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Abstract: Detecting drowsiness in drivers, especially multi-level drowsiness, is a difficult problem 
that is often approached using neurophysiological signals as the basis for building a reliable system. 
In this context, electroencephalogram (EEG) signals are the most important source of data to achieve 
successful detection. In this paper, we first review EEG signal features used in the literature for a 
variety of tasks, then we focus on reviewing the applications of EEG features and deep learning 
approaches in driver drowsiness detection, and finally we discuss the open challenges and oppor-
tunities in improving driver drowsiness detection based on EEG. We show that the number of stud-
ies on driver drowsiness detection systems has increased in recent years and that future systems 
need to consider the wide variety of EEG signal features and deep learning approaches to increase 
the accuracy of detection. 
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1. Introduction 
Many industries (manufacturing, logistics, transport, emergency ambulance, and 

similar) run their operations 24/7, meaning their workers work in shifts. Working in shifts 
causes misalignment with the internal biological circadian rhythm of many individuals, 
which can lead to sleeping disorders, drowsiness, fatigue, mood disturbances, and other 
long-term health problems [1–4]. Besides misalignment of the internal circadian rhythms 
with a work shift, sleep deprivation and prolonged physical or mental activity can also 
cause drowsiness [5–7]. Drowsiness increases the risk of accidents at the workplace [8–
10], and it is one of the main risk factors in road and air traffic accidents per reports from 
NASA [11] and the US National Transportation Safety Board [12]. 

Drowsiness is the intermediate state between awareness and sleep [13–15]. Terms 
like tiredness and sleepiness are used as synonyms for drowsiness [16–18]. Some research-
ers also use fatigue as synonymous with drowsiness [19, 20]. Definitions and differences 
between drowsiness and fatigue are addressed in many research papers [21–23]. The main 
difference between the two states is that short rest abates fatigue, while it aggravates 
drowsiness [24]. However, although the definitions are different, drowsiness and fatigue 
show similar behavior in terms of features measured from electroencephalogram (EEG) 
signal [25–28]. Because of this fact, in this review paper, we consider all the research pa-
pers whose topic was drowsiness, sleepiness, or fatigue, and we make no distinction 
among them. 

The maximum number of hours that professional drivers are allowed to drive in a 
day is limited, yet drowsiness is still a major problem in traffic. A system for drowsiness 
detection with early warnings could address this problem. The most commonly used 
methods for drowsiness detection are self-assessment of drowsiness, driving events 
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measures, eye-tracking measures, and EEG measures. Among these methods, drowsiness 
detection systems based on the EEG signal show the most promising results [18,29]. 

Brain neural network is a nonlinear dissipative system, i.e., it is a non-stationary sys-
tem with a nonlinear relationship between causes and effects [30]. One way to analyze 
brain neural network is through feature extraction from the EEG signal. The most used 
techniques for feature extraction are linear, such as Fast Fourier Transform (FFT). Alt-
hough it is a linear method, FFT also assumes that the amplitudes of all frequency com-
ponents are constant over time, which is not the case with brain oscillations, since they are 
non-stationary. Because of the complexity of brain dynamics, there is a need for feature 
extraction methods that can properly take into account the nonlinearity and non-station-
arity of brain dynamics. With an increase of computational power in recent years, many 
researchers work on improving the feature extraction methods, and there is a growing 
number of various features extracted from the EEG signal. 

This paper aims to review the features extracted from the EEG signal and the appli-
cations of these features to the problem of driver drowsiness detection. We review the 
features since the large number of features described in the literature makes it difficult to 
understand their interrelationships, and also makes it difficult to choose the right ones for 
the given problem. To our knowledge, there is no similar review work that covers all the 
features discussed in this review. After the EEG features review, we continue with the 
review of driver drowsiness detection systems based on EEG. The main goal is to gain 
insight into the most commonly used EEG features and recent deep learning approaches 
for drowsiness detection, which would allow us to identify possibilities for further im-
provements of drowsiness detection systems. Finally, the main contributions of our work 
are the following: (1) Comprehensive review, systematization, and a brief introduction of 
the existing features of the EEG signal, (2) comprehensive review of the drowsiness detec-
tion systems based on the EEG signal, (3) comprehensive review of the existing similar 
reviews, and (4) discussion of various potential ways to improve the state of the art of 
drowsiness detection systems. 

The paper is organized as follows: In Section 2, we present the overview of the exist-
ing review papers that are close to the topic of this paper, Section 3 provides the overview 
of the different features extracted from the EEG signal, Section 4 reviews the papers deal-
ing with driver drowsiness detection systems, Section 5 provides a discussion about the 
features and drowsiness detection systems, and Section 6 brings the future directions of 
research and concludes the paper. 

The search for the relevant papers included in our paper was done in the Web of 
Science Core Collection database. The search queries used were: (1) In Section 2.1—“{re-
view, overview} {time, frequency, spectral, nonlinear, fractal, entropy, spatial, temporal, 
network, complex network} EEG features“, (2) in Section 2.2—“{review, overview} driver 
{drowsiness, sleepiness, fatigue} {detection, classification}”, (3) in Section 3—“<feature 
name> EEG feature”, (4) in Section 4—“EEG driver {‘’, deep learning, neural network} 
{drowsiness, sleepiness, fatigue} {detection, classification}”. Beyond the mentioned que-
ries, when appropriate, we also reviewed the papers cited in the results obtained through 
the query. Additional constraints for papers in Section 4 were: (1) They had to be pub-
lished in a scientific journal, (2) they had to be published in 2010 or later, 2) at least three 
citations per year since the paper was published, (3) papers from 2020 or 2021 were also 
considered with less than three citations per year, but published in Q1 journals, and (4) 
the number of participants in the study experiment had to be greater than 10. The goal of 
these constraints was to ensure that only high quality and relevant papers were included 
in our study. 

  



Sensors 2021, 21, 3786 3 of 30 
 

 

2. Related Work 
2.1. Reviews of the EEG Signal Features 

Stam [30] in his seminal review paper about the nonlinear dynamical analysis of the 
EEG and magnetoencephalogram (MEG) signals included more than 20 nonlinear and 
spatiotemporal features (e.g., correlation dimension, Lyapunov exponent, phase synchro-
nization). The theoretical background of these features and dynamical systems were also 
covered. The paper gave an overview of the other research works that include explana-
tions of the features from the fields of normal resting-state EEG, sleep, epilepsy, psychiat-
ric diseases, normal cognition, distributed cognition, and dementia. The main drawback 
of the paper nowadays is that it is somewhat dated (from 2005) because additional ap-
proaches have been introduced in the meantime. Ma et al. [31] reviewed the most-used 
fractal-based features and entropies for the EEG signal analysis, and focused on the appli-
cation of these features to sleep analysis. The authors concluded that using fractal or en-
tropy methods may facilitate automatic sleep classification. Keshmiri [32], in a recent pa-
per, provided a review on the usage of entropy in the fields of altered state of conscious-
ness and brain aging. The author’s work is mostly domain-specific, as it emphasizes in-
cremental findings in each area of research rather than the specific types of entropies that 
were utilized in the reviewed research papers. Sun et al. [33] reviewed the complexity 
features in mild cognitive impairment and Alzheimer’s disease. They described the usage 
of five time-domain entropies, three frequency-domain entropies, and four chaos theory-
based complexity measures. 

Motamedi-Fakhr et al. [34], in their review paper, provided an overview of more than 
15 most-used features and methods (e.g., Hjorth parameters, coherence analysis, short-
time Fourier transform, wavelet transform) for human sleep analysis. The features were 
classified into temporal, spectral, time-frequency, and nonlinear features. Besides these 
features, they also reviewed the research papers about sleep stages classification. Rashid 
et al. [35] reviewed the current status, challenges, and possible solutions for EEG-based 
brain-computer interface. Within their work, they also briefly discussed the most used 
features for brain–computer interfaces classified into time domain, frequency domain, 
time-frequency domain, and spatial domain. 

Bastos and Schoffelen [36] provided a tutorial review of methods for functional con-
nectivity analysis. The authors aimed to provide an intuitive explanation of how func-
tional connectivity measures work and highlighted five interpretational caveats: The com-
mon reference problem, the signal-to-noise ratio, the volume conduction problem, the 
common input problem, and the sample size problem. Kida et al. [37], in their recent re-
view paper, provided the definition, computation, short history, and pros and cons of the 
connectivity and complex network analysis applied to EEG/MEG signals. The authors 
briefly described the recent developments in the source reconstruction algorithms essen-
tial for the source-space connectivity and network analysis. 

Khosla et al. [38], in their review, covered the applications of the EEG signals based 
on computer-aided technologies, ranging from the diagnosis of various neurological dis-
orders such as epilepsy, major depressive disorder, alcohol use disorder, and dementia to 
the monitoring of other applications such as motor imagery, identity authentication, emo-
tion recognition, sleep stage classification, eye state detection, and drowsiness monitoring. 
By reviewing these EEG signal-based applications, the authors listed features observed in 
these papers (without explanations), publicly available databases, preprocessing meth-
ods, feature selection methods, and used classification models. For the application of 
drowsiness monitoring, the authors reviewed only three papers, while other applications 
were better covered. 

