
sensors

Article

Real-Time Pedestrian Tracking Terminal Based on Adaptive
Zero Velocity Update †

Ran Wei ‡ , Hongda Xu, Mingkun Yang, Xinguo Yu, Zhuoling Xiao * and Bo Yan ‡

����������
�������

Citation: Wei, R.; Xu, H.; Yang, M.;

Yu, X.; Xiao, Z.; Yan, B. Real-Time

Pedestrian Tracking Terminal Based

on Adaptive Zero Velocity Update.

Sensors 2021, 21, 3808. https://doi.

org/10.3390/s21113808

Academic Editors: Andrzej Stateczny

and Cosimo Distante

Received: 21 April 2021

Accepted: 27 May 2021

Published: 31 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Information and Communication Engineering, University of Electronic Science and Technology of
China, Chengdu 611731, China; weiran_uestc@outlook.com (R.W.); xuhongda@std.uestc.edu.cn (H.X.);
mingkunyang@std.uestc.edu.cn (M.Y.); xinguo_yu@outlook.com (X.Y.); yanboyu@uestc.edu.cn (B.Y.)
* Correspondence: zhuolingxiao@uestc.edu.cn
† This paper is an extended version of our paper published in AZUPT: Adaptive Zero Velocity Update Based

on Neural Networks for Pedestrian Tracking. In Proceedings of the 2019 IEEE Global Communications
Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6,
doi:10.1109/GLOBECOM38437.2019.901407.

‡ These authors contributed equally to this work.

Abstract: In the field of pedestrian dead reckoning (PDR), the zero velocity update (ZUPT) method
with an inertial measurement unit (IMU) is a mature technology to calibrate dead reckoning. However,
due to the complex walking modes of different individuals, it is essential and challenging to determine
the ZUPT conditions, which has a direct and significant influence on the tracking accuracy. In this
research, we adopted an adaptive zero velocity update (AZUPT) method based on convolution neural
networks to classify the ZUPT conditions. The AZUPT model was robust regardless of the different
motion types of various individuals. AZUPT was then implemented on the Zynq-7000 SoC platform
to work in real time to validate its computational efficiency and performance superiority. Extensive
real-world experiments were conducted by 60 different individuals in three different scenarios. It was
demonstrated that the proposed system could work equally well in different environments, making
it portable for PDR to be widely performed in various real-world situations.

Keywords: zero velocity update; CNN; PYNQ; pedestrian dead reckoning; real-time terminal

The work in this paper proposed a lightweight and real-time pedestrian tracking
model for hardware acceleration and terminal implementation. The work enabled the
implemented terminal to measure the real-time pedestrian trajectory in varying scenar-
ios. Part of this work was published in the IEEE Global Communications Conference
(GLOBECOM). The co-author Xinguo Yu in this paper holds the copyright to the published
conference paper.

Conference paper information: Xinguo Yu, Ben Liu, Xinyue Lan, Zhuoling Xiao,
Shuisheng Lin, Bo Yan and Liang Zhou. AZUPT: Adaptive Zero Velocity Update Based
on Neural Networks for Pedestrian Tracking. In Proceedings of the 2019 IEEE Global
Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019;
pp. 1–6, doi:10.1109/GLOBECOM38437.2019.901407.

In that version, we proposed a method based on convolution neural networks (CNNs),
which could adaptively pick ZUPT points from different motion types of different pedestri-
ans. The current journal submission is a significant extension of the conference paper. The
additional contributions of the journal submission were:

1. We improved the AZUPT model to make it sufficiently lightweight to be imple-
mented in real time and applied an FPGA to accelerate the AZUPT algorithm, enabling
real-time processing of pedestrian trajectory (Section 3);

2. We successfully designed the pedestrian tracking model with a reconfigurable
neural network and implemented the model on Pynq-Z7 Soc, a lightweight platform to
track trajectory in varying scenarios, allowing portability (Section 4);

Sensors 2021, 21, 3808. https://doi.org/10.3390/s21113808 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6598-5344
https://doi.org/10.3390/s21113808
https://doi.org/10.3390/s21113808
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21113808
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21113808?type=check_update&version=3

Sensors 2021, 21, 3808 2 of 19

3. Extensive additional experiments on pedestrian tracking involving more application
scenarios and different motion types were conducted based on the terminal, to further
demonstrate the accuracy and effectiveness of the proposed pedestrian-tracking model
(Section 5);

4. The hardware performance including the energy consumption, computing re-
sources, etc., were carefully evaluated on both a CPU and a GPU to demonstrate the
efficiency and effectiveness of the proposed model (Section 5).

1. Introduction

There is great demand for precise navigation systems for pedestrians in both indoor
and outdoor environments [1,2]. Currently, the Global Positioning System (GPS) cannot
work in areas where satellites cannot transmit signals (underground or indoor environ-
ments), which leads to low efficiency of the GPS [3] in such environments. Therefore, most
of the current positioning services are provided in outdoor environments [4]. However, the
demand for indoor positioning is huge [5]. In terms of the transmission mode of positioning
data, wireless positioning systems based on certain infrastructures are widely used. The
available wireless communication media include RFID, Bluetooth, WiFi, ultrasonic, etc. [6].
However, these kinds of communication are susceptible to noise, so a large number of
access nodes should be deployed in advance to avoid noise interference, which requires a
huge workload.

Unlike infrastructure-dependent localization systems, pedestrian dead reckoning
(PDR) using an inertial measurement unit (IMU) has been more stable for versatile tracking
systems. The IMU consists of a triple-axis accelerometer and a triple-axis gyroscope, and
these sensors enable the measurement of step length and heading direction [7,8]. However,
drift exists in IMUs, and the accumulated errors make it hard to predict the real pedestrian
trajectory. Zero velocity update (ZUPT) has been adopted as an effective approach to
eliminate the system error [9,10]. The ZUPT implemented with the Kalman filter not only
rectifies the velocity, the position, and the attitude errors, but also reduces the influence of
the drift accumulation from the IMU [8,11].

The pedestrian gait cycle consists of two phases: the stance and swing phase (illus-
trated in Figure 1). In the ZUPT method, when the carrier (foot wearing the IMU) is in
a static state, the speed is zero at this time (stance phase, where ZUPT points appear).
The foot is in the motion state for a longer time (swing phase, where non-ZUPT points
appear) [8,12]. The stance phases (ZUPT points) of each gait cycle play an important role
in the reckoning of the long-term trajectory, so they have to be detected accurately [13]
(details shown on the first page). Most of the stance phase-detection algorithms are thresh-
old based, which fail to perform reliably across a variety of gait motions. Therefore, the
accurate classification of the zero velocity update points is particularly important. This
paper adopted a deep neural network to solve this long-standing problem in ZUPT, which
was the adaptive zero velocity update (AZUPT) [14] model, to determine moments when
ZUPT should be conducted. In terms of different motion types and walking patterns,
AZUPT can ensure nearly identical performance.

Deep neural networks contain a large number of mathematical operations. Therefore,
the prediction of the trajectory takes a long time. To accelerate the ZUPT algorithm, this
paper selected FPGA hardware as the implementation platform.

The implementation of the PDR [15,16] was performed on the PYNQ-Z2 demo board,
which is an ARM + FPGA dual architecture platform. Its fast operation speed, low power
consumption, and high portability made the validation of inertial navigation achievable.
The main contributions of this paper were as follows:

• Adaptive ZUPT points’ selection: We proposed a method based on convolutional
neural networks (CNNs), which could adaptively pick ZUPT points from different
motion types of different pedestrians (e.g., walking, fast walking, and running);

Sensors 2021, 21, 3808 3 of 19

• AZUPT terminal implementation: The whole tracking system including AZUPT was
implemented on the Zynq-7000 SoC platform to validate its computation efficiency
and performance superiority;

• Extensive real-world validation: Extensive experiments were conducted in multiple
indoor and outdoor experiments by 60 different individuals in walking, fast walking,
and running modes.

