write Set Policy Read

NFT Create 1 1 0
NFT Bid 1 0 1
NFT Transfer 2 1 1
NFT Redeem 1 0 1
NFT Read 0 0 1
NFT BulkRead 0 0 10,000
FT Create 1 1 1
FT ReCreate 1 0 1
FT Bid 1 0 1
FT Transfer 2 1 2
FT ReTransfer 2 0 2
FT Redeem 1 0 1
FT Read 0 0 1

4.2. Results and Discussion

An endorsing peer simulates each transaction before endorsing and creates a read-
write set. Deletes are processed by setting a delete marker in the write set. Similarly, key
level endorsements, creation and updating of key value pairs are also processed as writes
to the state in the read-write set. Thus for performance analysis, we consider them all as
writes to the state.

For our experiments, we define transaction complexity of an operation as the number
of writes to the state executed in that operation. Based on Table 3, we can group the
operations based on transaction complexity. Figure 6 shows the performance of operations
involving one write key operation. Here, we observe that all five operations NFT Bid, NFT
Redeem, FT ReCreate, FT Bid and FT Redeem have comparable peak throughput of 491 TPS
on average. Similarly, Figures 7 and 8 present the performance of operations involving two
and three write key operations respectively. It is seen in Figure 7 that all three operations
NFT Create, FT Create and FT ReTransfer have comparable peak throughput of 475.6 TPS
on average. Also, Figure 8 shows that operations NFT Transfer and FT transfer also have
comparable peak throughput of 449.55 TPS on average. Performance of read operations for
FT and NFT shown in Figure 9 also show a comparable peak throughput of 845.95 TPS on
average for both NFT and FT implementations.

(a) NFT Bid- Peak throughput = 491.3 TPS

Figure 6. Cont.
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(b) NFT Redeem- Peak throughput = 494.8 TPS

(c) FT ReCreate- Peak throughput = 489.7 TPS

(d) FT Bid- Peak throughput = 489.1 TPS

(e) FT Redeem- Peak throughput = 490.1 TPS

Figure 6. Operations with one write key operation (Queue Length: QL, Send Rate (TPS): SR).
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As mentioned in Section 4.1, we used the fixed load rate controller in Hyperledger
Caliper which maintains the configured queue length by modifying the send rate. Figure 6a
shows that when the queue length is increased from 100 unfinished transactions to 1000 un-
finished transactions, the request send rate achieved rose from 323.4 to 494.6. Moreover,
the throughput achieved rose from 322.8 TPS to 491.3 TPS at a cost to the per transaction
latency which also rose from 0.19 s to 0.99 s. Similar observations can be made for all
operations in Figures 6–10.

Comparing Figures 6 and 7, we see that the throughput achieved reduces from 491 TPS
on average to 475.6 TPS on average when the number of writes per transaction increased
from 1 to 2. Similarly, comparing Figures 7 and 8, we see that the throughput achieved
further reduces to 449.55 TPS on average when number of writes per transaction increased
from 2 to 3.

(a) NFT Create- Peak throughput = 478.4 TPS

(b) FT Create- Peak throughput = 476.3 TPS

(c) FT ReTransfer- Peak throughput = 472.2 TPS

Figure 7. Operations with two write key operations (Queue Length: QL, Send Rate (TPS): SR).
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Analysis of Figure 7a,b shows that a similar performance is achieved for Create
operation FT and NFT, as the throughput achieved is 476.3 TPS and 478.4 TPS respectively.
Moreover, FT Bid in Figure 6d and NFT bid in Figure 6a are 489.1 TPS and 491.3 TPS
respectively. Similarly, Transfer operation throughput for FT shown in Figure 8b and NFT
shown in Figure 8a are 448.3 TPS and 450.8 TPS respectively. Finally Redeem operation
throughput for FT shown in Figure 6e and NFT shown in Figure 6b are similar at 490.1 TPS
and 494.8 TPS respectively. Read operation throughput for FT and NFT both shown in
Figure 9 are 846.7 TPS and 845.2 TPS respectively. Thus, for the Create, Bid, Transfer,
Redeem and Read, FT and NFT show similar performance for the same number of tokens.