Ismail and Karwowski [39] overview paper dealt with a graph theory-based model-
ing of functional brain connectivity based on the EEG signal in the context of neuroergo-
nomics. The authors concluded that the graph theory measures have attracted increasing 
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attention in recent years, with the highest frequency of publications in 2018. They re-
viewed 20 graph theory-based measures and stated that the clustering coefficient and 
characteristic path length were mostly used in this domain. 

Figure 1 shows the reviews presented in this section in chronological order of publi-
cation. 

 
Figure 1. Chronologically ordered reviews of the EEG signal features. 

2.2. Reviews of the Driver Drowsiness Detection 
Lal and Craig [18], in their review of driver drowsiness systems, discussed the con-

cept of fatigue and summarized the psychophysiological representation of driver fatigue. 
They concluded that most studies had found a correlation of theta and delta activity with 
the transition to fatigue. 

Lenne and Jacobs [40], in their review paper, assessed the recent developments in the 
detection and prediction of drowsiness-related driving events. The driving events ob-
served were the number of line crossings, the standard deviation of lateral position, the 
variability of lateral position, steering wheel variability, speed adjustments, and similar 
events. The authors concluded that these driving performance measures correlate with 
drowsiness in the experimental settings, although they stipulated that the new findings 
from on-road studies show a different impact on performance measures. Doudou et al. 
[41] reviewed the vehicle-based, video-based, and physiological signals-based techniques 
for drowsiness detection. They also reviewed the available commercial market solutions 
for drowsiness detection. When it comes to the EEG signal drowsiness detection, the au-
thors included six papers that consider frequency-domain features in this field. 

Sahayadhas et al. [42] reviewed vehicle-based measures, behavior-based measures, 
and physiological measures for driver drowsiness detection. The section on physiological 
measures included 12 papers with only frequency-domain features. Sikander and Anwar 
[43] reviewed drowsiness detection methods and categorized them into five groups—sub-
jective reporting, driver biological features, driver physical features, vehicular features 
while driving, and hybrid features. When it comes to drowsiness detection using EEG 
signals, the authors focused more on explaining frequency-domain features used for 
drowsiness detection rather than presenting research that had already been done in this 
field. 

Chowdhury et al. [44] reviewed different physiological sensors applied to driver 
drowsiness detection. Observed physiological methods for measuring drowsiness in-
cluded electrocardiogram (ECG), respiratory belt, EEG, electrooculogram (EOG), electro-
myogram (EMG), galvanic skin response (GSR), skin temperature, and hybrid techniques. 
Related to EEG methods, the authors included papers based on the spectral power fea-
tures, event-related potentials, and entropies. The authors also discussed different mate-
rials used for dry electrodes and the problem of measurement intrusiveness for the driv-
ers. 
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Balandong et al. [45] split driver drowsiness detection systems into six categories 
based on the used technique—(1) subjective measures, (2) vehicle-based measures, (3) 
driver’s behavior-based system, (4) mathematical models of sleep–wake dynamics, (5) hu-
man physiological signal-based systems, and (6) hybrid systems. The authors emphasized 
human physiological signal-based systems, but only the systems that rely on a limited 
number of EEG electrodes, as these kinds of systems are more practical for real-world 
applications. The authors concluded that the best results were obtained when the problem 
was observed as a binary classification problem and that the fusion of the EEG features 
with other physiological signals should lead to improved accuracy. 

Other review papers of driver drowsiness systems are specialized for a certain aspect 
of the field, e.g., Hu and Lodewijsk [46] focused on differentiating the detection of passive 
fatigue, active fatigue, and sleepiness based on physiological signals, subjective assess-
ment, driving behavior, and ocular metrics, Soares et al. [47] studied simulator experi-
ments for drowsiness detection, Bier et al. [48] put focus on the monotony-related fatigue, 
and Philips et al. [49] studied operational actions (e.g., optimal staff, optimal schedule 
design) that reduce risk of drowsiness occurrence. 

Figure 2 shows the reviews presented in this section in chronological order of publi-
cation. 

 
Figure 2. Chronologically ordered reviews of driver drowsiness detection methods. 

3. EEG Features 
The purpose of this section is to introduce features that researchers extract from the 

EEG signal. We will not go into the details of the computation for each feature. For the 
readers who are interested in the detailed computation for each feature, we suggest read-
ing the cited papers. Instead, the main idea is to present, with a brief explanation, as many 
features as possible, which will later allow us to identify opportunities for further im-
provements in the area of driver drowsiness detection. Tables 1 and 2 show the list of all 
the features introduced in the following subsections. In the rest of this Section, we will use 
bold letters for the first occurrence of a particular feature name and italic letters for the 
first occurrence of a particular feature transformation or extraction method name. 
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Table 1. The list of time-domain, frequency domain and nonlinear features reviewed in this work. 

Group Feature Name Abbr. Group Feature Name Abbr. 

Ti
m

e-
do

m
ai

n 
 

Mean   

Fr
eq

ue
nc

y-
do

m
ai

n 

θ/β    
Median   (θ+α)/(α+β)    

Variance   γ/δ    
Standard deviation   (γ+β)/(δ+α)    

Skewness   Reflection coefficients   
Kurtosis   Partial correlation coefficient   

Zero-crossing rate ZCR Wavelet coefficients   
Number of waves   Phase coupling   

Wave duration   

N
on

lin
ea

r 

Hurst exponent H 
Peak amplitude   Renyi scaling exponent   

Instantaneous frequency  IF Renyi gener. dim. multifractals    
Hjorth parameters   Capacity dimension D0 D0 

Mobility   Information dimension D1 D1 
Activity   Correlation dimension D2 D2 

Complexity   Katz fractal dimension  KFD 
K-complex   Petrosian fractal dimension PFD 

Energy E Higuchi fractal dimension  HFD 

Fr
eq

ue
nc

y-
do

m
ai

n 

Mean   Fractal spectrum   
Median   Lyapunov exponents  LE 

Variance   Lempel-Ziv complexity  LZC 
Standard deviation   Central tendency measure CTM 

Skewness   Auto-mutual information  AMI 
Kurtosis   Temporal irreversibility    

Delta δ Recurrence rate  RR 
Theta θ Determinism Det 
Alpha α Laminarity Lam 
Beta β Average diagonal line length L 

Gamma γ Maximum length of diagonal Lmax 
Sigma σ Max. length of vertical lines Vmax 
θ/α    Trapping time TT 
β/α    Divergence Div 

(θ+α)/β    Entropy of recurrence plot ENTR 
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Table 2. The list of entropies, undirected and directed spatiotemporal (spt.), and complex network features reviewed in this work. 

Group Feature Name Abbr. Group Feature Name Abbr. 

En
tr

op
ie

s 

Shannon entropy   

U
nd

ir
ec

te
d 

sp
t. 

Imaginary component of Coh   
Renyi’s entropy   Phase-lag index PLI 
Tsallis entropy   Weighted phase lag index wPLI 

Kraskov entropy KE Debiased weighted PLI dwPLI 
Spectral entropy SEN Pairwise phase consistency PPC 

Quadratic Renyi’s SEN QRSEN Generalized synchronization   
Response entropy RE Synchronization likelihood SL 

State entropy SE Mutual information  MI 
Wavelet entropy WE Mutual information in freq. MIF 

Tsallis wavelet entropy TWE Cross-RQA   
Rényi’s wavelet entropy RWE Correlation length  ξKLD 

Hilbert-Huang SEN HHSE 

D
ir

ec
te

d 
sp

t. 

Granger causality   
Log energy entropy LogEn Spectral Granger causality   

Multiresolution entropy    Phase slope index PSI 
Kolmogorov’s entropy    

C
om

pl
ex

 n
et

w
or

ks
 

Number of vertices   
Nonlinear forecasting entropy    Number of edges   
Maximum-likelihood entropy   Degree D 

Coarse-grained entropy   Mean degree   
Correntropy CoE Degree distribution   

Approximate entropy  ApEn Degree correlation r 
Sample entropy SampEn Kappa k 

Quadratic sample entropy QSE Clustering coefficiet   
Multiscale entropy MSE Transitivity   

Modified multiscale entropy MMSE Motif   
Composite multiscale entropy CMSE Characteristic path length   

Permutation entropy PE Small worldness   
Renyi’s permutation entropy  RPE Assortativity   
Permutation Rényi entropy  PEr Efficiency   

Multivariate PE MvPE Local efficiency   
Tsallis permutation entropy TPE Global efficiency   

Dispersion entropy DisE Modularity   
Amplitude-aware PE AAPE Centrality degree   

Bubble entropy BE Closesness centrality   
Differential entropy DifE Eigenvalue centrality   

Fuzzy entropy FuzzyEn Betweenness centrality   
Transfer entropy TrEn Diameter d 

U
nd

ir
ec

te
d 

sp
t. Coherence   Eccentricity Ecc 

Partial coherence   Hubs   
Phase coherence   Rich club   

Phase-locking value PLV Leaf fraction   
Coherency Coh Hierarchy Th 

3.1. Time, Frequency and Time-Frequency Domain Features 
3.1.1. Time-Domain Features 

The simplest features of the EEG signal are statistical features, like mean, median, 
variance, standard deviation, skewness, kurtosis, and similar [50]. Zero-crossing rate 
(ZCR) [51] is not a statistical feature, yet it is also a simple feature. It is the number of times 
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that the signal crosses the x-axis. The period-amplitude analysis is based on the analysis of 
the half-waves, i.e., signals between two zero-crossings. With the period amplitude anal-
ysis, one can extract the number of waves, wave duration, peak amplitude, and instan-
taneous frequency (IF) (based only on the single observed half-wave) [52]. 