The remainder of this paper is organized as follows: Section 2 introduces the related
work. Section 3 offers the details of the CNN-based ZUPT points’ selection method. Section 4
outlines the system architecture. Section 5 introduces the hardware implementation and
result evaluation of the AZUPT algorithm based on the Zynq-7000 SoC platform. Section 6
presents our experimental results and the evaluation of the AZUPT algorithm. Section 7
concludes the paper and discusses ideas for future work.

A foot

movement in

gait cycle

Swing phase Stance phaseStance phase

Figure 1. Pedestrian gait cycles.

2. Related Work

Strap-down inertial navigation systems (SINSs) and step-and-heading systems (SHSs)
are the main approaches for PDR [17]. However, for both methods, the bias and noise of
the IMU have a huge impact on the location accuracy due to the IMU’s small size and
limited hardware performance [18]. Integration with signals of external sensors and ZUPT
are two main methods to reduce error accumulation caused by bias and noise.

In past work, Ricardo Anacleto et al. used IMU and GPS data fusion, while the
system could work only when the environment was well covered by satellite signals [19,20].
B. Kazemipur et al. proposed a vision-based system that used vision information to
assist localization [21,22]. However, the vision-based system required a huge amount of
calculation; and it was unstable, affected by the viewchanges in the environment. Z. Xiao-
dong et al. combined the particle filter and indoor map information to realize a positioning
system. Nevertheless, building maps are usually inconvenient to obtain in advance [23]. In
some research, the magnetometer was set to evaluate the orientation [24], but magnetic
fields are highly susceptible to environmental effects [25]. Thus, these systems mentioned
above are defective and not widely used.

Researchers proposed the ZUPT method to reduce the trajectory drift by detecting
the stance phase of each gait cycle [8], and the proper detection of zero velocity moment
is the key point to ZUPT. In traditional approaches, the acceleration and angular velocity
are analyzed and compared with the preset threshold to determine the stance phase [7,26].
Nevertheless, the threshold is closely related to the gait motions and features of different
pedestrians [26], which means that a reasonable threshold is changeable. To overcome this
problem, researchers proposed a dynamic threshold method to select thresholds according
to different velocities [27,28]. However, the output is usually the range of threshold values,
which is not precise and even results in an erroneous judgment of the stance phase.

As deep learning has developed rapidly in recent years, researchers have tried to
apply it to PDR. Hannink et al. trained a deep CNN to map stride-specific inertial sensor
data to the resulting stride length [29]. A team from Oxford University put forward
a deep neural network (DNN) framework to set up the end-to-end model. This DNN
model solved the problem of the long-term drift of inertial sensors [30]. Additionally,
a team from University of Toronto Institute for Aerospace Studies took advantage of
long short-term memory (LSTM) to explore robust inertial navigation [31], and they also
improved the accuracy of the zero-velocity-aided inertial navigation system. However, the

Sensors 2021, 21, 3808 4 of 19

indoor location algorithm contained numerous operations, and the use of deep learning
further increased the computation cost. Extensive calculations made it tough to predict the
trajectory in real time.

Field-programmable gate arrays (FPGAs) are highly proven to accelerate algorithms
due to the programmable gate’s high parallel computing capability. In the field of inertial
navigation systems based on FPGAs, a team from Beijing University of Aeronautics and
Astronautics used an FPGA as the data acquisition and storage module, which sent the data
to the computer as the upper computer for processing [32]. Zhang Chunxi et al. designed
a strap-down inertial navigation system (SINS) based on the system programmable chip
(SOPC) with an FPGA [33]; the designed system realized the functions of data acquisition,
error compensation, and navigation solution. However, none of these schemes accelerated
the calculation speed of the navigation algorithm or related neural network algorithms
with an FPGA.

FPGAs have been widely explored as hardware accelerators for neural network al-
gorithms because of their high energy efficiency, computing capabilities, and reusability.
Mittal, Sparshet al. surveyed techniques for implementing and optimizing CNN algorithms
on FPGAs; they organized the works into several categories to bring out their similarities
and differences [34]. In terms of large-scale CNNs, Naveen Suda et al. presented a system
to maximize the throughput of an OpenCL-based FPGA accelerator (considering the FPGA
resource constraints) for a given CNN model [35]. The application of the FPGA greatly
sped up the deep neural network’s operation speed. However, the balance of the model
performance and the resource usage of FPGAs largely depended on the designer.

3. CNN-Based ZUPT Points Selection Method
3.1. Dataset and Labels

In order to obtain a neural network model with high accuracy, a reliable dataset is
vital. Besides, rich features from the training data can effectively overcome the problem of
overfitting and can build a robust model.

Sites and dataset: To demonstrate the real-world applicability of the tracking system,
our dataset was collected during three different motion types performed by sixty test
subjects at seven different sites. The entire data-collecting process was carried out on flat
ground. Overall, nine-hundred trajectories were traveled by the test subjects during the
40-day data collection, being approximately 1300 m long on average. The details are shown
in Table 1.

Table 1. Details of routes and motion types.

Site Environment Length Motion Type

Experiment building indoor 1760 (m) Walking (W), FW

First teaching building indoor 7,001,000 (m) W, fast walking (FW)

Second teaching building outdoor 1500 (m) W, FW

Scientific research building outdoor 1100 (m) W, FW

First teaching building outdoor 650 (m) Running (R)

Athletics field outdoor 800,720,550 (m) R

A circle around campus outdoor 4200 (m) W

Participants: To improve the generalization of the system, the variations among
different people were taken into account by acquiring data from 60 people of a variety of
genders, heights, weights, and ages. During the experiments, each of them was instructed to
travel along all 15 routes performing one of three motion types consisting of (1) walking (W),
(2) fast walking (FW), and (3) running (R), instead of taking a particular route performing a

Sensors 2021, 21, 3808 5 of 19

certain motion type. The specific information of the motion types of each trajectory is also
shown in Table 1.

Devices: We used a next-generation IMU (NGIMU) including a triple-axis gyroscope,
triple-axis accelerometer, and magnetometer. In our experiments, the IMU was attached on
either foot, and we took it outside of the wrapping for demonstration, as shown in Figure 2.
The information of each sensor on the NGIMU is summarized in Table 2.

Figure 2. NGIMU attached on the left foot.

Table 2. Performance of sensors on the NGIMU.

Indices Accelerometer Gyroscope Magnetometer

Dynamic Range ±16 g ±40,000 πrad/h ±1300 µT

Resolution 490 µg 1.2 πrad/h ∼0.3 µT

Sample Rate 400 Hz 400 Hz ∼20 Hz

Threshold-based ZUPT points’ selection: Before dataset construction and label gen-
eration, we introduce the fixed threshold ZUPT points’ selection method. After adjustment
of the threshold, this threshold-based algorithm can preliminarily classify the ZUPT points,
which comprises the basics for labeling.

The stance phase of the gait cycle can be obtained from the data of the gyroscope or
accelerometer. It can also be obtained from the linear combination of the data from both
sensors. As shown in Figure 3, our proposed method took advantage of the fact that the
two-norm value of gyroscope data was generally small during the zero-velocity period
(relatively steady). In this paper, we set a certain fixed threshold value for zero-velocity-
points’ detection as follows:

zvk =

{
ZUPT point,

∥∥∥gyrob
k

∥∥∥ < thgyro

non − ZUPT point, otherwise
(1)

In this function,
∥∥∥gyrob

k

∥∥∥ is the two-norm value of the gyroscope data at sampling step

k. The superscript b denotes that the vector is in the sensor body coordinates.
∥∥∥gyrob

k

∥∥∥ is
calculated as: ∥∥∥gyrob

k

∥∥∥ =

√
(wb

x,k)
2
+ (wb

y,k)
2
+ (wb

z,k)
2 (2)

w in Equation (2) denote the angular velocity values of the three-axis gyroscope in
carrier b at the k sampling moment point (wb

x,k, wb
y,k, and wb

z,k correspond to the x-axis,
y-axis, and z-axis, respectively).

thgyro is the fixed threshold value, and zvk shows that the point is a ZUPT point or a
non-ZUPT point. This means that when the two-norm value of a point was less than the

Sensors 2021, 21, 3808 6 of 19

fixed threshold, the point was considered to be a ZUPT point. Otherwise, it was regarded
as a non-ZUPT point.