(a) NFT Transfer- Peak throughput = 450.8 TPS

(b) FT Transfer- Peak throughput = 448.3 TPS

Figure 8. Operations with three write key operations (Queue Length: QL, Send Rate (TPS): SR).

However, FT operations ReCreate and ReTransfer, do not set the key level endorse-
ment policy, as tokens with their associated key level endorsement policy already exist as
compared to Create and Transfer for FT and NFT. This is reflected in the performance as
ReCreate as shown in Figure 6c achieved throughput of 489.7 TPS compared to 476.3 TPS
for FT Create as shown in Figure 7b and 478.4 TPS for NFT Create as shown in Figure 7a.
Similarly, ReTransfer throughput shown in Figure 7c at 472.2 TPS was higher than 448.3 TPS
for FT Transfer shown in Figure 8b and 450.8 TPS for NFT transfer shown in Figure 8a.

For NFT, Bid (Figure 6a) and Redeem operations (Figure 6b) were the fastest at
491.3 TPS and 494.8 TPS respectively, followed by Create (Figure 7a) at 478.4 TPS and
then by Transfer (Figure 8a) at 450.8 TPS. For FT Bid (Figure 6d), Redeem (Figure 6e) and
Recreate (Figure 6c) were the fastest at 489.1 TPS, 490.1 TPS and 489.7 TPS respectivly.
Create (Figure 7b) and ReTransfer (Figure 7c) were slower at 476.3 TPS and 472.2 TPS
respectively, while Transfer (Figure 8b) at 448.3 TPS was the slowest operation for FT.

Finally, Figure 10 shows the results of performance testing the implementation of
algorithm 7 for retrieving all NFT owned by a client by performing bulk read operations.
As mentioned in Table 3, each operation involves bulk reads of 10,000 NFT. As expected
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the performance achieved is poor. The peak throughput achieved in our experiments was
13 TPS for a latency of 18.44 s at the queue length of 400 unfinished transactions. Thus,
the execution of Algorithm 7 should be considered to be handled off-chain as is mentioned
in the Hyperledger Fabric official documentation [36].

Figure 9. Read operation- Peak Throughput: FT- 846.7 TPS, NFT- 845.2 TPS (Queue Length: QL,
Send Rate (TPS): SR).

Figure 10. NFT Bulk Read Operation. Peak Throughput 13 TPS (Queue Length: QL, Send Rate
(TPS): SR).

4.3. Comparison of Non Fungible Tokens and Fungible Tokens

An advantage of the NFT implementation is that it allows the seller of energy assets
to set different prices for different tokens of the same token type. Similarly, this imple-
mentation permits the actor offering rewards to set different conditions for rewards of the
same type. However, in cases where standardization of assets is a requirement, the FT
implementation offers an advantage as it ensures uniformity between tokens of the same
token type.

FT maintain an updated count of tokens for each token type for each client in a single
token, so that each client has at most 6 tokens or accounts. Thus, the total count of all energy
assets of a particular type owned by a client, can be retrieved in a single read operation
using Algorithm 2. This algorithm has time and space complexities of O(1) as explained
in Section 3.5. In our implementation, the peak throughput for read operation was over
845 TPS with sub second latency as shown in Figure 9.

In the NFT implementation, a client can have several tokens of the same token type.
Thus, in order to retrieve a list of all energy assets of a type owned by a client, a bulk
read operation needs to be performed using Algorithm 7. As explained in Section 3.5, this
algorithm has time and space complexities of O(n) as the time and space required to run
this algorithm depends on the number of tokens to be retrieved. In our implementation, we
tested the performance for a bulk read operation for 10,000 transactions in each iteration,
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where each transaction retrieves 10,000 NFT. As shown in Figure 10, the peak throughput
was 13 TPS, while average latency was over 18 seconds.

