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Abstract: The peg-in-hole task with object feature uncertain is a typical case of robotic operation in
the real-world unstructured environment. It is nontrivial to realize object perception and operational
decisions autonomously, under the usual visual occlusion and real-time constraints of such tasks.
In this paper, a Bayesian networks-based strategy is presented in order to seamlessly combine
multiple heterogeneous senses data like humans. In the proposed strategy, an interactive exploration
method implemented by hybrid Monte Carlo sampling algorithms and particle filtering is designed
to identify the features’ estimated starting value, and the memory adjustment method and the
inertial thinking method are introduced to correct the target position and shape features of the object
respectively. Based on the Dempster–Shafer evidence theory (D-S theory), a fusion decision strategy
is designed using probabilistic models of forces and positions, which guided the robot motion after
each acquisition of the estimated features of the object. It also enables the robot to judge whether the
desired operation target is achieved or the feature estimate needs to be updated. Meanwhile, the
pliability model is introduced into repeatedly perform exploration, planning and execution steps to
reduce interaction forces, the number of exploration. The effectiveness of the strategy is validated in
simulations and in a physical robot task.

Keywords: robot; multi-sensor perception; Bayesian probability; fusion decision; autonomy operation

1. Introduction

Several recent studies have demonstrated that robotic operations may no longer
be targeted at specific objects and structured tasks. For example, in the medical field,
robots autonomously perform large-scale pharyngeal swab sampling to reduce the risk of
COVID-19 (Coronavirus Disease 2019) in health care workers [1]. In industry, robots can
replace humans in the autonomous assembly of circuit breaker components and ensure a
compact assembly [2]. Similar robotic operations can also extend to the robotic refueling
and charging of vehicles. A critical step that exists in the above tasks is the robotic peg-in-
hole operation with an uncertain object. This type of operation usually has to meet force
and position accuracy requirements under the constraints of narrow spaces and uncertain
objects. It is essential to obtain feature information of uncertain objects for the performance
of frequent interaction operational tasks in narrow spaces.

Visual sensors are considered to be the most common and direct method, which are
used to perceive important features of the uncertain object. In [3,4] they perceived the hole
posture by a single vision or multi-level vision for axial hole assembly and rivet-in-hole
Insertion. However, narrow uncertain objects often cause visual occlusion. For example,
during refueling for public service, the end of the fuel gun is not available to the tank
well through the vision sensor under the condition of uncertain object features, due to the
physical occlusion of the robot itself and the tank housing. Occlusion can lead to sensors not
being able to acquire the needed information [5] and force task termination. To solve this
problem, some methods have been proposed, such as introducing a heuristic approach [6],
which compensates for the residual visual information by a priori knowledge. Nevertheless,
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the process of demonstration and retrieving data is difficult to experiment in the real world
unstructured environment, such as space, deep sea and disaster scene. For frequent
interaction operational tasks, tactile sensors can provide richer local information than
visual sensors, such as shape, position and friction. Many researches are concerned with
predicting grasp stability [7] or re-grasp [8] by the information from tactile feedback.
Others use tactile sensors to estimate target position [9] and local surface texture [10,11].
Although the tactile sensor avoids to some extent the shortcomings of the visual absence,
it is dependent on the contact state between the robot and operating object. In other
words, tactile sensors cannot provide the necessary information when the robot is not in
contact with the operating object. Humans instinctively have the ability to seamlessly
combine the visual and tactile senses to perceive their surroundings accurately and evaluate
the operations being performed [12]. Vision sensors can provide global information for
accurate reach. Tactile sensors can estimate local information during operation in the
presence of visual errors and missing data due to occlusion [10]. It is a feasible solution
idea to achieve the complementarity and concurrency of these two sensors in the robotic
autonomy operation.

Some methods based on various learning algorithms that fuse visual and tactile
information are proposed, for example, in-depth researches on grasping stability predic-
tion [13,14] and shape estimation [15]. When operating in narrow spaces, Lv et al. [16] fused
visual and tactile information using the SVM (support vector machine) algorithm, which
enabled the robot to open the cover and insert the charging plug into the charging port
autonomously. Shaidah Jusoh et al. [17] proposed a multimodal information fusion method
for robots to recognize actions and generate tasks in industrial assembly environments.
Nevertheless, multimodal information fusion requires prior knowledge of the task to obtain
realistic performance. When this prior knowledge is not available, in [18], a multi-modal
representation learning approach with self-supervised functionality, which incorporated
visual, force, and robot motion information, was employed to complement the absence
caused by visual occlusion in a frequent interaction task. However, the implementation of
these methods, whether offline or online learning, requires a large amount of data as the
basis. Therefore, these methods are not applicable to operating objects where it is difficult
to obtain feature datasets for uncertain objects in advance.

Compared to the above methods, the approach based on Bayesian probabilistic tech-
niques has a clear advantage that a large amount of training data is not required in fusing
multi-sensor information. The results in [19] also demonstrated that approaches based on
Bayesian probabilistic techniques are significantly superior to neural network-based ap-
proaches. In [20], a Bayesian filtering framework was proposed to fuse the residual visual
information with the tactile information from the GelSight contact sensor to track the ob-
jects operated by the robot in hand. Although using tactile sensors are an effective solution
to the problem of visual occlusion, it has high requirements for the working environment
as a precision instrument. For special operating environments or special tasks, it may be
inconvenient to install dedicated tactile sensors or impossible to collect information. In or-
der to reduce the reliance on dedicated tactile sensors, they are replaced by force/torque
sensors. For instance, Fan Zhang et al. [21] used a probabilistic tracking method using a
Bayesian network that integrated multimodal information (force information and position
information) to estimate the posture of the human body in real-time to dress for disabled
people without a camera, even when the person has a sudden unexpected movement.
However, a pre-constructed object model is required, which is difficult for the previously
mentioned operating object. In the field of robotic assembly, Korbinian et al. [22] presented
a framework for tracking visual and tactile information assembly to perform assembly
operations for multiple hole types. Besides, some researchers have fused haptic and visual
information using a Bayesian framework to achieve the estimation of target positions
of assembled objects in industrial assembly [23,24]. In addition to estimating the target
position, the estimation of shape and other features and the decision capability, which
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empowers the robot to evaluate the quality of the task (how well the task was completed),
can further improve autonomy.

To achieve robotic autonomy operation without human intervention and without
making any provisions for an uncertain object, the designed solution scheme in this paper
is shown in Figure 1. Considered the possibility of visual deficits, contact force information
from the force/torque sensor and position information from the robot joint encoder are
introduced. The information from the three sensors is used in a multi-sensor perception
strategy (MSP) to obtain accurate features of the operating object and guide the operation.
The strategy performs an exploration–correction–decision–correction process, as shown
in the orange box in Figure 1. In the strategy, the interactive exploration method (IE) is
first presented to obtain the features of the uncertain object without a priori knowledge.
It integrates the Bayesian posterior probabilities obtained from multimodal information
(visual, contact force and position) to features estimated starting value, i.e., the target
position and shape of the uncertain object. Then, considered that the dynamic interaction
process may increase the uncertainty of the operating object, memory adjustment and
inertial thinking are introduced as correction methods to improve the accuracy of the
estimates further.