Generate the label: As mentioned above, the two-norm value of the gyroscope data
(directly acquired from IMU) changed periodically with the gait cycle, as shown in Figure 3.
An optimal threshold of the two-norm value of the gyroscope data existed for each motion
type of each participant. We considered the potential ZUPT points if their two-norm value
of the gyroscope data was less than the fixed threshold (the optimal threshold fixed for
each participant; we obtained the threshold for a certain individual by extensive iterative
selections until the participant’s trajectory approximated the ground truth). Then, we
marked the potential ZUPT points in red rectangles (dotted lines) and measured the
average length of ZUPT points’ L3 (the average length of the red rectangles). Small burr
signals (the signals that misjudged the non-ZUPT point as the ZUPT point) interfered with
the fixed threshold selection method, so we built an algorithm to filter the burr signals and
detect the ZUPT points; its details are shown the pseudocode as follows.

30,400 30,500 30,600 30,700 30,800 30,900 31,000

Figure 3. Two-norm value of the gyroscope data during a running sequence. Note that points
encircled by small green rectangles (dashed lines) may be false alarm points, which would damage
the trajectory, especially during the motion types of fast walking and running.

In Algorithm 1, L1 and L2 are presetconstants. Their values were adjusted according
to the trajectory’s performance and needed to be selected many times until they were the
appropriate values (we obtained the most suitable L1 and L2 by iteratively screening them
until the pedestrian trajectory approximated the ground truth). Additionally, L1 must be a
minimal value, and L2 was less than L3.

If the length of the marked potential ZUPT points was less than the predetermined
small constant value L1, it proved that the sampling length contained extremely few points
without the foot’s landing time, so the points in the sampling length could be judged as
non-ZUPT points. If the length of potential ZUPT points was greater than L1, but less than
the predefined empirical value L2 (L2 < L3), then it was hard to determine whether the
corresponding sampling points were ZUPT points, so the algorithm would mark these
points in green dashed rectangles. Finally, a manual review was performed on the points
in green rectangles, and they were corrected if they were non-ZUPT points. We note that
points encircled by a small green rectangle may be false alarm points that would damage
the trajectory, especially during the motion types of fast walking and running.

3.2. CNN-Based ZUPT Points’ Selection Model

Figure 4 shows a schematic diagram of the ZUPT point selection model proposed in
this paper.

Sensors 2021, 21, 3808 7 of 19

Algorithm 1 ZUPT points’ selection algorithm.

Require:
Gyroscope 2-norm value
Small constants L1 and L2; L1 is less than L2.

Ensure:
ZUPT points and non-ZUPT points

1: for k = 0 to datasize do
2: if

∥∥∥gyrob
k

∥∥∥ < Threshold then
3: Mark the points in red rectangles.
4: if length < L1 then
5: Remove red marks.
6: else if length < L2 then
7: Mark the points in green rectangles.
8: end if
9: end if

10: end for

Input

224*3*2

CONV1: Feature Maps

32@224*3

POOL1: Feature Maps

32@112*2 CONV2: Feature Maps

64@112*2

POOL2: Feature Maps

64@56*1

FC1:64

FC2:1

Output

Sigmoid

Figure 4. Structure of the ZUPT point selection model. In order to extract features from the last con-
volutional layer, the numbers of the first and second convolutional kernels are 32 and 64, respectively.

Our CNN model was mainly inspired by the philosophy of AlexNet [36], which is
the most concise and classic image feature extraction network. Our dataset with only
pedestrian’s velocities and accelerations contained fewer features, so we censored the
network. The main body of the network was the convolutional layer and the pooling
layer. The convolutional layers mostly had 3 × 3 filters with zero padding. We performed
downsampling directly by convolutional layers that had a stride of two. The network
ended with two fully connected layers with the sigmoid. The total number of weighted
layers is four (two convolutional layers and two fully connected layers) in Figure 4.

The details of our CNN-based model are as follows: (1) An input layer with the pre-
processed standard IMU measurements fed in. Input layer size: 224 × 3 × 2: 224 means
we selected 224 time points for one sample to judge if the 113thpoint was a ZUPT point;
3 means we had 3-dimensional data for each point (x, y, z axis); and 2 indicates the observed
velocities and accelerations of each point (corresponding to the orange and blue feature maps
in Figure 4). (2) The first convolutional layer filtered the 224 × 3 × 2 input image with
32 kernels of size 3 × 3 with a stride of 1 pixel (this was the distance between the receptive
field centers of neighboring neurons in a kernel map) (224 × 3 × 2 –> 224 × 3 × 32). (3) A
max-pooling layer was set directly after the first convolutional layer, with the function to
reduce the extracted features (224 × 3 × 32 –> 112 × 2 × 32), improving the computing
speed and enhancing the model’s robustness. (4) The same as Steps (2) and (3), the
second convolutional layer with a max-pooling layer screened the output from the last
max-pooling layer for further feature extraction (112 × 2 × 32 –> 56 × 1 × 64). (5) Two
fully connected layers extracted and combined the features of the last max-pooling layer
(56 × 1 × 64 –> 64 –> 2). (6) An output layer of the sigmoid function based on the feature
map from the last layer transferred the data to the output.

Sensors 2021, 21, 3808 8 of 19

The accuracy of the framework obtained from the extensive training and test sets was
0.998 and 0.992, respectively. Since we only utilized and improved the fixed threshold
method to label the data, the method did not influence the deep learning approach we
used even if the threshold was related to pedestrians’ features and motion types.

The CNN-based model gave a new and precise zero velocity update point selection
method. However, to achieve the whole PDR device, we still needed the other algorithm
and modules to format our lightweight terminal.

4. System Architecture

In this section, the algorithm and hardware of our proposed real-time PDR terminal
are shown in detail.

4.1. The Architecture of Algorithm

Figure 5 outlines the architecture of our positioning algorithm, which incorporated
the CNN-based zero velocity detector. Firstly, the inertial measurements were fed into the
CNN and the expanded Kalman filter, respectively. The CNN network was responsible
for detecting the ZUPT points. Compared with the conventional fixed threshold method,
the CNN solved the problem that the fixed threshold could not accurately classify ZUPT
points due to the variation among individuals and motions. The CNN-based method,
leveraging deep learning, realized the detection of the zero velocity adaptively. Combined
with the calculated ZUPT points from the CNN, the extended Kalman filter (EKF) selected
the zero-velocity as the pseudo-measurement (EKF states: attitude, velocity, and position).
The zero-velocity measurements were fused with a dead reckoning motion model in the
extended Kalman filter to significantly reduce error growth over time. Therefore, the zero
velocity intervals could be classified precisely.

 Estimated

6-DOF Pose

 Foot-Mounted Inertial

Measurements

CNN Network ZUPT Points

 INS Integration Extended Kalman Filter

Error Correction
Figure 5. Block diagram of the AZUPT PDR system. Given any one of the motion types (walking,
fast walking, running), AZUPT can pick ZUPT points accurately without recognition.

4.2. The Architecture of the Hardware

The overall structure of the lightweight PDR terminal system is shown in Figure 6, which
included five modules: data receiving, CNN, INCU, GUI plotting, and HDMI control.