Hjorth parameters are features that are based on the variance of the derivatives of 
the EEG signal. Mobility, activity, and complexity [53] are the first three derivatives of 
the signal and the most-used Hjorth parameters. Mean absolute value of mobility, activity, 
and complexity can also be used as a features [54]. K-complex [55] is a characteristic wave-
form of the EEG signal that occurs in stage two of the non-rapid eye movement sleep 
phase. Energy (E) of the signal is the sum of the squares of amplitude. 

3.1.2. Frequency-Domain Features 
The power spectral density (PSD) of the signal, which is the base for calculation of 

the frequency domain features, can be calculated with several parametric and non-para-
metric methods. Non-parametric methods are used more often and include methods like 
Fourier transform (usually calculated with Fast Fourier transform algorithm, FFT [56]), 
Welch’s method [57], or Thompson multitaper method [58]. Examples of parametric methods 
for the PSD estimation are the autoregressive (AR) models [59], multivariate autoregressive 
models [60], or the autoregressive-moving average (ARMA) models [61]. The non-parametric 
models have a more widespread usage, because there is no need for selecting parameters 
such as the model’s order, which is the case for autoregressive models. 

Statistical features like mean, median, variance, standard deviation, skewness, kur-
tosis, and similar are also used in the frequency domain. Relative powers of the certain 
frequency bands are the most used frequency-domain features in all fields of analysis of 
the EEG signals. The most commonly used frequency bands are delta (δ, 0.5 Hz–4 Hz), 
theta (θ, 4 Hz–8 Hz), alpha (α, 8 Hz–12 Hz), beta (β, 12 Hz–30 Hz), and gamma (γ, >30 
Hz), band. There is also the sigma band (σ, 12 Hz–14 Hz) that is sometimes called sleep 
spindles [62]. Several ratios between frequency bands are widely used as features in the 
EEG signal analysis, i.e., θ/α [63], β/α [63], (θ+α)/β [64], θ/β [64], (θ+α)/(α+β) [64], γ/δ [65] 
and (γ+β)/(δ+α) [65]. 

The frequency domain of the signal can also be obtained using wavelet decomposition 
[66,67] and matching pursuit decomposition [68,69] methods. Unlike Fourier transform, 
which decomposes a signal into sinusoids, wavelet decomposition uses an underlying 
mother wavelet function for decomposition, and matching pursuit decomposition uses 
the dictionaries of signals to find the best fit for the signal. 

From autoregressive models, one can extract features such as reflection coefficients 
or partial correlation coefficients. Wavelet coefficients obtained after applying wavelet 
decomposition can also be used as features. PSD is usually used to obtain the second-
order statistics of the EEG signal. However, one can also consider the higher-order spec-
trum. For example, phase coupling [70] of different frequency components can be ob-
tained with the higher-order spectral analysis. 

3.1.3. Time-Frequency Features 
The analysis of the EEG signal in the domains of time and frequency simultaneously 

is a powerful tool, since the EEG signal is a non-stationary signal [71,72]. The most im-
portant component of time-frequency domain analysis is the possibility to observe 
changes in the frequency over time. Short-time Fourier transform (STFT) is the simplest 
function that uses uniform separation of the observed signal and calculates its frequency 
components. A spectrogram [71] can be obtained with the application of STFT. Wavelet 
transform [73] is the usual alternative method to spectrogram that also provides coeffi-
cients as features from the time-frequency domain. The main advantage of wavelet trans-
form compared to spectrogram is a variable window size, dependent on spectrum fre-
quencies. 
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3.2. Nonlinear Features 
Brain dynamics constitute a complex system. A system is complex when it is con-

structed from many nonlinear subsystems that cannot be separated into smaller subsys-
tems without changing their dynamical properties. Fractal systems are often used for de-
scribing the brain dynamics measured with the EEG signal. To explain fractal systems, 
first, we need to introduce the scaling law. The scaling law is describing (asymptomati-
cally) a self-similar function F as a function of the scale parameter s, i.e., 𝐹(𝑠)~𝑠 . When 
applied to a self-affine signal, each axis should be scaled by a different power factor to 
obtain statistically equivalent changes in both directions. If s is used in the x-axis direction, 
then 𝑠 = 𝑠  should be used in the y-axis direction. The power factor H is called the 
Hurst exponent [74,75]. The Hurst exponent is a measure of long-term memory of the 
signal and is related to the fractal dimension with the equation D0 = 2 − H for self-similar 
time-series, where fractal dimension D0 is defined in the next paragraph. Time-series q is 
monofractal if it is linearly interdependent with its Renyi scaling exponent 𝜏(𝑞), other-
wise, it is multifractal. The Renyi generalized dimension of multifractals is defined as 𝐷(𝑞) = 𝜏(𝑞) (𝑞 − 1)⁄ . For more detailed explanations about fractality and multifractality 
of the time-series, we refer the reader to [76–78]. 

In EEG signal analysis, all fractal dimensions are estimated based on the underlying 
attractor (a geometric structure towards which stationary dissipative system gravitates in 
its state space) of the signal [79]. In a strict mathematical sense, most time-series have the 
one-dimensional support fractal dimension D0 (or capacity dimension or Hausdorff di-
mension) if there are no missing values. Regardless of the value of the D0, the information 
dimension D1 and correlation dimension D2 [79–81] can be calculated. The correlational 
dimension D2 can be calculated with both monofractal and multifractal approaches. The 
Katz fractal dimension (KFD) [82], the Petrosian fractal dimension (PFD) [83], and the 
Higuchi fractal dimension (HFD) [84] are different approaches to the estimation of the 
fractal dimension. With multifractal time-series analysis, a fractal spectrum consisting of 
multiple fractal dimensions can be obtained [85,86]. 

Methods for fractal time-series analysis can be classified [76] into stationary analysis 
methods (such as Fluctuation Analysis [87], Hurst’s Rescaled-Range Analysis [74], and simi-
lar), non-stationary analysis (such as Detrended Fluctuation Analysis [88], Centered Moving 
Average Analysis [89], Triangle Total Areas [90], and similar), and multifractal analysis (such 
as Wavelet Transform Modulus Maxima [91], Multifractal Detrended Fluctuation Analysis [92], 
and similar). Each of these methods provides its own estimation of fractal dimension or 
scaling exponent features. 

Lyapunov exponents (LE) [93] are measures of the attractor’s complexity. If a system 
has at least one positive Lyapunov exponent, then the system can be characterized as a 
chaotic dynamical system. A positive Lyapunov exponent points to exponential diver-
gence of the two nearby trajectories in the attractor over time [94]. Lempel-Ziv complexity 
(LZC) [95] is a measure of complexity that binarizes time-series and then searches for the 
occurrence of consecutive binary characters or ‘‘words’’ and counts the number of times 
a new ‘‘word’’ is encountered. The Central tendency measure (CTM) [96] is a measure of 
the variability of the observed time-series and represents the percentage of points on the 
scatter plot that fall into a given radius. Auto-mutual information (AMI) [97] is a mutual 
information measure applied to time-delayed versions of the same EEG time-series. Tem-
poral irreversibility [98] of a time-series implies the influence of nonlinear dynamics, non-
Gaussian noise, or both. It is a statistical property that differs based on the direction in 
which time proceeds, e.g., any sequence of measurements has a different probability of 
occurrence than its time reverse. 

A recurrence plot [99] is a graphical method for the detection of reoccurring patterns 
in the time-series. Recurrence quantification analysis (RQA) [100] is a group of algorithms 
for the automatic quantification of recurrence plots. RQA is a noise resistant method, 
meaning it gives good results even when the signal-to-noise ratio of considered signals is 
unfavorable [101]. The recurrence rate (RR) is the probability that a specific state of a time-
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series will reoccur. Determinism (Det) is the percentage of points that form diagonal lines 
on the recurrence plot and laminarity (Lam) is the percentage of points forming vertical 
lines in the recurrence plot. The average diagonal line length (L), maximum length of 
diagonal (Lmax), and maximum length of vertical lines (Vmax) are also used as RQA-
based features. Trapping time (TT) is the average vertical line length and it relates to the 
predictability of the time-series. Divergence (Div) is the reciprocal value of the maximal 
diagonal line length and it can have a trend similar to the positive Lyapunov exponents. 
Entropy of the recurrence plot (ENTR) reflects the complexity of the deterministic struc-
ture of the system. 

3.3. Entropies 
Entropy was first introduced to the field of information theory by Shannon in 1948 

[102,103]. Shannon’s information entropy is calculated based on the expression −∑ 𝑝 log (𝑝 ), where pj is the probability distribution of the observed data. It is used to 
measure uncertainty or randomness in the observed time-series. There are many derived 
variations of information entropy used in EEG analysis. The entropies may be considered 
as nonlinear features, but we describe them in a separate subsection due to their specific 
calculation. 

Rényi’s entropy [104] is defined with the expression − ∑ log 𝑝 , where 𝛼 > 0 
and 𝛼 ≠ 1. It is a generalization of Shannon’s entropy in the case of a limited value of 𝛼 → 1. Quadratic Rényi’s entropy (or just Rényi’s entropy) is the case where 𝛼 = 2. 
Tsallis entropy (q-entropy) [105] is a generalization of the Boltzman–Gibbs entropy from 
statistical thermodynamics and is defined with the expression 1 − ∑ 𝑝 , where k 
is a positive constant and q is the non-extensity parameter. For 𝑞 > 1, the entropy has a 
more significant reaction to the events that occur often, whereas for 0 < 𝑞 < 1, the en-
tropy has a more significant reaction to rare events. 