Figure 1. The solution scheme for robotic operating.

To achieve the function of the robot deciding the next operation by relying on its
own judgement, a fusion decision strategy (FD) is designed which is adapted to fine-



Sensors 2021, 21, 3818 4 of 26

grained operations with multiple requirements, such as operating accuracy and preload.
The purpose of this is to avoid the errors that can arise from single-evidence decisions,
for example, when evidenced by position only, substandard quality of operation may
occur (i.e., the operating tool reaches the target position but is not installed solidly in the
peg-in-hole task). When evidence by contact force only, it can be incorrectly judged as
satisfying the task requirements, because an interaction during operation creates a contact
force similar to the expected one. The fusion decision strategy is used after each exploration
of operating object features. Unlike existed research works that only used position accuracy
as an indicator, the designed fusion decision strategy fuses both position and force evidence
information in the D-S theoretical framework and includes their uncertainties to guide the
subsequent operations.

Finally, command information, such as the features of the uncertain object and the
evaluation results of the operation, from the MSP is sent to the robot to guide the operation.
As shown in the pink box in Figure 1, the flexibility model is introduced to further optimize
the robotic interaction behavior with the operating object.

This paper includes the following contents. In Section 2, There are major problems
that robots need to face for autonomous operation under uncertain objects. In Section 3,
the proposed multi-sensor perception strategy is presented in detail. In Section 4, the
control system is proposed. In Section 5, simulations based on the robot model established
are performed to verify the feasibility of the proposed method and provided parameter
references for the experiments. Then, physical robot operation experiments with dynamic
objects are conducted to further verify the effectiveness of the proposed method faced with
more uncertain objects. In Section 6, conclusions are given.

2. Problem Description

Based on the above analysis, the following issues will be investigated in this paper:

(1) how to perceive the features of the uncertain operating object,
(2) how to achieve make an automatic decision for the robotic operation,
(3) how to achieve safety interaction between the robot and the uncertain operating object.

For the critical step of the pen-in-hole task, a mathematical description of the above
problem was presented. As shown in Figure 1, an internal equivalent model of the operation
object is drawn on the right side. The cross-section where the robot interacts with the
uncertain operation object is extracted to establish an equivalent model of the uncertain
operation object. The inner shape and the target position are selected as the features of
the uncertain operation object. It is worth noting that the shape mentioned here is the
overall shape of the proposed uncertain operation object. The irregular interior surface has
no significant effect on the features to be perceived, so it can be ignored. In addition, for
perception algorithms, since the robotic end is simplified to a point with no width and the
inner wall is inclined, the uncertain operating object is simplified to a triangle, as shown in
Figure 1. Finally, the shape and position can be expressed by three vertices:

Xd =
[

Pa Pb Pc ] (1)

where Pa ∈ RD, Pb ∈ RD, Pc ∈ RD are the positions of vertex A, vertex B and vertex C
of the triangle, respectively. D denotes the space dimension where the robot is located.
The position Pb of vertex B is utilized to represent the target position Xe of the uncertain
operating object.

Besides visual error and occlusion, the operating object may generate continuous
dynamic effects due to the interaction process, which can increase uncertainty. The un-
certainty can be expressed as ωe. The estimated position of the uncertain object by vision
sensors can be expressed as:

Xe,vision = Xe,reality + ωe (2)
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where ωe contains visual errors, which are usually non-linear and uncertain. It is also very
expensive to recognize and predict for ωe. Therefore, the target position of the uncertain
operating object Xe can be obtained by estimating the local features of the uncertain
operating object Xd. When the estimate is accurate enough, Xe is Xe,reality.

Moreover, in practical application, the operation task performed by the robot is usually
composed of several continuous nail hole operations. Each contact behavior induces
dynamic interactions at the operational object connections, resulting in coupling effects
of robot operational errors and system stability. This coupling effect accumulates and
increases over the course of the task. From the above description and analysis, it is clear
that for each peg-in-hole operation, the robot must perform with high operational accuracy
and apply appropriate forces to the operational object during continuous and large task
volumes. That is, the contact force needs to satisfy:

Fe ∈
(

Fpreload, Fmax

)
(3)

where Fe is the contact force at the robotic end, Fpreload is the preload force in accordance
with the operational requirements, Fmax is the maximum contact force allowed. On the one
hand, a very high force is not allowed due to the safety of the whole system. On the other
hand, a tiny force is also not qualified because there should be enough preload to ensure
that each step of the operation is stable, ensuring that the whole structure is stable and
reliable [25].

If the robot can make timely autonomy decisions based on the collected limited
information to guide the subsequent movements, the number of contacts can be effectively
reduced and thus the dynamic effects are reduced. In addition, it also reduces human
involvement, which effectively avoids human errors and workload. Therefore, a variable ξ,
which represents the result of the decision, is needed to evaluate the quality of the task and
guide subsequent operations.

3. Design of Multi-Sensor Perception Strategy

The multi-sensor perception strategy is divided into two parts, i.e., interactive ex-
ploration and fusion decision, which are shown in Figure 2. Firstly, in the interactive
exploration part, the information from the three sensors is seamlessly combined to obtain
features estimated starting value X̂t

d0. The correction component is used to adjust the
X̂t

d0, which will obtain accurate operating object features X̂t
d,cor2. Then, the information in

X̂t
d,cor2 is sent to the fusion decision part and the pliability model part, respectively. The

fusion decision part will provide the robot controller and exploration part with ξ to guide
subsequent movements. Finally, ξ and the commanded position Xc provided by the pliable
model will together guide the subsequent robot movements.

3.1. Interactive Exploration

In the case of imperfect vision sensors, the features of the uncertain operating object are
explored by integrating three sources of information. Given the position of the robotic end
(i.e., Xt

end in (3.1.3)), the force information between the robot and the uncertain operating
object (i.e., Fe

t in (3.1.4)) and estimated operating object features by vision (i.e., Xt
e,vision in

(3.1.5)), particles (each particle ẑt
i corresponds to a set of features of the uncertain operating

object Xd) are weighted integrated to estimate the features of the uncertain operating
object. The coordinate transformation between the three sensors can be achieved by the
transformation matrix TC

R and TF
R. Furthermore, memory adjustment and inertial thinking

methods are introduced to correct the shape feature and target position feature of the
uncertain operating object, respectively, to improve the estimation accuracy.
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Figure 2. Multi-sensor perception strategy.

3.1.1. Initialization

It is assumed that the features of the uncertain operating object at each moment obey
the Gaussian distribution and include the dynamics of operating object prediction.