PYNQ-Z2 demo board

NGIMU

Data

Receive

Module
INCU

Module

CNN

Module

GUI

Moudle

HDMI

Moudle
Monitor

Wi-Fi AXI

Figure 6. System architecture of the real-time PDR terminal system.

Data-receiving module: The data-receiving module collected acceleration and angu-
lar velocity data from the NGIMU module introduced in Section 3 at a sampling rate of
400 Hz, then this module packed the data into OSC (Open Sound Control) format and

Sensors 2021, 21, 3808 9 of 19

transmitted them to the processing system (PS) over WiFi. Considering that Xilinx officially
provides Python library support for the PYNQ platform, the PS can quickly call the OSC
Python library to complete the parsing of data packets, then send the parsed data to the
INCU module and CNN module on programmable logic (PL) through the Advanced
eXtensible Interface (AXI) bus.

CNN module: This module was built on top of the CNN network trained on Tensor-
Flow, which produced a binary output (one or zero). Considering that pedestrians’ feet
stayed on the ground for approximately 0.5 s and the sampling frequency of the NGIMU
was 400 Hz, the input data sample was set to 224 points. For new data obtained by the
CNN module, the sliding window with a sample length of 224 was shifted to contain the
new information. Since the convolution layer needed a large amount of computation, we
adopted the following two optimization strategies:

(a) parallel processing: multiple multiply-add operations performed in parallel to
increase the operation speed [37,38];

(b) pipeline: multi-stage pipeline processing of data to make full use of DSP re-
sources [39,40].

Inertial navigation computation and update (INCU) module: As shown in Figure 7,
firstly, low-pass filtering was conducted on the original data, which reduced the interference
of noise. The pre-processed acceleration and angular velocity were then calculated to obtain
the attitude, velocity, and position. The INCU module obtained the ZUPT point’s judgment
result from the CNN module and then decided whether ZUPT was carried out after the
calculation. Simultaneously, combined with the error EKF, the error state vector was
obtained to update the attitude, velocity, and position.

NGIMU

Basic

Solution

of INS

Zero

Velocity

Update

Velocity

Attitude

Extended

Kalman

Filter

Error state vector

Position

Angular rate

INCU

CNN

Acceleration

Figure 7. Block diagram of the INCU module.

GUI plotting module and HDMI control module: The GUI plotting module quanti-
fied the new pedestrian position obtained in the coordinate point. Then, combined with
the collected real-time coordinate points, the GUI module completed the drawing of the
pedestrian trajectory. The HDMI control module drove the monitor to enable the real-time
update and display of the pedestrian trajectory.

5. Real-Time Pedestrian Dead Reckoning Implementation Based on the SoC Platform

In the last section, the architecture of the pedestrian dead reckoning system was
described. In this section, we show the details about the implementation of the hardware
architecture. Firstly, we picked a portable system on a chip (SoC) platform (PYNQ-Z2) as
the realized terminal. Then, we implemented the proposed location system on the platform,
with the real-time pedestrian trajectory displayed.

5.1. Hardware Platform

This subsection introduces the real-time PDR terminal’s four parts (shown in Figure 8):
the NGIMU module, PYNQ-Z2 demo board, wireless network card, and portable monitor.

Sensors 2021, 21, 3808 10 of 19

Figure 8. Hardware platform.

The MEMS NGIMU is quite small, lightweight, and portable. However, the PDR
system implemented on the CPU and the GPU (the PC’s integrated CPU and GPU; the PDR
system was preliminarily tested on them) was bulky and had high power consumption.
It could not meet the requirements of the low power consumption, low cost, and embed-
dability of IoT terminal equipment [14], limiting the widespread use of the PDR system.
Considering the low power consumption of the FPGA and the flexible controllability of
the ARM, we chose the PYNQ-Z2 demo board (Xilinx Zynq All Programmable SoC board)
due to the advantages of both the FPGA and ARM to adapt to the design of the real-time
PDR system. The integrated FPGA demo board was portable enough, as pedestrians could
easily carry it on their backs. The core of PYNQ-Z2 is the XC7Z020 chip of the Zynq-7000
series, and its internal structure is shown in Figure 9.

XC7Z020 integrates two parts in a single chip: processing system (PS) based on the
ARM’s dual-core Cortex-A9 processor and Programmable Logic (PL) based on the Xilinx
programmable logic system, namely the FPGA. Firstly, the received data from the NGIMU
module were temporarily stored in the PS through WiFi, then the PS transmitted the
data to the PL through the internal high-speed Advanced eXtensible Interface (AXI) bus.
The PL mainly carried out the data processing, including CNN network construction,
inertial navigation computation and update (INCU), motion trajectory plotting, and High-
Definition Multimedia Interface (HDMI) construction for the monitor.

·1

Memory

Interfaces

ARM® Dual

Cortex -A9MPCore

Complex

Common

Peripherals

High-Bandwidth

AMBA® -AXI Interfaces

Common Accelerators

Custom Accelerators

Common Peripherals

Custom Peripherals

Programmable
Logic

Processing

System

Figure 9. The internal structure of the XC7Z020.

Sensors 2021, 21, 3808 11 of 19

5.2. System Implementation

The whole block design for the terminal is shown in Figure 10. All the modules described
in Section 4 were implemented in IP cores (blue frames illustrated in Figure 11). The entire
block was very complex, with dense route and data path tagging (note: these are not the
purpose of Figure 11, so their letters are not distinct and can be ignored); it was simplified
into four parts: interface, data control, algorithm solution, and display. This hardware
process started with the data collected by the IMU module sent to the input interface block,
and then, all blocks ran fast with intensive data transmission. The processed data were
delivered to the display block, finally, to generate the trajectory output.

DDR

FIXED_IO

Locate_0

Locate

(Pre-Production)

s_axi_AXILiteS

imu_out_gyr1_ap_vld

imu_out_gyr2_ap_vld

imu_out_gyr3_ap_vld

imu_out_acc1_ap_vld

imu_out_acc2_ap_vld

imu_out_acc3_ap_vld

pos_out_posx_ap_vld

pos_out_posy_ap_vld

pos_out_posz_ap_vld

distance_ap_vld
ap_clk

ap_rst_n
imu_out_gyr1[31:0]

imu_out_gyr2[31:0]

imu_out_gyr3[31:0]

imu_out_acc1[31:0]

imu_out_acc2[31:0]

imu_out_acc3[31:0]

pos_out_posx[31:0]

pos_out_posy[31:0]

pos_out_posz[31:0]

rst[0:0]

zupt_valid[0:0]

distance[15:0]

add[0:0]

character_0

character_v1_0

clk

rst

d

rd_data[0:7]

addrx[10:0]

addry[9:0]

dis_vld

distance_[15:0]

rd_addr[9:0]

q
clk_100M

clk_125M

display_0

display_v1_0

clk_74M

rst

locked

ram_data_in

char_in

data_out[23:0]

Hsync

Vsync

VDE

ram_rd_addr[19:0]

addrx[10:0]

addry[9:0]

gui_0

Gui

(Pre-Production)

s_axi_AXILiteS

rst_o_ap_vld

pixel_data_ap_vld

pixel_valid_ap_vld

pixel_state_ap_vld

ap_clk

ap_rst_n

rst[0:0]

save[0:0]

add[0:0]

sub[0:0]

valid[0:0]

rst_o[0:0]

POS_x[31:0]