The three aforementioned entropies can be calculated from the raw EEG signal. Be-
sides that, they are a base for calculating several other entropies in the field of EEG anal-
ysis. Kraskov entropy (KE) [50] is an unbiased estimator of Shannon’s entropy for a d-
dimensional random sample. Spectral entropy (SEN) [106] is calculated with the expres-
sion for Shannon’s entropy based on the normalized PSD of the EEG signal. Quadratic 
Renyi’s spectral entropy (QRSEN) [107] is calculated with the usage of Renyi’s entropy 
expression, and the difference compared to the spectral entropy is that it gives the higher 
weights to the lower frequencies. Commercial M-Entropy Module [108] uses two different 
components of spectral entropy—response entropy (RE) and state entropy (SE). State en-
tropy includes the spectrum between 0.8 and 32 Hz, while response entropy includes the 
spectrum between 0.8 and 47 Hz. 

Wavelet entropy (WE) [109,110] is somewhat similar to spectral entropy. The differ-
ence is that it is calculated based on the coefficients of the wavelet decomposition of the 
given time-series. There are two generalizations of wavelet entropy—Tsallis wavelet en-
tropy (TWE) and Rényi’s wavelet entropy (RWE) [111]. Hilbert–Huang spectral entropy 
(HHSE) [112] applies Shannon’s entropy to the Hilbert–Huang spectrum, which is ob-
tained by the Hilbert–Huang transform [111,113]. Log energy entropy (LogEn) [114] is sim-
ilar to the wavelet entropy, but only uses summation of logarithms of the probabilities. 
Multiresolution entropy [115] uses the combination of windowing and wavelet trans-
form for the detection of changes in parameters that define the observed process (i.e., the 
parameters of brain dynamics). 

Kolmogorov’s entropy [116] is an embedding entropy and is defined as the sum of 
positive Lyapunov exponents. It represents the rate of information loss and a degree of 
predictability (regularity) of the attractor. Accurate computation of Kolmogorov’s entropy 
is computationally expensive, so several entropies are used for the estimation of Kolmo-
gorov’s entropy based on the less computationally expensive methods. Nonlinear fore-
casting entropy [117] is the estimation of Kolmogorov’s entropy for time-series with too 
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few points. It is based on the forecasting of the time-series data, i.e., on the correlation 
coefficient of the forecasted points with actually observed points. The estimation method 
is independent of the forecasting method used. Maximum-likelihood entropy [118] is 
also the estimation of Kolmogorov entropy. It is derived with the application of maxi-
mum-likelihood to the correlation integral, which is treated as a probability distribution. 
Coarse-grained entropy [119] is an estimation of the attractor’ entropy for cases where 
standardly used dimensions, Lyapunov exponents, and Kolmogorov’s entropy are not 
suitable due to the high dimensionality of the observed process. Correntropy (CoE) [120] 
is an estimation of nonlinear autocorrelation. 

Approximate entropy (ApEn) [121] is derived from Kolmogorov’s entropy and its 
use in the analysis of the EEG signal (and other physiological signals) is widespread. It 
addresses the irregularity of a time-series. Predictable time-series, i.e., time-series with 
many repetitive patterns will have a small value of approximate entropy. Sample entropy 
(SampEn) [122] was introduced as an improvement to approximate entropy. It reduces 
the error of the approximate entropy by eliminating its two disadvantages—(1) self-
matches and (2) dependence on the time-series length. Sample entropy is also an approx-
imation of signal complexity. Quadratic sample entropy (QSE) [123] is SampEn insensi-
tive to the data radius parameter r. It allows r to vary as needed to achieve confident esti-
mates of the conditional probability. Multiscale entropy (MSE) [124] is a generalization 
of an entropy measure (such as sample entropy) to different time scales. Modified mul-
tiscale entropy (MMSE) [125] uses the same procedure as MSE, but replaces coarse-grain-
ing with a moving average procedure. Composite multiscale entropy (CMSE) [126] is a 
modification of the MSE that tackles the problem of increased variance and error estima-
tion for short time-series. 

Permutation entropy (PE) [127] estimates signal variability based on the repetition 
of the ordinal patterns. The algorithm requires parameter m (permutation order) to obtain 
ordinal patterns and their probabilities of occurrence. These probabilities are then applied 
in Shannon’s entropy expression. Moreover, Renyi’s permutation entropy (RPE) [128], 
permutation Rényi entropy (PEr) [129], multivariate permutation entropy (MvPE) [130], 
and Tsallis permutation entropy (TPE) [111] can be calculated for the ordinal patterns. 
Dispersion entropy (DisE) [131] is a modification of permutation entropy that tackles the 
problem of amplitude information loss (since permutation entropy only considers the or-
der of the amplitude values but not the values themselves). Amplitude-aware permuta-
tion entropy (AAPE) [132] is based on the similar idea of using the value of the signal 
with the permutation entropy. Bubble entropy (BE) [133] is similar to permutation en-
tropy with the main difference in the method used for ranking vectors in the embedding 
space. Namely, permutation entropy uses repetition of the ordinal patterns and bubble 
entropy uses the number of steps needed to sort a vector with the bubble sort algorithm. 
Differential entropy (DifE) [134] calculation is based on Shannon’s entropy expression 
and the estimation of the underlying probability density function of time-series. Fuzzy 
entropy (FuzzyEn) [135] is based on the concept of fuzzy sets, first introduced by Zadeh 
[136]. It is similar to sample entropy, but instead of using the Heaviside function for dis-
tance calculation, it uses a fuzzy membership function. Transfer entropy (TrEn) [137] uses 
concepts similar to mutual information (see Section 3.4) with the ability to quantify the 
exchange of information between two systems. It is an asymmetric measure for infor-
mation transfer from process X to process Y, which measures the effect of the past values 
of processes X and Y on the present value of process Y. 

3.4. Spatiotemporal Features 
Features that were introduced above are all calculated based on a single EEG channel. 

Since EEG recording devices can have hundreds of channels nowadays, features that de-
scribe the relationship between different channels bring further insight into the under-
standing of brain functions. This is the main idea behind the usage of the spatiotemporal 
features—to describe the relationship between different brain regions for particular states 
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or events. Spatiotemporal features can be divided into two groups—directed and non-
directed. The non-directed ones relate to the synchronization of two or more channels 
without any knowledge of the direction, while the directed ones include the causation 
between them, i.e., they measure functional connectivity. 

3.4.1. Non-Directed Spatiotemporal Features 
Coherence [138] is a cross-correlation equivalent in the frequency-domain, i.e., the 

cross-correlation of the PSD from two different channels. It reflects the synchronization of 
the changes of frequency components between the observed channels. Partial coherence 
[139] is an adjusted coherence with removed common signal’s linear effect based on the 
third channel, which is not physically close to the two observed channels. Phase coher-
ence [140] is the coherence of the phases of the signals. It was introduced to overcome the 
problem of detection of nonlinear dependencies between the two channels. 

The phase-locking value (PLV) [141] represents the measure of the transient phase 
locking that is completely independent of the signal’s amplitude, which is not the case for 
the coherence measure. Coherency [142] is calculated similar to coherence, but without 
applying the magnitude operator to the cross-spectral density of two channels. The ob-
tained complex-valued quantity is called coherency. The imaginary component of coher-
ency (iCoh) [143] reflects the nonlinear interaction between the two underlying time-se-
ries. Phase-lag index (PLI) [144] is a measure of the asymmetry of the distribution of phase 
differences between two signals. It brings improvement compared to the imaginary com-
ponent of coherency by removing the effect of amplitude information. The weighted 
phase lag index (wPLI) [145] uses weights to reduce a phase lag index’s sensitivity to 
noise, while the debiased weighted phase lag index (dwPLI) [145] additionally reduces 
a sample-size bias. Pairwise phase consistency (PPC) [146] is a measure similar to PLV, 
but it quantifies the distribution of all pairwise phase differences across observations. 

Generalized synchronization [147] incorporates the nonlinear property of the dy-
namical systems into its calculation. The idea is to observe two dynamical systems, a re-
sponse system and a driving system, where the response system is a function of the driv-
ing system. Authors propose a numerical method called mutual false nearest neighbors for 
distinguishing between synchronized and unsynchronized behavior of the systems. Arn-
hold’s measure [148] is another algorithm for measuring such interdependence between 
two dynamical systems. Synchronization likelihood (SL) [149] brings several improve-
ments into these methods—it is sensitive to linear and nonlinear brain dynamics and is 
suitable for an analysis of the non-stationary systems. It is calculated based on the simi-
larity of the time-delayed embeddings in the state space. 

Mutual information (MI) [150] quantifies the amount of information obtained about 
one time-series through observing the other time-series. It is a commonly used measure 
in the information theory and is calculated based on Shannon’s entropy. Mutual infor-
mation in frequency (MIF) [151] is a recently developed measure that calculates the mu-
tual information between the PSDs of two time-series. Its interpretation is similar to co-
herence. 