P = N(µt
z, Σt

z) (4)

where µt
z represents the mean vector of the Gaussian distribution, Σt

z represents the covari-
ance matrix of Gaussian distribution. µt

z is the features of the uncertain operating object at
the current moment. For initialization, µ0

z is the initial features of the uncertain operating
object collected by the depth camera and Σ0

z is the error of the depth camera. When t > 0,
the definition of µt

z and Σt
z will be introduced in detail in Section 3.1.6.

3.1.2. Random Wandering of Sampled Particles

The particle random walk is realized by adding a constant diagonal matrix to the
covariance matrix of the Gaussian distribution. The purpose is to introduce dynamic effects
in the uncertain operating object between two moments in the model. Hybrid Monte Carlo
sampling (HMC sampling) according to the new Gaussian distribution is performed to
obtain the particles:

Ẑt
= [ẑt

1, ẑt
2, · · · , ẑt

N ]
T (5)

where t is the current moment and N is the number of sampled particles. Ẑt
i is a six-

dimensional vector due to the representation of Xd.
The random walk of particles is defined as:

p
(
ẑt

i
)
= N

(
ẑt

i

∣∣∣µt−1
z , Σt−1

z + Σ4
)

(6)

where Σ4 is a constant diagonal matrix, which contains the dynamics of the predicted
uncertain operating object between two moments.

In the following section, based on the position information and force information
of the robotic end and visual estimated operating object features at the current moment,
probability calculations are performed on each sampled particle to recursively design a
Gaussian distribution so that the features of the uncertain operating object at each moment
can be estimated.
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3.1.3. Estimating the Probability of the Features of the Uncertain Object Based on Position
Information

The robotic end position Xt
end is used to estimate the probability of the features of the

uncertain operating object, as shown in Figure 3. dt
i is defined as the distance between the

position of the current robotic end and the estimated uncertain operating object Ẑt
i . Each dt

i
is obtained by calculating dt

i,up and dt
i,down, where dt

i,up is the sum of da and db and dt
i,down

is the sum of dc and db, respectively. Among them, da is the distance between the robotic
end and the vertex A, db is the distance between the robotic end and the vertex B, dc is the
distance between the robotic end and the vertex C. Note that whether dt

i,up or dt
i,down is

used depends on the current position of the robotic end in the uncertain operating object.

In other words, if the end of the robot collides with
→

AB, dt
i,up is used, otherwise, dt

i,down is
used. Assumed that the robotic end is on the boundary (i.e., dt

i= d →
AB

or dt
i= d →

CB
) when

the robot happens to collide with the uncertain operating object. Therefore, under the
conditions of a given uncertain operating object, the probability of the current robot end
position colliding with the uncertain operating object can be expressed as:

p
(
Xt

end
∣∣ẑt

i
)
= N

(
dt

i |µd ,σ2
d

)
(7)

where σ2
d is the covariance matrix of the Gaussian distribution function, µd can be de-

fined as:

µd = do =

 d →
AB

, the end of the robot collides with
→

AB

d →
CB

, the end of the robot collides with
→

CB
(8)

where do is the mean of the Gaussian distribution. When the end of the robot collides with
→

AB, the mean is set as do= d →
AB

. When the end of the robot collides with
→

CB, the mean is
set as do= d →

CB
.

Figure 3. Probabilistic model based on the position information. The solid black line indicates the
uncertain operating object and the red circle indicates the end of the robot.

3.1.4. Estimating the Probability of the Features of the Uncertain Object Based on
Force Information

The contact force Fe
t of the robotic end collected by the six-dimensional force sensor

(by the contact model in the simulation) is used to calculate the probability of each particle.
The normal collision position n̂t

i is obtained based on each particle Ẑt
i corresponding to the

uncertain operating object and the current position of the robotic end Xt
end. The friction

cone ĉt
i is defined with the normal n̂t

i as the axis.
When the direction of the end contact force is inside the friction cone, the particle

corresponds to the uncertain operating object with the highest probability, as shown in
Figure 4. In other words, the angle θt

i between the end contact force Fe
t and the normal n̂t

i
should be less than the angle θf of the defined friction cone. The probability model based
on force information can be defined as follows. When the end contact force Fe

t is inside the
friction cone ĉt

i , the probability of the particle Ẑt
i is defined as 1. When the end contact force

Fe
t is outside the friction cone ĉt

i , the probability of the particle Ẑt
i is defined as a Gaussian
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distribution function. Therefore, the probability of the force for each particle sampled is
defined as:

p
(
Fe

t∣∣ẑt
i
)
=

{
1, θt

i ≤ θf
N
(
θt

i |θf ,σ2
f
)
, θt

i> θf
(9)

where σ2
f is the covariance matrix of the Gaussian distribution function.

Figure 4. Probabilistic model based on force information. The solid black line indicates the uncertain
operating object and the solid gray line indicates the end of the robot.

3.1.5. Estimating the Probability of the Features of the Uncertain Object Based on
Visual Information

When the robot starts to move toward the operation object, vision can easily provide
feature information of the object. The current moment object features can be estimated
by the Euclidean distance between Xt

e,vision from the visual information and Ẑt
i . After the

robot moves near the operation object, visual occlusion occurs. Therefore, the probability
of the visual information for each particle sampled is defined as:

p
(
Xt

e,vision
∣∣ẑt

i
)
=

{
N
(

ẑt
i

∣∣∣Xt
e,vision ,σ2

v

)
, dr> dv

0, dr ≤ dv
(10)

where σ2
v is the covariance matrix of the Gaussian distribution function, dr is the distance

between the robot and the target position of the uncertain object at the previous moment,
dv is the minimum distance between the robot and the uncertain object without occlusion.

3.1.6. Weighted Integration

To improve the accuracy of the estimation, the posterior probabilities obtained from
these two information sources are integrated to obtain the weighting coefficient of the
particles. At a certain moment, given the end position and robotic contact force, the weight
of the particle can be expressed as:

p
(
ẑt

i
∣∣Xt

end, Fe
t, Xt

e,vision
)

∝
p
(
ẑt

i
∣∣Xt

end
)
· p
(
ẑt

i
∣∣Xt

end, Fe
t )+ p

(
Xt

e,vision

∣∣ẑt
i

)
Lm

p
(
ẑt

i
)
= wt

i · p
(
ẑt

i
)

(11)

where Lm is the normalization factor.
Redefine the Gaussian distribution of particles as:

P = N(µt
z, Σt

z) (12)

where µt
z is the mean vector and Σt

z is the covariance matrix.