POS_y[31:0]

pixel_data[19:0]

pixel_valid[0:0]

pixel_state[15:0]

hdmi_out_clk_n

hdmi_out_clk_p

hdmi_out_data_n[2:0]

hdmi_out_data_p[2:0]

imu_out_acc1_ap_vld_0

imu_out_acc1_0[31:0]

imu_out_acc2_ap_vld_0

imu_out_acc2_0[31:0]

imu_out_acc3_ap_vld_0

imu_out_acc3_0[31:0]

imu_out_gyr1_ap_vld_0

imu_out_gyr1_0[31:0]

imu_out_gyr2_ap_vld_0

imu_out_gyr2_0[31:0]

imu_out_gyr3_ap_vld_0

imu_out_gyr3_0[31:0]

led[0:0]

pos_out_posy_ap_vld_0

pos_out_posz_ap_vld_0

pos_out_posz_0[31:0]

processing_system7_0

ZYNQ7

Processing

System

DDR

FIXED_IO

M_AXI_GP0M_AXI_GP0_ACLK

FCLK_CLK0

FCLK_RESET0_N

ps7_0_axi_periph

AXI

Interconnect

S00_AXI

M00_AXI

M01_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

M01_ACLK

M01_ARESETN

rgb2dvi_0

RGB

to

DVI

Video

Encoder

(Source)

(Pre-Production)

TMDS

TMDS_Clk_p

TMDS_Clk_n

TMDS_Data_p[2:0]

TMDS_Data_n[2:0]

RGB

vid_pData[23:0]

vid_pHSync

vid_pVSync

vid_pVDE

aRst

PixelClk

rst[0:0]

rst_ps7_0_50M

Processor

System

Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

save[0:0]

sub[0:0]

zupt_valid[0:0]

interface

block
data

control

block algorithm

solution

block
display

block

interface

block

迅
捷

PDF编
辑
器

Figure 10. The whole block design of the system.

A large number of matrix operations were involved in the algorithm solution block.
The operation of the display block was also extensive. Therefore, it was painful and
laborious to describe the register-transfer level (RTL) directly using Verilog HDL, whereas
it was easier to use the C language to implement it. High-Level-Synthesis (HLS), a useful
high-level synthesis tool, supports the programming of Xilinx FPGA devices by the C,
C++, and System C languages [16]. We used the HLS tools for development since they can
quickly generate the intellectual property (IP) core of RTL [36] to improve development
efficiency. Due to the HDMI driver’s rigorous time requirement, the HDMI control module
was implemented using the Verilog HDL language, and this module can accurately describe
the timing logic circuit.

The resource utilization of INCU, CNN, and GUI modules is shown in Table 3. The
FPGA’s working frequency was 200 MHz, and the sampling frequency of the NGIMU
module was 400 Hz, so the calculation period of a single sample must be less than
500,000 clock cycles. The implemented terminal (the running period of a data sample
was about 140,000 clock cycles) could meet the calculation needs. The high-speed oper-
ating terminal could also ideally enable real-time processing and display the pedestrian
trajectory.

Sensors 2021, 21, 3808 12 of 19

Table 3. Hardware module resource utilization.

Module
Resource Utilization

DSP BRAM FF LUT

INCU 100 10 15,703 15,895

CNN 40 18 8713 13,025

GUI 25 8 7007 7183

Utilization Ratio 75% 46% 40% 81%
(Sum/Total) (165/220) (65/140) (42,732/106,400) (43,342/53,200)

Figure 11. Effect of a complete running trajectory by the PDR terminal. The small triangle and the
circle represent the starting point and the endpoint, respectively. STEP indicates the number of steps
the test subject walked (the length of a STEP is the distance that the person moves when his/her left
and right feet move once). DIST indicates the distance between the person’s current position and
the starting point. Note that we chose to test on the running trajectory, which is the most difficult to
predict among the three motion types, to prove the reliability of our PDR terminal.

To make the real-time trajectory accessible to the pedestrians (wearing the AZUPT
hardware) themselves, we used a tiny monitor (shown in Figure 11) to project the GUI
trajectory and perform the field implementation. The test subjects ran around the periphery
of the first teaching building and returned to the starting point. The test result was shown
on the screen in Figure 11, corresponding to the ground truth of Figure 12g. STEP indicates
the number of steps the test subject walked (the length of a STEP is the distance that
the person moves when his/her left and right feet both move once), and DIST indicates
the distance between the person’s current position and the starting point. As shown in
Figure 11, the pedestrian with the sensor walked 463 steps. The distance between the
starting point and the endpoint was only 5 m, while the length of the whole track was
650 m, and the error rate (the distance between the starting point and the endpoint/the
length of the whole track) was only 7.7%. Therefore, we realized the real-time plotting of
the pedestrian trajectory on the SoC platform, which met the basic design requirements.

Through the test of the hardware platform, the effect of real-time processing on the SoC
could be achieved by the proposed algorithm, which proved the algorithm’s effectiveness.
Moreover, the algorithm could be easily converted to lightweight embedded devices, which
also would achieve an excellent positioning effect.

Sensors 2021, 21, 3808 13 of 19

-60 -40 -20 0
X(m)

120

100

80

60

40

20

0

Y
(m

)

Traj
Start
End

(a) Ground truth trajectory

-60 -40 -20 0
X(m)

120

100

80

60

40

20

0

Y
(m

)

Traj
Start
End

(b) Fixed threshold method trajectory

-60 -40 -20 0
X(m)

120

100

80

60

40

20

0

Y
(m

)

Traj
Start
End

(c) AZUPT trajectory

-160 -120 -80 -40 0 40 80
X(m)

-160

-120

-80

-40

0

40

80

120

160

Y
(m

)

Traj
Start
End

(d) Ground truth trajectory

-160 -120 -80 -40 0 40 80
X(m)

-160

-120

-80

-40

0

40

80

120

160

Y
(m

)

Traj
Start
End

(e) Fixed threshold method trajectory

-160 -120 -80 -40 0 40 80
X(m)

-160

-120

-80

-40

0

40

80

120

160

Y
(m

)

Traj
Start
End

(f) AZUPT trajectory

-30 0 30 60 90 120 150 180
X(m)

-150

-120

-90

-60

-30

0

30

60

Y
(m

)

Traj
Start
End

(g) Ground truth trajectory

-30 0 30 60 90 120 150 180
X(m)

-150

-120

-90

-60

-30

0

30

60

Y
(m

)

Traj
Start
End

(h) Fixed threshold method trajectory

-30 0 30 60 90 120 150 180
X(m)

-150

-120

-90

-60

-30

0

30

60

Y
(m

)

Traj
Start
End

(i) AZUPT trajectory

Figure 12. Experiments in the experiment building (top, walking), the scientific research building (middle, fast walking), and
the first teaching building (bottom, running), showing the ground truth, fixed threshold method, and AZUPT trajectories.
The fixed threshold method had a different result for different motion types and performed badly. However, the AZUPT
method consistently outperformed the fixed threshold method and fit well with any of three different motion types.

Sensors 2021, 21, 3808 14 of 19

6. Experiment

To visualize the performance of our AZUPT model, we used the lightweight terminal,
as shown in Figure 11, to display the real-time trails combined with the map of a suitable
size. To make the experiment persuasive, sixty different individuals participated in the test
for three common motion types (i.e., walking, fast walking, and running), and all routes
were long, closed loops.

6.1. Classification Accuracy

The proposed CNN-based zero-velocity detection algorithm performed well in select-
ing ZUPT points. Table 4 shows that the precision, recall, and F1-score (harmonic mean of
precision and recall, better to evaluate the performance of the model) of the three motions
were higher than 99%. Compared with the traditional fixed threshold method, our dynamic
threshold method on the lightweight terminal provided a significant improvement.

Table 4. Detailed accuracy by the three different motion types.