Cross-recurrence quantification analysis [101] is similar to RQA, but instead of ob-
serving the self-similarity of a single signal, the similarity of two different channels is ob-
served. The features extracted are the same as in the case of single-channel RQA (see Sec-
tion 3.2). The correlation length (ξKLD) [152] is a measure of the spatio-temporal disorder 
based on the Karhunen–Loeve decomposition. 

3.4.2. Directed Spatiotemporal Features 
Granger causality [153] is a well-known statistical test, which tests whether one time-

series forecasts (causes) the other time-series, and vice-versa. It is based on the autoregres-
sive forecast models of the two time-series. Spectral Granger causality [154] can also be 
calculated and it is based on the estimation of the spectral transfer matrix and the covari-
ance of the autoregressive model’s residuals. The phase slope index (PSI) [155] is a robust 
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estimation of the information flow direction. It is insensitive to the mixtures of the inde-
pendent sources, which is the main problem for Granger causality. Transfer entropy, 
which is explained in Section 3.3, can also be considered a directed spatiotemporal feature. 

3.5. Complex NETWORKS 
The features introduced in Sections 3.1, 3.2, and 3.3 were based only on a single chan-

nel of the EEG signal. Section 3.4 introduced features calculated based on the pairwise 
interactions between the two channels. In this section, the main goal is to introduce the 
features that observe the interactions between more than two channels. Complex net-
works are a graph-theory-based approach to EEG signal analysis. A connectivity matrix 
obtained by observing all pairwise connections between channels is used to obtain a 
graph. Any method explained in Section 3.4 can be used to determine connectivity matrix, 
and popular choices are correlation, PLI, or MI. Graphs can be weighted based on the 
values of the connectivity matrix or unweighted by applying thresholding to the connec-
tivity matrix. A minimum spanning tree can also be used as a method for obtaining an 
acyclic graph with all vertices included. For more details about graph construction and 
complex networks, we refer the reader to papers [156,157]. In continuation of this section, 
we introduce features that are calculated based on the obtained graph. These features are 
functional connectivity features. 

Once the graph is obtained, the number of vertices and the number of edges can be 
used as features. The degree (D) [158] of a vertex is the number of edges connected to the 
vertex. The mean degree of the network is a metric of density. The degree distribution is 
a probability distribution of the degrees and it provides information about the structure 
of the graph. Degree correlation (r) [159] is the correlation coefficient of degrees of pairs 
of neighbors in a graph. Kappa (k) [159] is a measure of the degree diversity and it 
measures the broadness of the degree distribution. The clustering coefficient [160] is a 
measure of the vertices connectedness in a graph and it can be local (for a sub-graph) or 
global. If the local clustering coefficient is equal to one, it means that the corresponding 
local sub-graph is fully connected. The global clustering coefficient is sometimes called 
transitivity [161]. A motif [162] is a generalized version of the clustering coefficient and a 
pattern of local connectivity. The average of all pairwise shortest path lengths is called 
characteristic path length [160]. Small worldness [163] is a second-order graph statistic 
and its calculation is based on the trade-off between high local clustering and short path 
length. Assortativity [164] is the measure of vertex tendency to link with other vertices 
with a similar number of edges. 

Efficiency [165] is a measure of the efficiency of the information exchange in the 
graph. Local efficiency [165] is the inverse of the shortest path lengths between vertices 
on the observed sub-graph, where the sub-graph consists of all neighbors of the observed 
vertex. Global efficiency [165] is the average efficiency of the graph divided by the aver-
age efficiency of a fully connected graph. Modularity [166] describes the structure of the 
graph and represents the degree to which a graph is subdivided into non-overlapping 
clusters. 

Each vertex in the graph has a measure of centrality degree [167], which represents 
the number of shortest paths in the graph that the observed vertex is involved in. Simi-
larly, each vertex in the graph has a measure of closeness centrality [168], which repre-
sents the average distance of the observed vertex from all other vertices in the graph. Ei-
genvalue centrality [169] is a measure of the ease of accessibility of a vertex to other ver-
tices. It is computed based on the relative vertex scores, with the basic idea that the high-
scoring connections should contribute more to vertex influence than the low-scoring ver-
tices. Betweenness centrality [170] is a measure of the importance of the vertex in a graph. 
It is computed based on the number of times a vertex occurs along the shortest path be-
tween two other vertices. 

Diameter (d) [159] is the longest shortest path of a graph. Eccentricity (Ecc) [159] is 
the longest shortest path from a referenced vertex to any other vertex in the graph. Hubs 
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[171] are vertices with high centrality. Hubs tend to be connected and this property is 
called assortativity. Rich club [172] is a sub-graph of highly interconnected hubs. Leaf 
fraction [159] of a graph is the number of vertices with exactly one edge. Hierarchy (TH) 
[159] captures the ratio between a small diameter on one hand and overloading of the hub 
nodes on the other hand. 

4. Driver Drowsiness Detection Systems 
The aim of this Section is to review the work on drowsiness detection focusing on the 

features used. The inclusion criteria for the papers are stated in Section 1. Tables 3 and 4 
show a summary of the reviewed work on driver drowsiness detection, and the rest of the 
Section briefly presents each work. 

Balam et al. [173] used a convolutional neural network (CNN) for the classification 
based on the raw EEG signal from the Cz-Oz channel. They used data from the Sleep-EDF 
Expanded Database and their ground truth for drowsiness was the S1 sleep stage. Since 
the authors used a publicly available database, they compared their deep learning (DL) 
approach with the other feature-based approaches, and they concluded that this approach 
resulted in at least 3% better results. Chaabene et al. [174] used frequency-domain features 
for defining the ground truth. They used CNN with raw EEG signal from seven electrodes 
as input and achieved 90% drowsiness detection accuracy. 

Table 3. The summary of metadata of the reviewed driver drowsiness detection papers. 

Author Year Participants Electrodes 
Chaabene et al. [174] 2021 12 14 channels 

Balam et al. [173] 2021 23 Pz-Oz 
Yingying et al. [175] 2020 12 O1 and O2 

Zou et al. [176] 2020 16 32 channels 
Chaudhuri and Routray [177] 2020 12 19 Channels 

Budak et al. [178] 2019 16 C3-O1, C4-A1, and O2-A1 
Chen et al. [179] 2019 14 14 channels 

Mehreen et al. [180]  2019 50 AF7, AF8, TP9 and TP10 
Martensson et al. [181] 2019 86 Fz-A1, Cz-A2 and Oz-Pz 

Barua et al. [182] 2019 30 30 channels 
Ogino and Mitsukura [183] 2018 29 Fp1 

Chen et al. [184] 2018 15 30 channels 
Chen et al. [185] 2018 15 30 channels 
Chen et al. [186] 2018 12 40 channels 

Hu and Min [187] 2018 22 30 channels 
Dimitrakopoulos et al. [188] 2018 40 64 channels 

Hong et al. [189] 2018 16 Ear channel 
Li and Chung [190] 2018 17 O1 and O2 

Min et al. [191] 2017 12 32 channels 
Awais et al. [192] 2017 22 19 channels 

Nguyen et al. [193] 2017 11 64 channels 
Hu [194] 2017 28 32 channels 

Chai et al. [195]  2017 43 32 channels 
Chai et al. [196] 2017 43 32 channels 
Mu et al. [197] 2017 11 27 channels 
Fu et al. [198] 2016 12 O1 and O2 

Ahn et al. [199] 2016 11 64 channels 
Huang et al. [200] 2016 12 30 channels 

Li et al. [201] 2015 20 O1 and O2 
Chen et al. [202] 2015 16 9 channels 
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Sauvet et al. [203] 2014 14 C3-M2 and O1-M2 
Lee et al. [204] 2014 20 Fpz-Cz and Pz-Oz 

Garces Correa et al. [205] 2014 18 C3-O1, C4-A1 and O2-A1 
Zhang et al. [110] 2014 20 O1 and O2 

Hu et al. [206] 2013 40 Fz-A1, Cz-A2 and Oz–Pz 
Picot et al. [207] 2012 20 F3, C3, P3 and O1 
Zhao et al. [208]  2011 13 32 channels 

Khushaba et al. [20] 2011 31 Fz, T8 and Oz 
Liu et al. [209] 2010 50 13 channels 

Table 4. The summary of reviewed driver drowsiness detection papers. The meanings of the abbreviations are: TD—time-
domain, FD—frequency-domain, N—nonlinear, EN—entropies, CN—complex networks, SIG—signal-based labeling, 
Li’s—Li’s subjective fatigue scale, SD—sleep deprivation, NREM1—labels based on the sleep stages, BE3—first and last 
three minutes as two labels, BE5—first and last five minutes as two labels, BIH—behavior-based labeling, WIE—Wierwille 
scale, RT—reaction time based labeling, EXP—expert labeling, LSTM—long-short term memory, KNN – k nearest neigh-
bor, SVM—support vector machine, RF—random forest, ELM—extreme learning machine, GBDT – gradient boosting de-
cision tree, NN—neural network, FLDA—Fisher linear discriminant analysis, SDBN—sparse deep belif network, HMM—
hidden Markov model, and Thres.—thresholding-based algorithm. 