µt
z0 =

N

∑
i=1

wt
i ẑ

t
i (13)

Σt
z = AAT (14)

A =

[(
wt

i
) 1

2
(
ẑt

i − µt
z
)
, · · · ,

(
wt

N
) 1

2
(
ẑt

N − µt
z
)]

(15)

where µt
z0 is features estimated starting value X̂t

d0 of the uncertain object.
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3.1.7. Correcting the Estimated Features of the Uncertain Object

Since there may be errors in the shape and position of the uncertain object after sam-
pling and estimation, historical information and rules of inertia thinking are used to correct
the estimated value of the features of the uncertain object to improve the accuracy of the
estimation, as shown in Figure 5. In this section, the memory adjustment correction method
(MAC) and the Inertia thinking correction method (ITC) will be introduced in detail.

Figure 5. Schematic diagram of correction method. (a) Schematic diagram of memory adjustment correction method (left)
and (b) schematic diagram of Inertia thinking correction method (right).

(1) Memory adjustment correction method
The shape features of the uncertain object are calculated based on the estimated value,

after completing the sampling estimation. According to the uncertain object proposed
in Section 2, the shape is defined as the angle and the depth of the triangle, as shown
in Figure 6. It is an accepted fact that dynamic effects do not change the shape of the
uncertain object. Referring to the iterative update process of memory and operation during
continuous human exploration, the fuzzy Naive Bayes principle is used to process real-time
estimation and historical information.

Figure 6. Shape features of the uncertain object.

According to the estimated value X̂d, the angle δe,i is calculated,

δe1 = tan−1
[(

Pb
2 − Pa

2

)
/
(

Pb
1 − Pa

1

)]
(16)

δe2 = tan−1
[(

Pb
2 − Pc

2

)
/
(

Pb
1 − Pc

1

)]
(17)

δe =
[

δe1 δe2
]

(18)

where δe is the angle vector. Pb
n denotes the n-th element in Pb. In the later sections, similar

representations are used for this purpose.
To obtain the most suitable correction angle, historical information is introduced to

participate in the correction calculation. The history information collection of angle is
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defined as Hδ = {Hδ,1, Hδ,2, · · ·Hδ,t−1}, and the reference angle δr is calculated through
the history information collection Hδ.

The angle error eδ is expressed as:

eδ,i = δr − δe,i (19)

The posterior probability of the angle based on the angle error δe is defined as:

pj
i(δe,i|eδ,i ) = µi(eδ,i)= max

(
µ

j
i(eδ,i)

)
, (j = 1, 2) (20)

where µ
j
i(eδ,i) is the fuzzy membership function, j is the labeled value, 1 is true and

2 is false.
A simple fuzzy system with two fuzzy rules is established, and the fuzzy membership

function is:

µ1
i (eδ,i) =


1, eδ,i ≤ νδ,1
eδ,i−νδ,2
νδ,1−νδ,2

, νδ,1 < eδ,i ≤ νδ,2

0, eδ,i > νδ,2

(21)

µ2
i (eδ,i) =


0, eδ,i ≤ νδ,1
eδ,i−νδ,1
νδ,2−νδ,1

, νδ,1 < eδ,i ≤ νδ,2

1 eδ,i > νδ,2

(22)

where νδ,1 and νδ,2 are the membership function parameters.
δcor is introduced to express the correction angle. When j is 11 (i.e., the labels cor-

responding to both δe1 and δe2 are 1), δcor is δe corresponding to the maximum value of
pj=1

i (δe,i|eδ,i ), and the credibility is recorded as the maximum value of pj=1
i (δe,i|eδ,i ). When

j is 12 (i.e., only the label corresponding to δe1 is 1), δcor is δe1, and the credibility is recorded
as pj=1

i=1(δe,i|eδ,i ). When j is 21 (i.e., only the label corresponding to δe2 is 1), δcor is δe2, and

the credibility is recorded as pj=1
i=2(δe,i|eδ,i ). When j is 22 (i.e., the labels corresponding to

both δe1 and δe2 are 2), δcor is δr, and the credibility is recorded as the maximum value of
p(•) = 0.9.

The history information at the current moment is defined as Hδ,t = [δcor, p(•)]T.
The historical information collection is regenerated as Hδ ← Hδ ∪ {Hδ,t} . The reference
angle δr is expressed as:

δr =
t=t−1

∑
t=0

Hδ,t,1·Hδ,t,2

∑ Hδ,t,2
(23)

The depth le,i is calculated based on the estimated value X̂d0,

le1 =
∣∣∣Pb

1 − Pa
1

∣∣∣ (24)

le2 =
∣∣∣Pb

1 − Pc
1

∣∣∣ (25)

le =
[

le1 le2
]

(26)

where le is the depth vector.
In order to obtain the most suitable correction depth, historical information is intro-

duced to participate in the correction calculation. The history information collection of
depth is defined as Hl = {Hl,1, Hl,2, · · ·Hl,t−1}, and the reference depth lr is calculated
through the history information collection Hl.

The depth error el is expressed as:

el,i = lr − le,i (27)
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The posterior probability of the depth based on the depth error le is defined as:

pj
i(le,i|el,i ) = µi(el,i)= max

(
µ

j
i(el,i)

)
, (j = 1, 2) (28)

where µ
j
i(el,i) is the fuzzy membership function, j is the labeled value, 1 is true and 2 is false.

The calculation method and the same calculation method described above are omitted.
lcor is introduced to express the correction depth. When j is 11 (i.e., the labels cor-

responding to both le1 and le2 are 1), lcor is le,i corresponding to the maximum value of
pj=1

i (le,i|el,i ), and the credibility is recorded as the maximum value of pj=1
i (le,i|el,i ). When

j is 12 (i.e., only the label corresponding to le1 is 1), lcor is le1, and the credibility is recorded
as pj=1

i=1(le,i|el,i ). When j is 21 (i.e., only the label corresponding to le2 is 1), lcor is le2, and

the credibility is recorded as pj=1
i=2(le,i|el,i ). When j is 22 (i.e., the labels corresponding to

both le1 and le2 are 2), lcor is lr, and the credibility is recorded as the maximum value of
p(•) = 0.9.

The history information at the current moment is defined as Hl,t = [lcor, p(•)]T.
The historical information collection is regenerated as Hl ← Hl ∪ {Hl,t} . The reference
depth lr is expressed as:

lr =
t=t−1

∑
t=0

Hl,t,1·Hl,t,2

∑ Hl,t,2
(29)

After obtaining the correction angle and correction depth, the initial correction value
X̂t

d,cor
of the features of the uncertain object is calculated:

Pa
cor,1 = Pb

1 − lcor (30)

Pa
cor,2= tan(δcor)·lcor + Pb

2 (31)

Pb
cor = Pb (32)

Pc
cor,1 = Pb

1 − lcor (33)

Pc
cor,2= − tan(δcor)·lcor + Pc

2 (34)

X̂t
d,cor

=
[

Pa
cor Pb

cor Pc
cor

]
(35)

(2) Inertia thinking correction method
Human tactile perception is an iterative process of recognition–decision–correction.