Due to this, while getting all FT for a client can be executed on chain, getting all NFT
may need to be executed off-chain. Moreover, Baliga et al. [37] have shown that with the
increase in number of total tokens on the state, the read performance suffers marginally,
which could be an issue for NFT implementations, for a very large number of tokens in
state. Thus, FT have a clear advantage in terms of retrieving all assets of a given type
owned by a client.

FT implementations, however, have limitations with concurrent execution of transac-
tions. When two operations try to update the same token, for instance when two buyers
try to bid on the same token or when two sellers try to transfer value to the same token,
at most one operation will succeed. NFT implementations avoid this problem. When
creating or transferring a NFT, a new token is created each time with a distinct key which
avoids the problem of contention. Moreover, the issue of accepting multiple bids on the
same token does not arise for NFT. Thus, in terms of concurrent execution of transactions,
NFT implementations have a clear advantage.

Another implementation specific consideration is the size of the token. As a single
FT token accepts multiple bids, the size of the token increases, which can degrade the
performance of the network [37,38]. So, specific implementations could consider setting a
maximum number of unprocessed bids a token can have at any given time.

Additionally, we have shown that while Create, Bid, Transfer and Redeem operations
are similar in performance for FT and NFT, ReCreate and ReTransfer in FT are faster than
Create and Transfer respectively, for both FT and NFT. This is due to the fact that the tokens
with associated endorsement policies already exist in case of ReCreate and Retransfer oper-
ations of FT as discussed in Section 4.2. Thus, neither of the implementations, FT or NFT
have a complete advantage over the other in all respects and the choice of implementation
will depend on the specific use case.

4.4. Limitations and Future Work

In any transaction system, prevention of double spending is an important considera-
tion. Hyperledger Fabric implements Multiversion concurrency control (MVCC) in order
to prevent double spending. This means that when multiple operations try to update the
same key at the same time, all but one update will fail. FT tokens function like accounts
where each client has at most six accounts in our implementation. For instance if two
sellers attempt to transfer value to the same token belonging to a buyer, only one of those
transfers will complete successfully. The NFT implementation when creating tokens uses
the transaction ID and creates new NFT each time with no duplicated keys. Similarly,
transfers also create new NFT for the recipient each time, thus preventing contention.
Contention is a consideration whenever two processes seek to update a common resource
and thus inherent in any account based implementation.

This limitation can be addressed by queuing of transactions. For EUnit and EVUnit,
both the buyer and seller are clients of the Transaction Platform. The Transaction Platform
application could thus queue the sending of transactions for endorsement and ordering
and postpone sending of other transactions that update the same key until the first one has
completed or failed. For InUnit, GaUnit, StUnit and EStUnit, the create operation originates
from the Power Company and Storage Provider respectively. These could thus be queued
by their respective applications.

Alternatively, as tokens are created for each client, for each token type, newer types of
tokens or extra clients can be added to create more tokens that can then be simultaneously
updated. For tokens that receive a high number of transactions, a running total approach
can be considered where several FT of the same token type are created, that are consolidated
periodically. The bidding operation on InUnit, GaUnit, StUnit and EStUnit is invoked
by clients of the Transaction Platform which can be queued by its application. Similarly,
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queuing of Transfers can be handled by the Power Company or the Storage Provider as the
case may be and queuing of Redeems can be handled by the Transaction Platform.

Thakkar et al. [39] proposed the use of a dependency graph for transactions in order
to increase parallel execution in blockchain transactions. Li et al. [40] presented priority
based queuing model to reduce the waiting time of blockchain transactions. Investigation
of application based contention management through queuing or other methods can be
considered for a future work.