Author Features Target Algorithm No. Classes Acc. 
Chaabene et al. [174] Raw SIG CNN 2 90.14 

Balam et al. [173] Raw NREM1 CNN 2 94.00 
Yingying et al. [175] FD SIG LSTM 2 98.14 

Zou et al. [176] EN Li’s KNN  88.74 
Chaudhuri and Routray [177] EN SD SVM 2 86.00 

Budak et al. [178] TD, FD, EN and special NREM1 LSTM 2 94.31 
Chen et al. [179] CN BE3 SVM 2 94.40 

Mehreen et al. [180]  FD KSS SVM 2 92.00 
Martensson et al. [181] FD, N and EN KSS RF 2 93.50 

Barua et al. [182] TD, FD and EN KSS SVM 2 and 3 93.00 and 79.00 
Ogino and Mitsukura [183] FD and EN KSS SVM 2 67.00 

Chen et al. [184] CN KSS      
Chen et al. [185] CN KSS KNN 2 98.60 
Chen et al. [186] CN BE3 ELM 2 95.00 

Hu and Min [187] EN BE5 GBDT 2 94.00 
Dimitrakopoulos et al. [188] CN BE5 SVM 2 92.10 

Hong et al. [189] FD, N and EN EBE SVM 5 99.50 
Li and Chung [190] FD WIE SVM 5 93.87 

Min et al. [191] FD and EN BE5 NN 2 98.30 
Awais et al. [192] TD, FD and EN BIH SVM 2 80.00 

Nguyen et al. [193] FD SIG FLDA 2 79.20 
Hu [194] EN BE5 AdaBoost 2 97.50 

Chai et al. [195]  FD BE5 SDBN 2 90.60 
Chai et al. [196] FD BE5 NN 2 88.20 
Mu et al. [197] EN Li’s SVM 2 97.00 
Fu et al. [198] FD KSS HMM 3 AUC 0.841 

Ahn et al. [199] FD SD FLDA 2 75.90 
Huang et al. [200] FD RT      

Li et al. [201] FD BIH SVM 2 93.16 
Chen et al. [202] FD, N and EN SIG ELM 2 95.60 

Sauvet et al. [203] FD EXP Threshold 2 98.30 
Lee et al. [204] TD and FD NREM1 SVM 4 98.50 

Garces Correa et al. [205] TD and FD NREM1 NN 2 87.40 
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Zhang et al. [110] N and EN SIG NN 4 96.50 
Hu et al. [206] FD KSS SVM 2 75.00 

Picot et al. [207] FD SIG Threshold 5 80.60 
Zhao et al. [208]  FD Li’s SVM 3 81.60 

Khushaba et al. [20]  FD WIE LDA 5 95.00 
Liu et al. [209] EN KSS and Li’s HMM 2 84.00 

Yingying et al. [175] used a Long Short-Term Memory (LSTM) network to classify 
sleepiness in two classes and their final classification accuracy achieved was 98%. Their 
ground truth labels for classification were based on the alpha-blocking phenomenon and 
the alpha wave attenuation-disappearance phenomenon. The authors claimed that these 
two phenomena represent two different sleepiness levels, relaxed wakefulness and sleep 
onset, respectively. The authors used only the O2 channel of the EEG signal and per-
formed a continuous wavelet transform to obtain the PSD. Zou et al. [176] used multiscale 
PE, multiscale SampEn, and multiscale FuzzyEn. Their ground truth labels were based on 
Li’s subjective fatigue scale and the accuracy achieved was 88.74%. Chaudhuri and 
Routray [177] used only three entropies as features—ApEn, SampEn, and modified 
SampEn. Their experiment was designed to slowly increase the fatigue level of the partic-
ipants because of the effects of physical and mental workload, along with the effects of 
sleep deprivation. The experiment was divided into 11 stages and stages 7 and later were 
labeled as the fatigue state. The authors used SVM and achieved 86% accuracy. 

Budak et al. [178] used MIT/BIH Polysomnographic EEG database in their study. 
Their ground truth for binary classification was based on sleep stages labeled by an expert. 
The awake stage was labeled the awake state and stage I of sleep was labeled the drowsy 
state. The authors used ZCR, E, IF, and SEN as traditional features, and also used AlexNet 
on the spectrogram images to obtain additional 4096 features (layers fc6 and fc7 of 
AlexNet). The accuracy of the binary classification was 94.31%, which is the best result 
achieved on this dataset, according to the authors. Mehreen et al. [179] used δ, δ/α, θ, θ/φ, 
δ/α+β+γ, and δ/θ EEG features, along with blink features and head movement features 
and achieved 92% accuracy of drowsiness detection. Based on EEG features only, the ac-
curacy was 76%. The authors used subjective evaluation with Karolinska Sleepiness Scale 
(KSS) as the ground truth. It is unclear how the authors converted nine levels of KSS into 
a two-level ground truth. Chen et al. [180] used the clustering coefficient and characteristic 
path length of the graph obtained for δ, θ, α, and β frequency bands. The graph was ob-
tained using the phase lag index. The ground truth labels were binary. The first three 
minutes of participants’ driving were labeled as alert state and the last three minutes as 
fatigue state. SVM was selected for classification and achieved 94.4% accuracy. The au-
thors conclude that the functional connectivity of the brain differs significantly between 
the alert and fatigue state, particularly in the α and β bands. 

Martensson et al. [181] used θ, α, θ/(θ+α), α/(θ+α), (θ+α)/β, α/β, (θ+α)/(θ+β), θ/β, 
SampEn, and HFD from three EEG channels together with features from EOG and ECG 
signals. The authors performed a sequential forward floating feature selection method for 
dimensionality reduction and six EEG features were selected—HFD, θ, α/(θ+α), θ/β, 
θ/(θ+α) and α. Random forest was selected as the best model and achieved 93.5% accuracy 
on the test set and 84% on the leave-one-subject-out validation scheme. The ground truth 
was obtained with the KSS. The severely sleepy class was for a KSS score greater than 
seven and the sufficiently alert class was for a KSS score of less than seven. KSS scores 
equal to seven were discarded as outlined. Barua et al. [182] used δ, θ, α, β, γ, (θ+α)/β, 
α/β, (θ+α)/(α+β), and θ/β from 30 EEG channels along with features from EOG and con-
textual information (e.g., time awake, duration of last sleep, and the like). The authors 
achieved the best accuracy of 93% for binary classification and 79% for classification into 
three classes. Self-evaluation with KSS score was used as ground truth and KSS score was 
classified into three classes—alert class for KSS scores below six, somewhat sleepy class 
for KSS scores below eight, and sleepy for KSS scores equal to eight or nine. In the binary 
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classification, the authors used two methods (fuzzy centroid redistribution and SVM pre-
dicted redistribution) for redistribution of somewhat sleepy classes into the alert and 
sleepy classes. Ogino and Mitsukura [183] used δ, θ, α, β, and γ as frequency domain 
features, and parameters of the autoregressive model and MSE were also added to the 
feature set. Only the Fp1 channel was used and the authors achieved 67% accuracy by 
using SVM. The ground truth labels were based on the KSS score, where the alert class 
was for a KSS score less than four and the drowsy class was for a KSS score greater than 
six. 

Chen et al. [184] analyzed the difference in complex network features for each fre-
quency band (δ, θ, α, and β) between alert and drowsy states. The authors used the fea-
tures: Number of vertices, number of edges, D, leaf fraction, d, Ecc, betweenness central-
ity, k, Th, and r. Their ground truth was based on the KSS score. A significant difference 
was found in the four features of the δ-band and five features of the θ-band. In addition, 
the authors suggested a more linear graph configuration in alert states and a more star-
shaped graph configuration in drowsy states. Chen et al. [185] used the same experiment 
for drowsiness classification in a related study. Three complex network features (degree, 
degree correlation, and kappa) were extracted for each frequency band (δ, θ, α, and β). 
The ground truth was based on the KSS score and they performed binary classification. 
The highest accuracy of 98.6% was achieved using the k nearest neighbor (KNN) algo-
rithm. Chen et al. [186] used phase synchronization, phase coherence, k, betweenness cen-
trality, and Th as features. The first three minutes of participants’ driving were labeled as 
an alert state and the last three minutes as a fatigue state. The highest accuracy achieved 
was 95% using the extreme learning machine (ELM) algorithm. Dimitrakopoulos et al. 
[187] used 64 channels and computed three complex network features—clustering coeffi-
cient, characteristic path length, and small-worldness. The authors achieved 92.1% accu-
racy for drowsiness classification. The network values of the first and the last 5-min win-
dows were used to indicate the states of maximum alertness and maximum fatigue, re-
spectively. 

Hong et al. [188] used δ, θ, α, β, ratio indices, frequency domain statistics, the gener-
alized Hurst exponent, HFD, SEN, and PE from the ear channel together with photople-
thysmography (PPG) and ECG. The highest accuracy achieved was 99.5%. The ground 
truth labels were divided into five levels and were labeled by experts based on behavioral 
expressions. The authors ranked the features using four different methods, and in each 
method, at least four of the seven best-ranked features were nonlinear features. Hu and 
Min [189] used 30 channels and four entropies from each channel—SEN, ApEn, SampEn, 
and FuzzyEn. The authors achieved 94% accuracy in drowsiness classification. They used 
a ground truth based on self-reported fatigue. If the measurement lasted longer than 30 
min before the participant self-reported fatigue, the signals from the 5th to 10th minute 
were used as the normal state and the signals from the last five minutes before the end of 
the experiment were used as the fatigued state. Li and Chung [190] used θ, α, and β fea-
tures from O1 and O2 channels along with gyroscope-based head movement measure-
ment. The subjective Wierwille scale was used to obtain five-level ground truth. The 
achieved accuracy for five-level classification was 93% and for binary classification it was 
96%. Awais et al. [191] used mean, variance, minimum, maximum, E, SampEn, δ, θ, α, β, 
and γ from 19 channels along with ECG signal. SVM was used for classification and they 
achieved 80% accuracy for binary classification. When only EEG features were used, the 
accuracy was 76%. The authors used video-based facial features including eye blink du-
ration, facial expressions, facial tone, eye blinking rate, and movements such as head-nod-
ding and yawning for establishing ground truth. When a drowsy event began, five 
minutes before it were marked as the alert state and five minutes after it were marked as 
the drowsy state. 