In this part, the features of the uncertain object will be corrected based on the result of
the fused decision and the sensor information. For the sake of correcting the estimated
features of the uncertain object, a novel method is proposed based on inertial thinking in
the following.

Rule 1: When the robot moves towards the target position, the end of the robot should
gradually approach the target position, γ =

(
X̂t

d,cor,3 −Xt
end,1

)
−
(

X̂t−1
d,3 −Xt

end,1

)
≤ 0

.
X

t
end,1 ≥ 0

(36)

If γ ≥ 0∪
.

X
t
end,1 ≥ 0, it is necessary to correct the target position of the uncertain object

based on rules of inertial thinking and the estimated target position at the current moment
should be the target position at the previous moment, that is X̂t

d,cor2,3 = X̂t−1
d,3 . Otherwise,

there is no need to correct again, that is, X̂t
d,cor2,3 = X̂t

d,cor,3. However, when the end of the
robot reaches the target position but still has not completed the task (Equation (51), the
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judgment method is given in the next section), the estimated target position of the uncertain
object will shift toward the forward direction of the robot, that is, add a positive parameter.{

unfinish
et

end,1 ≤ ς
(37)

where et
end is the distance between the end position of the robot and the estimated target

position. ς is the threshold.
In the process of exploration, if humans perceive a collision, they will explore in the

opposite direction.

Rule 2: If the end of the robot collides with
→

AB, the robot is expected to move away

from
→

AB; if the end of the robot collides with
→

CD, the robot is expected to move away

from
→

CD.
The end of the robot collides with

→
AB, Pb

cor2,2= tan(δcor)·
(

X̂t
d,cor,3 − X̂t−1

d,3

)
+ Pb

cor,2 − ε, X̂t
d,cor,3 < X̂t−1

d,3

Pb
cor2,2 = − tan(δcor)·

(
X̂t

d,cor,3 − X̂t−1
d,3

)
+ Pb

cor,2, X̂t
d,cor,3 ≥ X̂t−1

d,3
(38)

The end of the robot collides with
→

CD, Pb
cor2,2 = − tan(δcor)·

(
X̂t

d,cor,3 − X̂t−1
d,3

)
+ Pb

cor,2 + ε, X̂t
d,cor,3 > X̂t−1

d,3

Pb
cor2,2= tan(δcor)·

(
X̂t

d,cor,3 − X̂t−1
d,3

)
+ Pb

cor,2, X̂t
d,cor,3 ≤ X̂t−1

d,3
(39)

where ε is a constant positive parameter added to strictly ensure that the requirements of
Rule 2 are met.

Pa
cor2,1 = Pb

cor2,1 − lcor (40)

Pa
cor2,2= tan(δcor)·lcor + Pb

cor2,2 (41)

Pc
cor2,1 = Pb

cor2,1 − lcor (42)

Pc
cor2,2 = − tan(δcor)·lcor + Pc

cor2,2 (43)

µt
z = X̂t

d,cor2 =
[

Pa
cor2 Pb

cor2 Pc
cor2

]
(44)

Xt
e = Pb

cor2 (45)

After the correction is completed, µt
z and Xt

e are sent to the multi-sensor perception
strategy part and the robot, respectively, µt

z is used to estimate the features of the uncertain
object next time and Xt

e is used to update the desired target position of the control section.

3.2. Fusion Decision Based on D-S Theory

As shown in Figure 7, the information of position and force is used to jointly decide
the subsequent operation of the robot, based on the different information of position and
force generated in different task progress stages. For example, the contact force during the
task is lower than the one after the task is completed in general. In addition, the direction
of the contact force is also different. The contact force during the task should be directed to
the internal friction of the cone ĉt

i , while the task is completed on the contrary. Ideally, the
direction of the contact force should coincide with the end direction.
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Figure 7. The force of the robot generated in different task progress stages.

The D-S theory is used to analyze the position information provided by the robot
and the force information provided by the force sensor. This fusion decision strategy
provides a mechanism to represent and process the uncertainty from robots and force
sensors. Moreover, Dempster’s combination rules [26] are used to fuse information from
different sources.

First, the recognition framework Θ is defined as:

Θ = {Finish, Unfinish} (46)

The main elements of the recognition framework, 2Θ, are defined as:

Ω = {{Finish}, {Unfinish}, {Finish, Unfinish}} (47)

where {Finish, Unfinish} represents the uncertain assumption in D-S theory. {Finish} and
{Unfinish} represent the thresholds of the two hypotheses, respectively.

Next, the basic probability assignment (BPA) of different categories to which different
information sources belong is calculated. In the method in this paper, the fuzzy naive
Bayes method is used to generate BPA for each category and assign it to D-S theory. Let
Vi

j be the eigenvalue vector collected by each information source, where i represents
the i-dimensional independent feature variable and j represents different information
sources. For the position information source, Vi is the position error in each direction.
For the force information source, Vi is the magnitude and direction of the contact force.
W ∈ C = {C1, C2, · · · , CN} is defined as the classification label corresponding to Vi.
In order to determine the BPA, the fuzzy naive Bayes method is used to determine the
conditional probability and assign it to the basic probability used in the D-S theory,

m(Ci) = µCi

(
V j
)

(48)

where Ci ∈ {{Finish}, {Unfinish}}.
According to D-S theory, there is a compound hypothesis that an object may belong

to both {Finish} and {Unfinish}. Therefore, the operator ∧ is used to assign the basic
probability of {Finish, Unfinish},

m({Finish, Unfinish}) = µ{Finish,Unfinish}

(
V j
)
= µ{Finish}

(
V j
)
∧ µ{Unfinish}

(
V j
)

(49)

where ∧ is the minimum t-norm operation. Moreover, the purpose of normalizing the BPA
solved above is to ensure the effectiveness of BPA,

m(Ci) =
µCi

(
V j)

L
(50)

m({Finish, Unfinish}) =
µ{Finish,Unfinish}

(
V j)

L
(51)

L = m(Ci) + m({Finish, Unfinish}) (52)
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where L is the normalization factor. BPA generated by different information sources can
be obtained through the above methods. Then, Dempster’s combination rule is used to
integrate the above BPA to obtain the overall BPA. Let m1 and m2 be the evidence provided
by two independent information sources. In the framework of evidence theory, Dempster’s
combination rule is expressed as m = m1 ⊕m2. The calculation method is as follows:

m(A) = m1 ⊕m2(A) =
1

1− κ
m∧(A) (53)

where A ∈ Ω, A 6= ∅, m∧(A) represents the sum of BPA products whose intersection with
the subset is not an empty set,

m∧(A) = ∑
A1∩A2=A

m1(A1)m2(A2) (54)

where κ is the degree of conflict between evidence. The greater the degree of inconsistency
between the information, the closer κ will be to 1. The sum of BPA products whose
intersection is an empty set.