Motion Types
Walk Fast Walk Run

Precision Recall F1-Score Support Precision Recall F1-Score Support Precision Recall F1-Score Support

Non-ZUPT Points 1.00 1.00 1.00 526,713 1.00 0.99 0.99 634,080 0.99 1.00 0.99 718,120

ZUPT Points 0.99 1.00 0.99 299,592 0.97 1.00 0.99 304,422 0.99 0.93 0.96 114,572

Avg/Total 1.00 1.00 1.00 826,305 0.99 0.99 0.99 938,502 0.99 0.99 0.99 832,692

6.2. Comparisons of the Three Motion Types

To demonstrate the applicability and robustness of the system in multiple scenarios,
the AZUPT system was evaluated and compared against the fixed threshold approach in
three real-world settings, namely the experiment building, scientific research building, and
first teaching building. For the first trajectory, subjects with the foot-mounted IMU walked
along the corridor four times, and the 440 m route for each time was shaped similar to an
Arabic numeral eight.

Figure 12a,d,g shows the ground truth regarded as three experimental sites that corre-
sponded to three kinds of common motion types in our daily lives. The known limitations of
the NGIMU were the initial drift and low sensitivity. Without the selection of the proper ZUPT
points, the estimated trajectory would drift and diverge seriously. With the conventional
zero-velocity detection, namely the fixed threshold method, the tracks of the ZUPT-aided PDR
algorithm are shown in Figure 12b,e,h. The fixed threshold performed well in walking, as
shown in Figure 12b, because an optimal threshold might fit the slow-speed motion perfectly
in spite of the pedestrian changing. However, in the case of fast walking and running, the
trajectory obviously deviated, as shown in Figure 12e,h. The fast or large-amplitude swing
of the feet (when pedestrians were running, their leg movements were more intense) could
cause the appearance of false alarm points, which are encircled by small green rectangles in
Figure 3. The method proposed in this paper solved the above problem by utilizing a neural
network to adaptively select ZUPT points, which are illustrated in Figure 12c,f,i. In the labels’
selection process, false alarm points were removed, and missing points were artificially
added to ensure the correct implementation of the ZUPT points’ selection.

6.3. The Cumulative Distribution Function of the Error

Each subfigure in Figure 13 shows the cumulative distribution function (CDF) of the
location errors in the experiment corresponding to one of three kinds of motion types and
sites. We can see that the errors of the algorithm proposed in this paper were smaller than the
corresponding errors of the fixed threshold method, which were calculated from the second
column of Figure 12. Moreover, the CDF figures in Figure 13 matched well with Figure 12,
which confirmed that our proposed method could operate well for the three motion types.
Note that as we mentioned above, only via rough analysis, our proposed method did
not show huge improvements compared to the conventional fixed threshold method for

Sensors 2021, 21, 3808 15 of 19

walking. The reason was that there were few false alarm points in walking, so that they
did not have a remarkable effect on the estimation of the trajectory. In fact, our proposed
method worked almost without any mistakes for the different motion types.

0 2 4 6 8 10 12 14 16 18

Error(m)

0

0.2

0.4

0.6

0.8

1

C
D

F

Fixed-threshold model
AZUPT model

(a) Experiment building CDF

0 20 40 60 80 100 120 140 160

Error(m)

0

0.2

0.4

0.6

0.8

1

C
D

F

modelFixed-threshold

AZUPT model

(b) Scientific building CDF

0 10 20 30 40 50 60 70 80
Error(m)

0

0.2

0.4

0.6

0.8

1

C
D

F

Fixed-threshold model
AZUPT model

(c) Teaching building CDF

Figure 13. The CDF of the location errors with the fixed threshold model and the AZUPT model at different sites. Note that
there were few false alarm points in walking for our AZUPT model to correct; therefore, our AZUPT method only showed
relatively slight improvements compared to the fixed threshold method in Figure 7a.

6.4. Platform Performance Analysis

Since the hardware structure and appropriate size of different acceleration devices
were different, only comparing the calculation speed or throughput cannot measure the
performance indicators. Therefore, this paper mainly compared the energy efficiency (EE)
and energy efficiency ratio (EER) of each experiment group. The formula of EE is shown
as follows:

EE =
n
E
=

n
P ∗ t

=
1

P ∗ t
(3)

In the formula above, EE represents the number of processed trajectory data points
corresponding to per Joule of energy (the dimension is points/J), which can better reflect the
experiment’s implementation efficiency. N is the number of calculated inertial navigation
data points. E represents energy consumption. P is the platform power. t is the total
calculation time. The over-lined t represents the average calculation time of each point.
The power of the FPGA was obtained by analyzing the Vivado software platform provided
by Xilinx. The CPU and GPU used rated power.

EER is the energy efficiency ratio of the two platforms. The corresponding expressions
of INCU and CNN are shown in Equations (4) and (5), respectively:

EERINCU =
EESoC−INCU

EECPU
(4)

EERCNN =
EESoC−CNN

EEGPU
(5)

Based on the previously collected 900 sets of data, the INCU algorithm and CNN
algorithm were implemented on the CPU and the GPU, respectively. Nevertheless, the
system was large and not portable with a high power consumption, which constrained
industrial PDR production promotion. To further promote the commercialization, we
implemented these two modules simultaneously on the low-cost and small-sized SoC
platform integrated with the FPGA. To obtain the performance indicators implemented
on the SoC platform, the algorithms were tested on the CPU, GPU, and SoC platforms,
respectively, and the test results (shown in Table 4) were analyzed.

As shown in Table 5, the Soc demo board was the PYNQ-Z2, and the core of the
PYNQ-Z2 is a chip named XC7Z020CLG400-1 (a rudimentary chip, with minimal FPGA
resources; only a few parallel processing processes can be performed). This disadvantage
made the SoC inferior compared to the CPU and the GPU with respect to the INCU and

Sensors 2021, 21, 3808 16 of 19

CNN algorithms’ computing speeds. However, the PDR terminal could still meet the
needs of real-time processing of data and plotting trajectories. Furthermore, in terms of the
EER, SoC performed better, 12.58 times and 5.42 times better than the CPU platform and
GPU platform.

Table 5. Performance comparisons of the SoC platform and the CPU/GPU platform.

Algorithm INCU CNN

Platform CPU (i7-6700) SoC GPU (1050Ti) SoC

t (µs/point) 157.2 276.95 104.46 496.5

Power(w) 65 2.93 75 2.91

EE(points/J) 97.87 1231.50 127.65 691.42

EER / 12.58 / 5.42

6.5. Overall Terminal Assessment

Resource usage and chip power are essential evaluation indicators in algorithm imple-
mentations.

The resource utilization of the whole design was appropriate for the PYNQ-Z2 board’s
capacity, as Table 6 illustrates. There were 208 slices of DSP (95%), 65 BRAMs (46%), 47,791
FFs (45%), and 49,091 LUTs (92%) used in the whole project (average resource usage ratio:
44.20%). The PYNQ-Z2 demo board with few resources and low cost met the requirements
and had extra resources remaining.

Table 6. Resource usage of the AZUPT implemented device.

Resource Utilization Available Utilization%

LUT 49,091 53,200 92.28

LUTRAM 7452 17,400 42.83

FF 47,791 106,400 44.92

BRAM 65 140 46.43

DSP 208 220 94.55

IO 14 125 11.20

BUFG 5 32 15.63

MMCM 1 4 25.00

PLL 1 4 25.00

The entire system worked with a low power consumption performance, only 2.91 W
for the on-chip power, as Figure 14 shows. The total consumption consisted of two parts,
in which the dynamic part shared a bigger proportion with 93%. In detail, forty-six percent
of the power consumption was from PS7 (ZYNQ7 processing system), which was the core
of the hardware. It controlled all modules’ coordinated operation and accurately made the
data path, so the core output relative high power to guarantee the total system’s normal
operation. However, our system’s total power consumption was far below the average
navigation devices on the market. Considering the low-cost board we used, it was obvious
that the PYNQ-Z2 platform could achieve a good balance among cost, power consumption,
and computing ability.