5. Related Works

Blockchain continues to gain considerable research interest, as the number of pub-
lications in the field of blockchain and its applications show a clear upward trend [41].
Features of blockchain such as decentralization, immutability, provenance tracing and self
enforcing smart contracts make blockchain suitable to a variety of applications involving
information and value exchange, transparency, access control and encoding of business
logic for automatic execution. Blockchain was developed as an enabling technology for
Bitcoin, a cryptocurrency and thus has several applications in the banking and financial
sectors [42]. Blockchain implementations can encompass the business network and provide
provenance tracing and can thus facilitate invoice reconciliation and dispute resolution [43].
The immutability of blockchain can increase trust and transparency in transactions and
smart contracts can be used to automate transaction flows and processes.

Health care data management is another application area for blockchain. Hassel-
gren et al. [44] identified access control, data provenance and data integrity as crucial in
order to maintain the patient’s privacy during data exchanges between institutions in the
healthcare ecosystem. Jiang et al. [45] proposed BlocHIE, a blockchain based platform for
privacy and authenticability preserving exchange of medical data. Their solution used two
loosely coupled blockchains for storing two different kinds of medical data and proposed
two transaction packing algorithms for block creation in order to enhance throughput and
fairness. Zhuang et al. [46] proposed the integration of blockchain in order to improve the
workflow of health information exchange. Access control was implemented using smart
contracts in their solution, which helped them address privacy and data integrity concerns
and provide permitted clinicians access to records across multiple medical facilities. Addi-
tionally, in light of the global Coronavirus pandemic, blockchain has also been proposed
as a solution to address issues such as robust privacy management [47] and provenance
based supply chain management [48] for vaccines and contact tracing of affected patients.

Blockchain can also be integrated into industrial internet of things (IIoT) applications
due to many of the same reasons that make it a good fit for healthcare and financial
domains. Wang et al. [49] analysed the security risks associated with data storage in the
IIoT and proposed the use of blockchain in order ensure secure data storage. Wu et al. [50]
proposed the integration of blockchain into the supply chain management workflow and
implemented a proof of concept on the Hyperledger Fabric for a food traceability system.
Chen et al. [51] proposed and implemented a blockchain based access control framework for
IoT systems. Jiang et al. [52] proposed the use of blockchain for IIoT data management and
presented Fair-Pack, a transaction packing algorithm which succeeded in improving the
average response time and fairness of the blockchain as compared to existing algorithms.
Bordel et al. [53] presented a theoretical framework to investigate the applicability of
blockchain for implementing a privacy and trust preserving solution for storage of data
generated by Internet of Things implementations. Dai et al. [54] proposed the integration
of blockchain technology to create a privacy preserving platform for Internet of Things.
Blockchain mining tasks were delegated to edge nodes through a process of offloading and
caching in order to maximize profit and reduce time based on game theory and auction
theory. Their approach was shown to perform better than both, a centralized mode as well
as a completely decentralized mode where all mining is done by edge nodes, on both profit
maximization and time reduction.
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Blockchain applications to energy grids have also been extensively studied.
Andoni et al. [55] identified that blockchain can add value to the energy grids in the broad
areas of billing, sales and marketing, transactions, automation in decentralized applications,
smart grid integration, secure information exchange, grid stabilization through usage flexi-
bility, privacy and security, sharing of common resources, competition and transparency.
Blockchain is intuitively suited for implementing peer to peer decentralized transaction
systems. Li et al. [56] proposed a blockchain based energy trading system that used a
credit-based payment scheme for faster transaction confirmation. They presented an opti-
mal pricing strategy based on Stackelberg game for credit-based loans. Additionally, they
evaluated their proposal in terms of security and performance to show the efficiency of
their solution. Gai et al. [57] proposed a noise-based privacy preserving energy transaction
approach by using account mapping to hide user information like location and energy
usage. The presented algorithm for noise creation showed an improvement over existing
differential privacy approaches in masking for privacy. Aitzhan et al. [58] also focused
on implementing transaction security in decentralized smart grid trading. They imple-
mented a token based transaction system to enable users to anonymously negotiate and
perform transactions. Paudel et al. [59] proposed a model with competitions between buyers
modelled using evolutionary game theory and competition among sellers modelled as a
non-cooperative game. The interactions between buyers and sellers were modelled as a M-
leader and N-follower Stackelberg game. The evaluation of their approach using simulation
showed the convergence of the model and significant financial benefits to the community.