κ = ∑
A1∩A2=∅

m1(A1)m2(A2) (55)

where 1− κ can be understood as a normalization factor.
For systems with multiple information sources, the overall BPA , mall , can be ex-

pressed as:
mall = m1 ⊕m2 ⊕ · · · ⊕mj (56)

After the fusion is completed, the entire decision-making process has changed from
multiple information sources to single information source decision-making. Choose the
hypothesis with the greatest probability as the predicted category of the sample in the test
data. Finally, the result of the task assessment ξ and its BPA are obtained, where ξ is 0 or 1.
1 represents {Finish}, 0 represents {Unfinish}.

4. Design of Control System
4.1. Dynamics Model

The n-degree-of-freedom robot dynamics are:

M(q)
..
q + C

(
q,

.
q
) .
q + G(q) + D(q) + JTFe = τ (57)

where M(q) ∈ Rn×n is a symmetric positive definite inertia matrix, C
(
q,

.
q
)
∈ Rn×n is the

Coriolis force and centrifugal force matrix, G(q) ∈ Rn is the gravity vector, D(q) ∈ Rn is
the friction torque matrix generated by the clearance. q ∈ Rn,

.
q ∈ Rn and

..
q ∈ Rn is the

position, velocity and acceleration of the robot in the joint space, respectively, obtained by
the robot joint encoder. J ∈ Rn×m is the Jacobian matrix. Fe ∈ Rm is the contact force vector
at the end of the robot, which is collected by the six-dimensional force/torque sensor at the
robotic end. τ ∈ Rn is the joint torque. It is worth noting that, M(q), C

(
q,

.
q
)

and G(q) are
all unknown.

The above formula is rewritten into Cartesian coordinate form as:

M(q)J†
( ..

Xend −
.
J

.
q
)
+ C

(
q,

.
q
)
J† .

Xend + G(q) + D(q) + JTFe = τ (58)

where J† = JT(JJT)−1 is the pseudo-inverse matrix of the Jacobian matrix. Xend ∈ Rm,
.

Xend ∈ Rm and
..
Xend ∈ Rm are the end position, velocity and acceleration of the Cartesian

space robot, respectively. It is particularly noted that the robot and the operating tool are
considered as a whole and thus the robotic end is defined as the end of the operating tool.
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Rewrite the above formula further:
¯
MJ†

( ..
Xend + ∆ f

)
+ JTFe = τ (59)

where
¯
M is the estimated value of the inertia matrix M(q). ∆ f is uncertain terms, which

can be expressed as:

∆ f = J
¯
M

†((
M(q)−

¯
M
)

J† ..
Xend −M(q)

.
J

.
q + C

(
q,

.
q
)
J† .

Xend + G(q) + D(q)
)

(60)

4.2. Control System Designed with MSP

In this part, the uncertain of the robot model and the uncertain of the object are
considered in the design of the robot controller. In the outer loop, the pliability model is
introduced and combined with a multi-sensor perception strategy to perceive the object
and provide a command position Xc for the inner loop. In the inner loop, sliding mode
control is used to solve the influence of robot model errors (only used in simulation).
The control system diagram is shown in Figure 8. It is worth noting that the sliding mode
compensation term (yellow box in Figure 8) is only used in the simulation, while in the
experiments the robot receives the command positions provided by the flexibility model
directly. The sliding mode compensation term is introduced to reduce the impact of errors
of the robot model established in Section 4.1 on the strategy validation.

Figure 8. Control system designed with MSP.

The pliability model is:

Md

( ..
Xe −

..
Xc

)
+ Bd

( .
Xe −

.
Xc

)
+ Kd(Xe −Xc) = Fd − Fe (61)

where Md, Bd and Kd are the inertia matrix, damping matrix and stiffness matrix required
by the impedance model, respectively, and they are positive definite diagonal matrices. Xe
is the desired target position in Cartesian space, which is given by the perception strategy
in the previous Section 3.

.
Xe and

..
Xe are the desired velocity and acceleration in Cartesian

space, respectively, which can be calculated by Xe. Fd is the desired contact force. Rewrite
the above formula:

Md
..
Xc + Bd

.
Xc + KdXc = Fe − Fd + Md

..
Xe + Bd

.
Xe + KdXe (62)

among them, Xe(0) = Xc(0) and
.

Xe(0) =
.

Xc(0). The command position and command
acceleration can be obtained from the command speed.

The position error is defined as:

e = Xc −Xend (63)
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Sliding mode is defined as:
S =

.
e + λe (64)

where λ is a positive definite constant matrix.
The robot reference state is defined as:

..
Xr =

..
Xc + λ

.
e (65)

The controller can be designed as:

τ =
¯
MJ†

( ..
Xr + AS + K ŝign(S)

)
+ JTFe (66)

5. Simulation and Experimental Results

Simulation and physical robot task experiments are designed for the narrow uncertain
object. The proposed whole solution scheme is evaluated in terms of intelligence, autonomy
and safety. (1) accuracy of interactive exploration for the features of the uncertain object Xd
(intelligence); (2) correctness of fusion decision for task completion judgments (autonomy)
and (3) comparative experiments to assess the safety of the entire solution scheme for
robotic autonomy operations (safety).

5.1. Simulation Studies
5.1.1. Simulation Settings

Let n =4 in Equation (57). The complete simulation model is established based on
the robot dynamics model and control system in Section 4. In the simulation, the basic
parameters used in the control system are as follows.

Impedance coefficient:

Md= diag([0.0000001, 0.0000001])

Bd= diag([5.05, 5.05])

Kd= diag([1500, 1500])

Sliding mode parameters:

λ = diag([50000, 50000]) (67)

A = diag([20, 20])

K̂ = 7000 (68)

Inertial matrix estimates:
¯
M= diag([0.005, 0.0015, 0.0015, 0.01]) (69)

In the simulation, the initial position of the robot is set near the operation object
(i.e., there is visual occlusion). The initial features of the uncertain object are given and
are in error with the expected value. Since the estimates of our method are based on the
previous moment’s ones each time, the range of applicability of interactive exploration can
be tested by adjusting the initial error. Considering that the entire operating object should
be stabilized after the task is completed, the preload force is introduced and was set to 5 N.

5.1.2. Intelligibility Evaluation

We give the initial features of the uncertain object, and the errors of these features
(target position) from the expected values are −0.8 mm, −3 mm, 0, 3 mm and 10 mm,
respectively. As can be seen from Figure 9, the accuracy of estimated values improves
with the increasing number of explorations. The final error is less than 1mm. Therefore,
it can be concluded that force-tactile exploration can estimate the target position of the
uncertain object.
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Figure 9. Estimation error of the target position of the uncertain object.