Min et al. [192] used SEN, ApEn, SampEn, and FuzzyEn for fatigue detection. These 
four entropies gave better results than AR coefficients. An experiment was terminated 
based on the subjective report of fatigue. To confirm these fatigue reports, the authors 
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utilized the Chalder Fatigue Scale and Li’s Subjective Fatigue Scale before and after the 
experiment. The first five minutes of the recording were labeled as the normal state and 
the last five minutes of the recording were labeled as the fatigued state. The authors 
achieved an accuracy of 98.3%. Nguyen et al. [193] used δ, θ, α, β, and γ features from 64 
channels along with near-infrared spectroscopy (NIRS). EOG and ECG signals were also 
measured, but they were only used to establish the ground truth labels. Fisher linear dis-
criminant analysis (FLDA) was used for binary classification with 79.2% accuracy when 
EEG and NIRS were used. The accuracy when only EEG features were used was 70.5%. 
The authors introduced the drowsiness detection index, a variable derived for drowsiness 
detection, and they reported that it predicts the onset of drowsiness on average 3.6 s ear-
lier. Hu [194] used SEN, ApEn, SampEn, and FuzzyEn features from 32 channels of the 
EEG signal. An experiment was terminated based on the EOG parameter associated with 
fatigue and self-reported fatigue. The first five minutes were labeled as the normal state 
and the last five minutes were labeled as the fatigue state. The AdaBoost classification 
algorithm was used and achieved 97.5% accuracy. Chai et al. [195] used AR coefficients as 
features. The ground truth labels were binary, with the first five minutes of driving labeled 
as the alert state and the last five minutes of driving labeled as the fatigued state. An ex-
periment was terminated when the participant drove of the road for 15 s or when con-
sistent signs of fatigue (such as head nodding and prolonged eye closure) were detected. 
The authors used NN for classification and achieved 88.2% accuracy. Chai et al. [196] used 
AR features from 32 channels. The first five minutes of data were used as an alert state 
and the last five minutes as a drowsy state. The authors used a sparse deep belief network 
as a classification algorithm and achieved 90% accuracy. Mu et al. [197] used FuzzyEn 
from Fp1 and Fp2 channels and achieved 97% accuracy using the SVM algorithm. The 
ground truth labels were binary with the first 10 min labeled as the normal state and the 
last 10 min labeled as the fatigued state. The stopping criteria of the experiment were 
based on Li’s subjective fatigue scale and Borg’s CR-10 scale. 

Fu et al. [198] used θ, α, and β features from O1 and O2 channels along with EMG 
and respiration. The ground truth was set based on the KSS score, where level one was 
KSS score equal to one or two, level two was KSS score equal to three or four, and level 
three was KSS score equal to five or six. The reported average area under the curve (AUC) 
was 0.841. When only EEG features were used, the average AUC was 0.644. Ahn et al. 
[199] used δ, θ, α, β, and γ along with EOG, ECG, and fNIRS. FLDA was used for binary 
classification with 79.2% accuracy using all the available sensors. The accuracy based only 
on the EEG signal features was 59.7%. Binary ground truth was used with the well-rested 
group and the sleep-deprived group. Huang et al. [200] used only the α feature. The sys-
tem developed in this study did not use a classification algorithm. It was based on meas-
uring the response times of the subjects. Drowsiness was labeled for the moments when 
the response time was 2.5 times greater than the mean response time, which helped the 
authors to determine a threshold for α feature value indicating drowsiness. An auditory 
warning system was developed to help subjects to remain alert. 

Li et al. [201] used θ, α, and β features from O1 and O2 channels. The ground truth 
alert and drowsy data were labeled based on the percentage of eyelid closure (PERCLOS) 
and the number of adjustments on the steering wheel. The best accuracy of 93.16% was 
achieved using the SVM classifier and only θ and β features. The authors used the proba-
bility of prediction instead of the discrete class label to develop an early warning system 
with a probability threshold of 0.424. Chen et al. [202] used δ, θ, α, β, γ, ApEn, SampEn, 
Rényi’s entropy, and RQA features, along with the EOG. Two neurologists manually la-
beled binary ground truth values based on the EOG features and frequency domain fea-
tures. ELM was used for classification based on the nonlinear features only and achieved 
95.6% accuracy. Sauvet et al. [203] used θ, α, β, (θ+α)/β, and fuzzy fusion of these features. 
Feature thresholding was applied for classification and an accuracy of 98.3% was 
achieved. The ground truth was based on expert scoring, but it is unclear how this scoring 
was performed. 
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Lee et al. [204] used δ, θ, α, β, time-domain statistics, ZCR, and several ratio indices 
from Fpz-Cz and Pz-Oz EEG channels. The ground truth was classified into four classes: 
Awake, slightly drowsy, moderately drowsy, and extremely drowsy. These classes were 
determined by experienced physicians, with the first three classes being derived from the 
awake-sleep stage and the extremely drowsy class corresponding to the N1 sleep stage. 
SVM was used for classification and the best accuracy achieved was 98.5%. Garces Correa 
et al. [205] used MIT-BIH Polysomnographic Database in their research. Eighteen subjects 
were selected and δ, θ, α, β, γ, time-domain statistics, and frequency domain statistics 
features were extracted. The ground truth alert and drowsy labels were determined based 
on the awake and S1 sleep stages, respectively. A neural network was used for classifica-
tion and it achieved 87.4% accuracy. Zhang et al. [110]used LZC and peak-to-peak ver-
sions of ApEn and SampEn. Peak-to-peak means that instead of using all the data points 
of the features, the authors used only the difference between the maximum and minimum 
values in the sliding window. Four levels of ground truth labels were used, referred to as 
normal state, mild fatigue, mood swing, and excessive fatigue. These labels were deter-
mined based on the various entropy patterns used in the paper, but it is unclear exactly 
how the labels were determined. A neural network was used for classification and it 
achieved 96.5% accuracy. 

Hu et al. [206] used δ, θ, α, β, and frequency domain statistics along with EOG signal 
features. The authors achieved a final drowsiness detection accuracy of 75%. Binary 
ground truth labels were used. The alert state was defined with a KSS score less than 8 
and Karolinska drowsiness score (KDS) equal to 0, while drowsiness was defined with a 
KSS score greater than 7 and a KDS score equal to or greater than 50. The KDS is an 
EEG/EOG-based drowsiness scoring experiment where the final score is between 0% 
(alert) and 100% (drowsy) [210]. Picot et al. [207] used only α and β features from the P3 
channel together with the EOG signal. The ground truth was labeled by experts based on 
the EEG and EOG signal. Five levels were used in labeling the ground truth, but three 
levels were used to evaluate the drowsiness detection system. The drowsiness detection 
system was based on the statistical test to compare the two populations and thresholding, 
and achieved an accuracy of 80.6%. Zhao et al. [208] used multivariate autoregressive co-
efficients as features along with the EOG signal. The accuracy achieved with the SVM 
classifier was 81.6%. The ground truth labels were based on Li’s subjective fatigue scale. 
Khushaba et al. [20] introduced a hybrid type of EEG features called fuzzy mutual infor-
mation-based wavelet-packet features, and achieved a drowsiness detection accuracy of 
95%. Their ground truth had five levels and was based on Wierewille and Ellsworth cri-
teria. Wierwille and Ellsworth criteria [211] is a textual description of the drowsiness con-
tinuum based on behavioral and facial signs that should prepare raters to rate partici-
pants’ drowsiness based on observations of the video while driving. Liu et al. [209] used 
ApEn and Kolmogorov entropy of the δ, θ, α, and β frequency bands. The ground truth 
was binary with pre-task time as the alert state and post-task time as the fatigue state. The 
authors confirmed a statistically significant increase in fatigue level based on the five dif-
ferent subjective scales—KSS, Stanford sleepiness scale, Samn–Perelli checklist, Li’s sub-
jective fatigue scale, and Borg’s CR-10 scale. A hidden Markov model was used for classi-
fication and achieved 84% accuracy. 

5. Discussion 
Section 3 presented 147 features that were classified into 7 categories, as shown in 

Tables 1 and 2. As mentioned, Tables 3 and 4 show a summary of 39 reviewed papers on 
drowsiness detection. The year with the most papers meeting the inclusion criteria is 2018 
with eight included papers. Figure 3 shows the number of included papers and the num-
ber of papers as a result of the search query: “EEG driver drowsiness detection”. Based on 
both trends, it can be seen that the number of papers on this topic is increasing. 
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From 2013 to 2016, there were only two papers that used entropies and eight papers 
that used only frequency domain statistics. Although there is a higher number of pub-
lished papers in recent years, there are fewer papers that rely only on frequency-domain 
features. Nonlinear features, entropies, and complex network features have been increas-
ingly used in recent years. Reported drowsiness detection accuracies have remained more 
or less the same over the years and are usually between 80% and 99%. There is an increas-
ing body of work that has been done with higher numbers of participants (30 or more), 
and it is reasonable to assume that the accuracies from these works are the most reliable. 