Blockchain has also been used for implementing usage flexibility programs for grid
stability. Pop et al. [60] investigated the use of blockchain to store the consumption and
production data collected from smart meters. Smart contracts were used to define the usage
flexibility expected from each prosumer, with the corresponding incentives and penalties
and the rules for maintaining grid stability. Their evaluation of the proof of concept
showed that their approach followed the demand signal with high accuracy and reduced
the amount of energy flexibility needed. Jindal et al. [61] focused on the security aspects
of implementing a demand response mechanism by selecting miner nodes to validate the
blocks of energy transactions. The results show that the approach has a low communication
and computation overhead. Noor et al. [62] proposed a game theoretic approach to reduce
the Peak-to-Average ratio and smooth the load profile. They evaluated their approach
using a case study using synthetic data of 15 consumers with multiple appliances and
storage capacity. Silvestre et al. [63] proposed using blockchain to record the production
and consumption data, calculated the baseline and expected usage flexibility and evaluated
their implementation to show the efficacy of their approach.

Tokenization in blockchain is an important topic of investigation as assets on the
blockchain are represented in the form of tokens in order to facilitate transactions.
Chirtoaca et al. [64] reviewed the applicable metrics for extensibility and reusability of
NFT on the Ethereum blockchain and identified the most insightful metrics for these fea-
tures. Borkowski et al. [65] proposed DeXTT, a protocol for blockchain interoperability
for token transactions and showed the logarithmic scalability of their solution with re-
spect to the number of participating nodes. Barreiro-Gomez et al. [66] presented a study
of blockchain tokens based on mean-field-type game theory in order to establish a rela-
tionship between network characteristics, count of token holders, token price and token
supply. Based on their findings, they proposed that the number of tokens in circulation be
adjusted in order to capture the risk-awareness and self-regulatory behavior in blockchain
economics. Bal et al. [67] proposed NFTTracer, a framework for tracking NFT through mod-
ifications. They presented their architecture and algorithms and built a proof of concept
but did not present a quantitative analysis of the efficacy of their approach.

Devine et al. [68] proposed a mechanism for renewable energy providers to sell customers
future power output in form of NFT on the blockchain. They proposed two ways of structuring
these power delivery instruments and evaluated their proposal using a notional market
simulation. Regner et al. [69] proposed and described the use of NFT for an event ticketing
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application. However, a quantitative evaluation of their proposal was not included in their
work. Cioara et al. [70] presented an architecture of a blockchain-based smart grid platform
and described challenges in implementation of future grid management scenarios such as
energy trading, energy flexibility management and virtual power plants. Another work by
some of the same authors [30] proposed a blockchain based energy market and described the
theoretical framework for implementing the envisioned energy market for NFT assets with
features such as registration, bids automation and offers matching.

However, to our knowledge this is the first work that implements a unified energy
transaction system in FT as well as NFT versions and draws a comparison between the two
implementations in terms of design, algorithmic complexity, limitations and performance.

6. Conclusions

In this study we presented a unified blockchain-based system for energy asset transac-
tions among prosumers, EVs, Power Companies and Storage Providers. We implemented
and performance tested this system in two versions, one with the energy assets as fungible
tokens (FT) and another with non fungible tokens (NFT). We defined operations Create, Bid,
Transfer and Redeem for NFT and FT. Additionally, we defined operations ReCreate and
ReTransfer for FT, as outlined by the algorithms and token lifecycle presented in Section 3.
Based on our analysis, we have the following conclusions:

1. The time and space complexities for Create, Bid, Transfer, Redeem and Read algo-
rithms for NFT are both O(1). The time and space complexities for BulkRead for NFT
are both O(n).

2. The time and space complexities for Create, ReCreate, Bid, Redeem and Read algo-
rithms for FT are both O(1), while those for Transfer and ReTransfer algorithms for FT
are both O(n).