In addition, to verify the advantages of the proposed method in terms of estimation
accuracy, we also evaluate the MAC and ITC methods. The simulation results of MAC are
represented in Figure 10, where Figure 10a shows the simulation results of MAC (angle)
and Figure 10b shows the simulation results of MAC (depth). Since features of the true
object are uncertain, we consider the reference eigenvalues as the baseline. When one of the
original estimated angle features is close to the reference angle, the original estimated angle
feature is corrected to the closer one by MAC, as shown in Figure 10a. When none of the
original estimated depth features is close to the reference eigenvalue, the original estimated
depth feature is corrected for the reference depth by MAC, as shown in Figure 10b. We can
arrive at a conclusion that the MAC method keeps the estimated shape features (depth and
angle) of the uncertain object more accurately by historical data.

Figure 10. Simulation results of MAC. (a) simulation results of MAC (angle) and (b) simulation results of MAC (depth).

In Figure 11, the robot collides with BC at this time. In Figure 11a, the feature (target
position) of the uncertain object at the current moment estimated by the MAC is located at
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the lower right of the estimated target position of the uncertain object at the last moment.
After the ITC, the target position of the uncertain object, which is corrected by the MAC, at

the current moment slides along the direction
→

BA to near the inertial position. In Figure 11b,
The target position feature of the uncertain object at the current moment estimated by the
MAC is located at the upper right of the estimated target position of the uncertain object
at the last moment. After the ITC, the target position of the uncertain object, which is

corrected by the MAC, at the current moment slides along the direction
→

BC to near the
inertial target position, due to the presence of ε, which aims to make the robot conform to
the collision-avoidance inertial response.

1 
 

 

 

Figure 11. Simulation results of ITC. (a) result 1 and (b) result 2.

During the ITC design stage, we consider four possible scenarios that can cause inac-
curate estimation (only three scenarios have appeared in the results of many simulations
so far). Moreover, with the introduction of the ITC, the estimation results of the interactive
exploration method are more accurate. Therefore, the validity of the design in this paper
was verified.

5.1.3. Autonomy Evaluation

The fusion decision results can be viewed as a classification of the current task progress
(finished and unfinished). Therefore, the confusion matrix is proposed to evaluate the per-
formance of the fusion decision strategy. As shown in Figure 12, each row of the confusion
matrix represents a real result (finished and unfinished) and each column represents the
result of the fusion decision. Six simulation studies are selected for analysis, containing the
results of 86 decisions. In 86 results, the number of finished is 6 and the number of unfin-
ished is 80. The number on the box indicates the percentage of the result of all decisions.
Since each task can have only one result of finished, we count the results of 86 decisions
and calculate the percentages according to completion and unfinished, respectively, to
represent all results in the range [0, 1]. As expected, the diagonal values of the confusion
matrix are high, which indicates that the strategy has a high truth rate.



Sensors 2021, 21, 3818 19 of 26

Figure 12. Confusion matrix for fusing decision results.

5.1.4. Safety Evaluation

Figure 13 shows that the contact force between the robot and the object under the
control of the designed solution scheme is less than 10N, which satisfies the requirement of
pliability and safety. In addition, the preload force of the robot in completing the task meets
the design requirements (red marker), which proves that the task is qualified. In overview,
the control system meets the requirements for contact forces presented in Section 2.

Figure 13. Contact force at the end of the robot.

The result in Figure 14 shows that the proposed system can control the robot to reach
the target position of the task with an error of less than 0.5 mm. We can also observe that
the robot undergoes an abrupt displacement (represented as a circle in the y-direction),
which is caused by the large change in the target position of the uncertain object estimated
twice. Sudden displacement is within 1 mm due to the combined efforts of fusion decision
results and impedance control. The later motion trajectory is smoother because the change
in position between two adjacent estimates became smaller.
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Figure 14. Robot position tracking error.

5.2. Experimental Studies
5.2.1. Experimental Settings

To further validate the performance of the proposed strategy in more complex and
uncertain objects, a peg-in-hole experiment with dynamic effects is designed, and the ex-
perimental equipment is shown in Figure 15a. The experimental system consists of the UR3
robot, operating tools, simulation components (operating objects), a six-degree-of-freedom
parallel movement platform, and a console. Among them, the six-degree-of-freedom par-
allel movement platform, which introduces uncertainty for the operating object, is used
to increase the difficulty of the task position. The simulation component is fixed on the
movement platform. The amplitude and frequency of the movement platform are set
according to the simulation parameters and results. An omnidirectional depth camera
Kinect2 is utilized to collect the features of the simulated component. The experimental
code is written in python. The conversion of the coordinate system between each ex-
perimental equipment was determined before the experiment and unify with the model.
The movement platform parameters are set as follows, x = Asin( , 2π f t), A= 1 ∼ 3 mm,
f = 1 ∼ 5 Hz. The direction of motion of the platform is x-direction. A total of 75 insertion

experiments are tested in the experiment. The preload force is set to 5 N.

Figure 15. Experimental equipment. (a) Experimental equipment, (b) Operation tool 1 and operation object 1, (c) Operation
tool 2 and operation object 2.
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Two sets of workpieces (operating tools and simulation components) are used in
the experiment to verify the versatility of the proposed method for different workpieces.
As shown in Figure 15b,c, there is a greater dimensional difference in the tools and objects
of workpiece 2 compared to workpiece 1. Their basic sizes are as follows.

Operation tool 1: full length is 176 mm, diameter of bottom end is 20 mm, diameter of
top end is 40 mm, tilt angle δe is 0.12 rad.

Operation object 1: hole deep is 80 mm, hole diameter of bottom end is 20 mm, hole
diameter of top end is 40 mm, and tilt angle δe is 0.12 rad.

Operation tool 2: full length is 197 mm, diameter of bottom end is 19 mm, diameter of
top end is 13 mm, tilt angle δe is 0.1 rad.

Operation object 2: hole deep is 32 mm, hole diameter of bottom end is 13 mm, hole
diameter of top end is 20 mm, and tilt angle δe is 0.11 rad.

In the experiment, the basic parameters used in the control system are as follows.
Impedance coefficient:

Md= diag([0.2, 0.2, 0.2])

Bd= diag([101, 101, 101])

Kd= diag([300,300])

Figure 16 illustrates an example of a robot performing a peg-in-hole task in the
uncertain object. The example shows the adaptation of the robotic motion during the
dynamic effects of the uncertain object in operation and the update of the target position
of the uncertain object. The green dashed line indicates the robotic operation trajectory.
In Figure 16a, the perception strategy guides the robot to start the assembly. At this time,
the visual information (blue dashed line) is weighted higher due to the non-existence of
visual occlusion (the distance between the robot and the simulated component is greater
than dv). In Figure 16b, the perception strategy guides the robot to assemble inside the
operating object. At this time, the tactile information is weighted higher while the visual
information is weighted lower, due to the visual occlusion (the distance between the robot
and the simulated component is less than dv). The simulation component is in dynamic
effects and the robot adjusted its motion accordingly, updating the target position by
interactive exploration. In Figure 16c fusion decision is triggered and the result is Unfinish.
In Figure 16d fusion decision is triggered and the result is Finish.