 
Figure 3. The number of papers included in the study and the number of papers obtained as a result of the “EEG driver 
drowsiness detection” and “EEG driver fatigue detection” search query, data until April 2021. 

Although we often refer to accuracy as a quality measure for the developed system, 
it must be noted that it is not possible to fairly compare the accuracy of different works 
because most of the works have been performed with a private dataset based on different 
experimental designs. 

Besides the different datasets used, we observe that the methodology used for vali-
dation of the drowsiness detection systems is also a common problem. As mentioned ear-
lier, EEG signal is a non-stationary and nonlinear signal with high inter-individual differ-
ences. Because of these properties, the only proper way for model validation is the vali-
dation on the signals from an unseen subject. Empirical tests show that there is a large 
difference in the accuracies between validation on the unseen subjects and validation on 
the unseen parts of the signal [212]. Reporting of validation with improper methodology 
can create overexpectation of the model performance, bad generalization on the unseen 
subjects, and can lead other researchers in the wrong direction. This effect is visible 
through the examples of papers that use validation on the unseen subjects, but also report 
about validation on the unseen parts of the signal in order to be comparable with existing 
research [173]. The fourth inclusion constraint defined in Section 1 was used to eliminate 
the papers that have a low probability of achieving good generalization due to a low num-
ber of participants. 

The highest accuracy achieved was 99.5% in the work of Hong et al. [188]. It is inter-
esting to note that the authors included features from three different categories. The au-
thors used standard frequency bands and ratio indices, the nonlinear generalized Hurst 
exponent and HFD, and the entropies SEN and PE. Although this is not a large number 
of features, it is reasonable to assume that their diversity leads to the high accuracy of 
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drowsiness detection. It is difficult to say how reliable the given accuracy is because only 
16 participants took part in the experiment and there may be a high sampling bias in the 
data. The study by Martensson et al. [181] also used features from three different catego-
ries. The features used were standard frequency domain features and ratio indices, en-
tropy SampEn, and nonlinear HFD. This study had the largest number of participants (86), 
and the accuracy achieved was 93.5%. These two studies suggest that using different types 
of features should result in high accuracy of drowsiness detection. 

Complex network features for EEG signal analysis have become very popular in re-
cent years, and this is also true for drowsiness detection systems. There are four papers 
[179,184–186] that include complex network features. One of them only provides analysis 
without classification and the remaining three have high accuracy—93%, 94%, and 98%. 
Complex networks are a promising approach, but confirming the reliability of such a sys-
tem, especially when combined with features from other categories, requires studies with 
a large number of participants. 

There is also a growing body of research on drowsiness detection using deep learning 
models. Deep learning models are known for their high ability to learn hidden structures 
in the data, but they often require a large amount of data for proper training. They can be 
used with the raw data as input, but also with features, or both. There are five papers 
using deep learning that met our inclusion criteria. In the first one, the authors used the 
LSTM network with raw data and different types of features and achieved 94.4% accuracy  
[178]. Their research was based on only 16 participants. The second one also used LSTM, 
but for prediction of the underlying alpha phenomena that is the base for determining 
drowsiness level [175]. The other three papers used CNN as a classification method. The 
highest accuracy achieved was 94% and the model used only raw data, without any pre-
computed EEG signal features [173]. 

The reported accuracies for these deep learning models are in line with the accuracies 
of other models but, as we stated earlier, a direct comparison of the accuracies may lead 
to the wrong conclusions. Balam et al. [173] provided a proper comparison of different 
approaches. The authors used a publicly available dataset, so they were able to provide a 
fair comparison of different approaches. Their CNN approach was compared with one 
research based on the LSTM network and seven feature-based research studies. The best 
accuracy was obtained with their proposed method, while the LSTM method had a 
slightly lower accuracy. All seven feature-based approaches had more than 5% lower ac-
curacy on average. A similar comparison was provided in Budak et al. [178] on a different 
publicly available dataset. Furthermore, the difference was that the authors used features 
and raw data for their LSTM model. The comparison was made with one deep learning 
approach and six other feature-based approaches. Again, the feature-based approaches 
had a lower performance by about 7%, on average. 

These two pieces of research suggest that the deep learning approach is more appro-
priate and has higher performance for drowsiness detection than the feature-based ap-
proach. Nevertheless, it must be noted that all of the feature-based approaches that had 
lower accuracy used only time-domain and/or frequency-domain features. As shown and 
discussed earlier, the addition of different types of features could lead to an improvement 
of these models. From the inspected literature, it is currently unclear whether the inclusion 
of additional features would outperform deep learning models. In addition, it would be 
interesting to examine what effect would the addition of the features that are a measure 
of signal’s memory (like Hurst exponent) have, since the LSTM model also relies on the 
previous values of the signal. However, we can speculate that the addition of the memory-
based features would increase the accuracy of these feature-based models, but probably 
not enough to outperform LSTM models. The reason for this is because deep models have 
a higher capacity for learning hidden structures than the memory-based features, but ad-
ditional research should be made to support the speculation. 

A larger amount of data is needed for proper training of deep learning models com-
pared to non-deep learning models. Acquiring the data is often a problem when it comes 
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to EEG-based drowsiness detection. Authors of research studies that use deep learning 
approaches often employ generative adversarial networks for the augmentation of the da-
taset [175]. This process often leads to an improved performance of the model. Regardless 
of the possibilities for augmentation of the dataset, researchers should strive to gather as 
much as possible real EEG signals. The larger number of participants would ensure 
greater diversity of the dataset, reduce the influence of inter-individual differences in EEG 
signals, make models more robust, and allow enough data for proper validation of mod-
els. 

As we discussed earlier, there is evidence that different types of features improve 
drowsiness detection models. In the papers that met our inclusion criteria, about 50 dif-
ferent features were used, while we introduced 147 EEG-based features in our review. 
Approximately 100 unused features provide much room for further research. In particu-
lar, spatiotemporal features were only used to obtain a graph for complex network fea-
tures [184]. 

Another way to improve such systems is to set better ground truth labels. Currently, 
many works use subjective self-evaluation as ground truth. The KSS is used most often 
for this purpose. The KSS is a nine-level scale, with the first four levels describing alert-
ness, the 5th neutral level, and the last four levels describing sleepiness. The four levels 
for alertness and sleepiness have detailed descriptions, and they are very similar. It is also 
hard to tell if the scale is linear with the same distances between adjacent levels. Since it 
is a subjective scale with small differences between adjacent levels, it may lead to subjec-
tivity bias and inconsistencies in the ground truth labels, which was confirmed in [191], 
where the authors state after the statistical test results: “Subjective measures were not re-
liable for detecting drowsiness alone, and that solely relying on self-reported measures 
may not provide a meaningful measure of a person’s actual physiological state.” Future 
research on how to provide a unified definition and description of drowsiness is needed 
to combat this subjectivity bias. 

For future research, we recommend the development of a drowsiness detection sys-
tem that consider raw data, features from all seven categories, and deep learning models. 
Ground truth labels should be based on the unified, standard definition and description 
of drowsiness. If there is not yet research providing such a unified definition of drowsi-
ness, then ground truth should be confirmed with multiple independent sources to reduce 
subjectivity bias (even expert labels are prone to subjectivity). Because electrophysiologi-
cal signals have high interindividual differences, a large number of participants (about 
100 or more [181]) is needed to reduce sample bias and increase the chances of a model to 
have good generalization. 

6. Conclusions 
With this review paper, we bring four contributions: (1) Comprehensive review, sys-

tematization, and a brief description of the existing features of the EEG signal, (2) com-
prehensive review of the drowsiness detection systems, (3) comprehensive review of the 
existing similar reviews, and (4) discussion of various potential ways to improve the state 
of the art of drowsiness detection systems. In continuation, we summarize our suggestions 
for the general improvement of the field of drowsiness detection systems. 

A higher number of participants in the experiments (about 100 or more) is needed to 
ensure diversity of a dataset, reduce the influence of inter-individual differences of EEG 
signals, make models more robust, and allow enough data for proper validation of mod-
els. Validation of EEG-based driver drowsiness detection should always be done based 
on the data from unseen subjects (for example, using leave-one-subject-out cross-valida-
tion). Whenever possible, datasets should be published publicly to allow fair comparison 
of different approaches. Based only on the papers from this review, without additional 
research, we were not able to identify a single feature or a feature category that guarantees 
the best performance of the drowsiness detection system. What we can conclude is that a 
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higher number of features from at least four different categories should lead to more reli-
able drowsiness detection systems with lower sampling bias and higher generalization 
ability. Deep learning models exhibit higher performance for drowsiness detection than 
the considered non-deep learning models based on time and frequency-domain features. 
Nevertheless, the use of pre-computed EEG signal features together with deep learning 
models should always be considered (in addition to raw EEG data modeling), since in 
some cases, the addition of pre-computed features to deep learning models additionally 
boosted performance. 

For future research that would have a strong impact on the field of drowsiness de-
tection systems, we suggest the development of a unified, standard definition and de-
scription of drowsiness, which would lead to a reduction in subjective bias and easier 
comparison of different studies. 
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