3. Increasing the permitted queue of unfinished transactions increases the request send
rate for all operations. Due to the increase in request send rate, the throughput as
well as latency increases for all operations.

4. Increasing the transaction complexity i.e., the number of writes per operation de-
creases the send rate and throughput achieved for the same queue length and compa-
rable latency.

5. The performance of operations for FT and NFT is similar for Create, Bid, Transfer and
Redeem. However, FT operations ReCreate and Retransfer are faster than Create and
Transfer for both NFT and FT due to lower number of write operations.

6. For the NFT implementation, Bid and Redeem operations are the fastest, followed by
Create and then by Transfer. In the FT implementation, the fastest operations are Bid, Re-
deem and ReCreate, followed by Create and ReTransfer, followed by Transfer operation.

7. The FT implementation stores the total count of energy assets of a particular type in a
single token, while NFT can have multiple tokens with energy assets of the same type.
So, performance of retrieving all the energy assets of a particular type was observed to be
vastly faster for FT (845 TPS, sub second latency) than for NFT (13 TPS, Latency over 18 s).

8. The NFT implementation avoids contention by creating new tokens with distinct keys
whenever Create and Transfer operations are called. Moreover, as two buyers cannot
bid on the same token by design, contention is avoided in the NFT implementation. FT
tokens function like accounts so, contention is a consideration when two operations
try to update the same account.

The implementation and results from the performance testing of the presented energy
transaction system with fungible and non fungible tokens provide a proof of concept and
show the applicability of blockchain for transacting energy assets in a community based
energy infrastructure. Both implementations have comparable performance for all major
operations. However, querying for all energy assets owned by a client is a bottleneck
for the NFT implementation and could be addressed by moving this operation off-chain.
Contention between operations trying to update the same key is a limitation for FT and
could be addressed by application based queuing of transactions based on dependency.
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No absolute performance related reasons for choosing one implementation over the
other were found, and the choice of implementation will thus depend on the specific
use case.
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Nomenclature

01. EUnit energy tokens for transacting renewable energy between prosumers

02. EVUnit
energy tokens for battery charging transactions between prosumers and
electric vehicle owners

03. InUnit
reward tokens offered to prosumers by the Power Company for tasks such as
consumption estimation

04. GaUnit
reward tokens offered to prosumers by the Power Company for energy
flexibility in a gamified context

05. StUnit
energy storage tokens for managing the community level energy storage
transactions

06. EStUnit reward tokens for managing the use of EV batteries as energy storage
07. NFT Create Create operation for non fungible tokens
08. NFT Bid Bid operation used by a buyer to place a bid on a non fungible token

09. NFT Transfer
Transfer operation used by seller to transfer value to buyer for non fungible
tokens

10. NFT Redeem Redeem operation for non fungible tokens
11. NFT Read Read operation to return a single non fungible token
12. NFT BulkRead Read operation to return multiple non fungible tokens

13. FT Create
Create operation involving creating a new fungible token and setting a token
level endorsement policy

14. FT ReCreate
Create operation involving update to an existing fungible token and no
setting of token level endorsement policy

15. FT Bid Bid operation used by a buyer to place a bid on a fungible token.

16. FT Transfer
Transfer operation used by seller to transfer value to multiple buyers by
creating new fungible tokens

17. FT ReTransfer
Transfer operation used by seller to transfer value to multiple buyers by
adding value to existing fungible tokens

18. FT Redeem Redeem operation for fungible tokens
19. FT Read Read operation to return a single token for fungible tokens

Abbreviations
The following abbreviations are used in this manuscript:

FT Fungible Tokens
NFT Non Fungible Tokens
EV Electric Vehicle
VM Virtual Machine
OSN Ordering Service Nodes
TPS Transactions Per Second
QL Queue Length
SR Send Rate (TPS)
MVCC Multi version concurrency control
IIoT Industrial Internet of Things
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