1 
 

 

 
Figure 16. Snapshot of the robot peg-in-hole operation in the uncertain object with dynamic effects. (a) starting assembly
without visual occlusion, (b) assemble with visual occlusion, (c) decision: Unfinish and (d) decision: Finish.
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5.2.2. Autonomy Evaluation

We first show the result of the fusion decision by the position and force on the end
of the robot with the finished and unfinished operation, as shown in Figure 16c,d. Due to
visual occlusion, the interior is not known. It is obvious that the right side operating tool
has fully entered the simulation component from the outside, while the left side has only
partially entered. From the collected position data, the distance between the robotic end
position and the simulation component on the left side is 18mm, while the right side is less
than 1mm. In addition, according to the data collected through the force/torque sensor,
the direction of the contact force when the operation is finished is significantly different
from that when the operation is unfinished. Combining the external observations with the
collected data, we can find that the fusion decision turns out to be correct. It is indicated
that the model we propose in the design of the fusion decision is correct. Moreover, the
robot will continue to perform the task when the decision result is unfinished, and vice
versa, it will stop the movement.

Some details are shown in Figure 17 to evaluate the quality of the operation. We ob-
serve from the front and side, respectively, that the operating tool is very tightly fitted to
the simulation component (red circles). At the end of the experiment, we try to pull the op-
erating tool out of the simulated component, which requires a force of approximately more
than 10 N. It further indicates that the fusion decision is correct. Comparing Figure 17a,b,
when using workpiece 2 for the experiment, there is a large clearance after the task is
completed. It is caused by the difference in the size of operation tool 2 and operation
object 2. Nevertheless, the proposed method can still guide the robot to complete the task.
It also demonstrates the versatility of the method for different workpieces and reduces the
workload of the operator which does not require the operator to modify the parameters
after each workpiece change.

Figure 17. Detail at finished operation. (a) operation tool 1 and operation object 1, (b) operation tool 2 and operation
object 2.

As shown in Figure 18, we count the results of 55 decisions and calculate the percent-
ages according to finished and unfinished, respectively, to represent all results in the range
[0, 1]. For the incorrect results, we find the reason for the decision error, one source of infor-
mation with evidence showing a high probability of finished and the other showing a low
probability of finished, which ultimately yields a low probability of finished. The problem
can be solved by a threshold value of a higher probability of finished is set. The application
of this strategy eliminates the need for the operator to check that the workpiece is securely
mounted, which helps to reduce the workload.
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Figure 18. Confusion matrix for fusing decision results. (a) operation tool 1 and operation object 1, (b) operation tool 2 and
operation object 2.

5.2.3. Safety Evaluation

In this section, we conduct experiments on the proposed system under the dynamic
effects conditions of A= 1 mm & f = 1 Hz, A= 2 mm & f = 1 Hz, A= 3 mm & f = 1 Hz
and A= 1 mm & f = 5 Hz, as shown in Figure 19. In the experiments, we filter the contact
force less than 2 N to counter the effect of measurement noise. The black dots in the figure
represent the contact force generated by each collision, and the red dots represent the
average value of the contact force for each experiment. As a whole, two workpieces of the
mean contact forces are low, between 5 and 10 N, and the number of collisions is low, no
more than 15 per experiment. It indicates that our solution scheme meets the requirement
for safe operation for multiple types of dynamic effects. In Figure 19a, comparing orange,
blue and yellow, we find that an increase in the amplitude of the dynamic effects causes
a slight increase in the contact force, which also proves that the dynamic effects of the
uncertain object affect the robot end operation.

Figure 19. Results of operation of robots with different dynamic effects. (a) operation tool 1 and operation object 1,
(b) operation tool 2 and operation object 2.



Sensors 2021, 21, 3818 24 of 26

In the previous experiment, we illustrated the generality of the proposed system in
terms of safety. To verify the safety attributed to the proposed method, we compare the
proposed system with two benchmark experiments: (1) guide operation by MSP only,
without impedance control, and (2) variable impedance control only, without MSP. For
each method, experiments are performed sequentially at three types of dynamic effects. As
shown in Figure 20, we show the comparison results from the same dynamic effects, with
one experiment for each method.

Figure 20. Results of operation of robots with different control methods.

(1) The maximum contact force (orange) is demonstrated using only MSP-guided
operation without impedance control. This result is expected and indicates that a pliability
model is needed to accomplish the operation task to minimize the contact force between
the robot and the uncertain object. Although the target position is updated by MSP, it leads
to large contact forces when guiding the robot movement, which is undesirable since the
robot–object interaction is not considered.

(2) Variable impedance control is a classical approach to deal with the problem of
robot interaction with an uncertain object, which adjusts the impedance parameters online
by contact forces to accommodate the uncertain object with dynamic effects. The approach
using variable impedance control only without MSP (green) presents multiple peaks, which
means that the robot guided only by variable impedance without MSP may lead to frequent
collisions and possibly even divergence during operation. Frequent collisions can also
exacerbate dynamic effects.

(3) In summary, the proposed method (blue) demonstrates minimal contact forces and
no multiple collisions. It indicates that the method proposed in this paper is effective.

6. Conclusions

In this paper, we focused on the issue of robotic autonomy operations in the real-world
unstructured environment. Missing or inaccurate visual information was also considered
due to confined space limitations and interference from complex environments. In order
to satisfy the three requirements of intelligence, autonomy and safety, a multi-sensor
perception strategy for the robot was proposed to achieve a humanoid autonomy operation
process integrating exploration, decision and guidance with uncertain objects. In terms
of intelligence, it was our goal to obtain information about the features of the uncertain
object. An interactive exploration method using Bayesian networks was proposed to
integrate multimodal information and accurately estimate the features of the uncertain
object, which can comprehensively perceive the features of the uncertain object even in
the presence of visual occlusion. The exploration approach was general for static objects
and multiple dynamic objects. In terms of safety, the proposed system was capable of
performing tasks under the uncertain object and minimizing the forces of interaction
between the robot and the uncertain object. In terms of autonomy, the proposed fusion
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decision strategy has enabled autonomous start–stop and guided subsequent operations
of the robot, which could reduce the workload of the operators. Based on the D-S theory,
the evidence information provided by multiple information sources was fused to judge
the task progress, which gives the robot human-like decision-making capability. Moreover,
the pliability model was combined with an MSP to reduce the interaction forces during
operation. In general, the multi-sensor-based solution scheme showed fine performance
for robotic operation tasks with both position and force requirements.

There is one more area where the proposed method could be improved. The inclusion
of a pose adjustment strategy before the MSP will improve the generality of the method
for pegs and holes with multiple angles. This attitude adjustment strategy performs a tilt-
right–rotate–alignment process to bring the robotic end into an ideal attitude for operation.
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