Figure 15 illustrates the latency of each module in the proposed terminal; the unit for
the latency is the clock cycle (the PYNQ-Z2 board’s working clock frequency is 200 MHz).
The total algorithm latency of the hardware implementation was 66,697 clock cycles (about
0.3 ns), which meant it took only 0.3 ns to process the data (a set of triple-axis accelerations

Sensors 2021, 21, 3808 17 of 19

and angular velocities) once. As the tester moved, the algorithm drew a synchronized
trajectory after hardware acceleration. Additionally, the process to determine the ZUPT
points by CNN could be run synchronously with the plotting of the trajectory if the plotting
started after a tiny time quantum, for example 1 s (the IMU’s frequency of sample extraction
was 1.786 Hz). As a result, real-time tracking could be achievable.

Figure 14. Power analysis from the implemented system.

Figure 15. Latency of the modules from the HLS simulation.

7. Conclusions

In this paper, we adopted a method based on CNN that could adaptively pick ZUPT
points regardless of the pedestrian types and motion types.

The AZUPT method was shown to outperform the traditional method in terms of both
robustness and accuracy. Based on the AZUPT model, we validated the effectiveness of our
system to estimate the trajectories that were more consistent with the ground truth, since its
ZUPT classification accuracy was higher than 99% (shown in Figure 12c,f,i and Table 4). Both the
fixed threshold method’s and the AZUPT method’s cumulative distribution function (CDF)
of the location errors ensuredthat AZUPT generated less cumulative errors as pedestrians
traveled (shown in Figure 13).

Sensors 2021, 21, 3808 18 of 19

We also implemented a real-time PDR hardware on the Zynq-7000 SoC platform,
making it capable of being widely used in various real-world applications. To evaluate
the performance of the platform, we tested its chip power (only 2.717 W) and resource
usage (average resource usage ratio: 44.20%) and also compared the energy efficiency of
the terminal with other devices (Section 6.4). The result showed that the proposed terminal
had the advantages of low power consumption and portability, which made real-time
tracking achievable.

In the future, the tracking accuracy can be further improved by fusing a digital
compass or millimeter-wave radar into the PDR-based autonomous positioning system.

Author Contributions: Conceptualization, Z.X. and B.Y.; Data curation, H.X. and X.Y.; Formal
analysis, H.X.; Methodology, R.W.; Software, X.Y.; Validation, M.Y.; Writing—original draft, R.W.;
Writing—review & editing, M.Y., Z.X. and B.Y. All authors have read and agreed to the published
version of the manuscript.

Funding: Funding name: National Natural Science Foundation of China; Grant Number: 61703076.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The study did not report any data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhao, H.; Wang, Z.; Qiu, S.; Shen, Y.; Zhang, L.; Tang, K.; Fortino, G. Heading Drift Reduction for Foot-Mounted Inertial

Navigation System via Multi-Sensor Fusion and Dual-Gait Analysis. IEEE Sens. J. 2019, 19, 8514–8521. [CrossRef]
2. Vanclooster, A.; de Weghe, N.V.; Maeyer, P.D. Integrating indoor and outdoor spaces for pedestrian navigation guidance: A

review. Trans. GIS 2016, 20, 491–525. [CrossRef]
3. Zampella, F.; Ruiz, A.R.J.; Granja, F.S. Indoor Positioning Using Efficient Map Matching, RSS Measurements, and an Improved

Motion Model. IEEE Trans. Veh. Technol. 2015, 64, 1304–1317. [CrossRef]
4. Li, Y.; Wang, Y.; Li, H.; Shu, Q.; Chen, Y.; Yang, W.; Liu, Y.; Zhao, M. Research on ZUPT technology for pedestrian navigation.

In Proceeedings of the 2017 8th International Conference on Mechanical and Aerospace Engineering (ICMAE), Prague, Czech
Republic, 22–25 July 2017; pp. 725–729. [CrossRef]

5. Xinfeng, B.A.; Wang, P. Design of soldier status monitoring and command and control system based on Beidou system.
In Proceedings of the 2012 2nd International Conference on Computer Science and Network Technology, Changchun, China,
29–31 December 2012; pp. 1362–1366.

6. Ilyas, M.; Cho, K.; Baeg, S.; Park, S. Drift reduction in IMU-only pedestrian navigation system in unstructured environment.
In Proceedings of the 2015 10th Asian Control Conference (ASCC), Kota Kinabalu, Malaysia, 31 May–3 June 2015; pp. 1–7.

7. Foxlin, E. Pedestrian tracking with shoe-mounted inertial sensors. IEEE Comput. Graph. Appl. 2005, 25, 38–46. [CrossRef]
[PubMed]

8. Norrdine, A.; Kasmi, Z.; Blankenbach, J. Step Detection for ZUPT-Aided Inertial Pedestrian Navigation System Using Foot-
Mounted Permanent Magnet. IEEE Sens. J. 2016, 16, 6766–6773. [CrossRef]

9. Nilsson, J.O.; Skog, I.; Hndel, P. A note on the limitations of ZUPTs and the implications on sensor error modeling. In Proceedings
of the Indoor Positioning and Indoor Navigation 2012 International Conference, Sydney, Australia, 13–15 November 2012.

10. Wang, Y.; Chernyshoff, A.; Shkel, A.M. Error Analysis of ZUPT-Aided Pedestrian Inertial Navigation. In Proceedings of the 2018
International Conference on Indoor Positioning and Indoor Navigation, Nantes, France, 24–27 October 2018; pp. 206–212.

11. Li, X.; Mao, Y.; Xie, L.; Chen, J.; Song, C. Applications of zero-velocity detector and Kalman filter in zero velocity update for
inertial navigation system. In Proceedings of the IEEE Chinese Guidance, Navigation and Control Conference, Yantai, China,
8–10 August 2014.

12. Zhang, W.; Li, X.; Wei, D.; Ji, X.; Yuan, H. A foot-mounted PDR system based on IMU/EKF + HMM + ZUPT + ZARU + HDR +
compass algorithm. In Proceedings of the 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN),
Sapporo, Japan, 18–21 September 2017; pp. 1–5.

13. Yu, X.; Liu, B.; Lan, X.; Xiao, Z.; Lin, S.; Yan, B.; Zhou, L. AZUPT: Adaptive Zero Velocity Update Based on Neural Networks for
Pedestrian Tracking. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA,
9–13 December 2019; pp. 1–6. [CrossRef]

14. Wang, Z.; Zhao, H.; Qiu, S.; Gao, Q. Stance-Phase Detection for ZUPT-Aided Foot-Mounted Pedestrian Navigation System.
IEEE/ASME Trans. Mech. 2015, 20, 3170–3181. [CrossRef]

15. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet Things J. 2016, 3, 637–646.
[CrossRef]

http://doi.org/10.1109/JSEN.2018.2866802
http://dx.doi.org/10.1111/tgis.12178
http://dx.doi.org/10.1109/TVT.2015.2391296
http://dx.doi.org/10.1109/ICMAE.2017.8038739.
http://dx.doi.org/10.1109/MCG.2005.140
http://www.ncbi.nlm.nih.gov/pubmed/16315476
http://dx.doi.org/10.1109/JSEN.2016.2585599
http://dx.doi.org/10.1109/GLOBECOM38437.2019.9014070
http://dx.doi.org/10.1109/TMECH.2015.2430357
http://dx.doi.org/10.1109/JIOT.2016.2579198

Sensors 2021, 21, 3808 19 of 19

16. Qiu, J.; Wang, J.; Yao, S.; Guo, K.; Li, B.; Zhou, E.; Yu, J.; Tang, T.; Xu, N.; Song, S.; et al. Going Deeper with Embedded
FPGA Platform for Convolutional Neural Network. In Proceedings of the 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, Monterey, CA, USA, 21–23 February 2016. [CrossRef]

17. Harle, R. A Survey of Indoor Inertial Positioning Systems for Pedestrians. IEEE Commun. Surv. Tutor. 2013, 15, 1281–1293.
[CrossRef]

18. Jiménez, A.R.; Seco, F.; Prieto, J.C.; Guevara, J. Indoor pedestrian navigation using an INS/EKF framework for yaw drift reduction
and a foot-mounted IMU. In Proceedings of the 2010 7th Workshop on Positioning, Navigation and Communication, Dresden,
Germany, 11–12 March 2010; pp. 135–143.

19. Anacleto, R.; Figueiredo, L.; Almeida, A.; Novais, P. Localization system for pedestrians based on sensor and information fusion.
In Proceedings of the 17th International Conference on Information Fusion, Salamanca, Spain, 7–10 July 2014.

20. Su, C.; Chou, J.; Yi, C.; Tseng, Y.; Tsai, C. Sensor-Aided Personal Navigation Systems for Handheld Devices. In Proceedings of the
2010 39th International Conference on Parallel Processing Workshops, San Diego, CA, USA, 13–16 September 2010.

21. Kazemipur, B.; Syed, Z.; Georgy, J.; El-Sheimy, N. Vision-based context and height estimation for 3D indoor location. In Proceed-
ings of the 2014 IEEE/ION Position, Location and Navigation Symposium, Monterey, CA, USA, 5–8 May 2014.

22. Placer, M.; Kovacic, S. Enhancing indoor inertial pedestrian navigation using a shoe-worn marker. Sensors 2013, 13, 9836–9859.
[CrossRef] [PubMed]

23. Zhang, X.-D.; Ren, M.-R.; Pu, W.; Kai, P. A new zero velocity update algorithm for the shoe-mounted personal navigation system
based on IMU. In Proceedings of the 2015 34th Chinese Control Conference, Hangzhou, China, 28–30 July 2015.

24. Ma, M.; Song, Q.; Li, Y.; Zhou, Z. Magnetic field aided heading estimation for indoor pedestrian positioning. In Proceedings of
the 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu,
China, 15–17 December 2017; pp. 919–923.

25. Chen, D.; Cao, H.; Chen, H.; Zhu, Z.; Qian, X.; Xu, W.; Huang, M.-C. Smart Insole-Based Indoor Localization System for Internet
of Things Applications. IEEE Internet Things J. 2019, 6, 7253–7265. [CrossRef]

26. Wang, Y.; Shkel, A.M. Adaptive Threshold for Zero-Velocity Detector in ZUPT-Aided Pedestrian Inertial Navigation. IEEE Sens.
Lett. 2019, 3, 7002304. [CrossRef]

27. Zhang, R.; Yang, H.; Hoflinger, F.; Reindl, L.M. Adaptive Zero Velocity Update Based on Velocity Classification for Pedestrian
Tracking. IEEE Sens. J. 2017, 17, 2137–2145. [CrossRef]

28. Ren, M.; Pan, K.; Liu, Y.; Guo, H.; Zhang, X.; Wang, P. A Novel Pedestrian Navigation Algorithm for a Foot-Mounted Inertial-
Sensor-Based System. Sensors 2016, 16, 139. [CrossRef] [PubMed]

29. Hannink, J.; Kautz, T.; Pasluosta, C.; Barth, J.; Schülein, S.; Gabmann, K.-G.; Klucken, J.; Eskofier, B. Mobile Stride Length
Estimation With Deep Convolutional Neural Networks. IEEE J. Biomed. Health Inform. 2018, 22, 354–362. [CrossRef] [PubMed]

30. Chen, C.; Lu, X.; Markham, A.; Niki, T. IONet: Learning to Cure the Curse of Drift in Inertial Odometry. In Proceedings of the
2018 32nd AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018.

31. Wagstaff, B.; Kelly, J. LSTM-Based Zero-Velocity Detection for Robust Inertial Navigation. In Proceedings of the 2018 International
Conference on Indoor Positioning and Indoor Navigation (IPIN), Nantes, France, 24–27 September 2018; pp. 1–8.

32. Zheng, H.; Zhang, B. Design of ultrasonic assisted IMU indoor positioning system based on FPGA. In Proceedings of the 12th
National Conference on Signal and Intelligent Information Processing and Application, Jilin, China, 18–20 July 2019.

33. Zhang, C.; Li, S.; Gao, S.; Cai, X.; Chen, G. Design of MEMS strapdown inertial navigation system based on FPGA. Piezoelectric
Acoustooptic 2017, 39, 176–179.

34. Mittal, S. A survey of FPGA-based accelerators for convolutional neural networks. Neural Comput. Appl. 2020, 32, 1109–1139.
[CrossRef]

35. Suda, N.; Chandra, V.; Dasika, G.; Mohanty, A.; Ma, Y.; Vrudhula, S.B.K.; Seo, J.-S.; Cao, Y. Throughput-Optimized OpenCL-based
FPGA Accelerator for Large-Scale Convolutional Neural Networks. In Proceedings of the ACM/Sigda International Symposium,
Monterey, CA, USA, 21–23 February 2016. [CrossRef]

36. Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 1097–1105. [CrossRef]

37. Ma, Y.; Cao, Y.; Vrudhula, S.; Seo, J. Optimizing the Convolution Operation to Accelerate Deep Neural Networks on FPGA. IEEE
Trans. Very Large Scale Integr. (VLSI) Syst. 2018, 26, 1354–1367. [CrossRef]

38. Shang, J.; Qian, L.; Zhang, Z.; Xue, L.; Liu, H. LACS: A High-Computational-Efficiency Accelerator for CNNs. IEEE Access 2019.
[CrossRef]

39. Shen, Y.; Ferdman, M.; Milder, P. Maximizing CNN accelerator efficiency through resource partitioning. In Proceedings of the
2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA), Toronto, ON, Canada, 24–28 June
2017; pp. 535–547.

40. Sun, F.; Wang, C.; Gong, L.; Xu, C.; Zhang, Y.; Lu, Y.; Li, X.; Zhou, X. A High-Performance Accelerator for Large-Scale
Convolutional Neural Networks. In Proceedings of the 2017 IEEE International Symposium on Parallel and Distributed Processing
with Applications and 2017 IEEE International Conference on Ubiquitous Computing and Communications (ISPA/IUCC),
Guangzhou, China, 12–15 December 2017; pp. 622–629. [CrossRef]

http://dx.doi.org/10.1145/2847263.2847265
http://dx.doi.org/10.1109/SURV.2012.121912.00075
http://dx.doi.org/10.3390/s130809836
http://www.ncbi.nlm.nih.gov/pubmed/23917258
http://dx.doi.org/10.1109/JIOT.2019.2915791
http://dx.doi.org/10.1109/LSENS.2019.2946129
http://dx.doi.org/10.1109/JSEN.2017.2665678
http://dx.doi.org/10.3390/s16010139
http://www.ncbi.nlm.nih.gov/pubmed/26805848
http://dx.doi.org/10.1109/JBHI.2017.2679486
http://www.ncbi.nlm.nih.gov/pubmed/28333648
http://dx.doi.org/10.1007/s00521-018-3761-1
http://dx.doi.org/10.1145/2847263.2847276
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/TVLSI.2018.2815603
http://dx.doi.org/10.1109/ACCESS.2019.2962746
http://dx.doi.org/10.1109/ISPA/IUCC.2017.00099. 2012, 25, 1097\T1\textendash 1105

	Introduction
	Related Work
	CNN-Based ZUPT Points Selection Method
	Dataset and Labels
	CNN-Based ZUPT Points' Selection Model

	System Architecture
	The Architecture of Algorithm
	The Architecture of the Hardware

	Real-Time Pedestrian Dead Reckoning Implementation Based on the SoC Platform
	Hardware Platform
	System Implementation

	Experiment
	Classification Accuracy
	Comparisons of the Three Motion Types
	The Cumulative Distribution Function of the Error
	Platform Performance Analysis
	Overall Terminal Assessment

	Conclusions
	References

