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Abstract: In this paper, we propose a novel congested crowd counting network for crowd density
estimation, i.e., the Adaptive Multi-scale Context Aggregation Network (MSCANet). MSCANet
efficiently leverages the spatial context information to accomplish crowd density estimation in a
complicated crowd scene. To achieve this, a multi-scale context learning block, called the Multi-scale
Context Aggregation module (MSCA), is proposed to first extract different scale information and
then adaptively aggregate it to capture the full scale of the crowd. Employing multiple MSCAs in a
cascaded manner, the MSCANet can deeply utilize the spatial context information and modulate
preliminary features into more distinguishing and scale-sensitive features, which are finally applied
toal x 1 convolution operation to obtain the crowd density results. Extensive experiments on three
challenging crowd counting benchmarks showed that our model yielded compelling performance
against the other state-of-the-art methods. To thoroughly prove the generality of MSCANet, we
extend our method to two relevant tasks: crowd localization and remote sensing object counting. The
extension experiment results also confirmed the effectiveness of MSCANet.

Keywords: crowd counting; crowd density estimation; multi-scale context learning; crowd localiza-
tion; remote sensing object counting

1. Introduction

Crowd counting is an indispensable component for smart crowd analysis, to count
the number of people and describe the crowd distribution. It plays a critical role in many
areas, such as video surveillance [1], public security [2], human behavior analysis [3,4],
and smart cities [5-7]. However, due to the frequent occurrence of scale variations and
severe occlusions, in addition to the diverse crowd distributions, the task often faces great
difficulties to accurately describe the crowd, especially in scenes of overcrowding.

Deep-learning-based methods have been the main method for solving this problem
and have achieved quite a few significant improvements. However, challenges remain
to be settled. For one thing, the results of crowd counting are not sufficiently accurate in
severe occlusions, scale variations, and diverse crowd distribution scenes, especially under
the circumstances of crowds that visually share a high similarity with their surroundings,
as illustrated in the first column of Figure 1.

One of the major causes is that few studies have focused on the leveraging of spatial
context representation. For instance, single-scale crowd counting networks [8,9] only
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employ convolution operations with a fixed kernel size, which may hurt the performance
when the scale of the crowd changes. Multi-scale crowd counting networks [10-14] are
carefully elaborate in order to portray different scales of people. They are still limited by
the local receptive field of convolutional operation, and the features of the global spatial
context cannot be fully utilized. Other studies [15,16] applied various modules to model
scale-aware spatial context information; however, they merely aggregate different context
features without any auxiliary processing, which cannot access the discriminative features
and vastly harm the performance of the counting network.

Multi-scale context aggregation still has some space for improvement since only the
typical features from a specific scale contribute to final crowd counting. We argue that
the spatial context information of different scales should be aggregated in an adaptive
way. For another, the estimated density maps are not reliable when considering the exact
position even though the final reported count is precise. Unfortunately, in a majority of
existing methods, precise crowd localization is rarely involved. Although, it is as significant
as crowd counting since they are all fundamental tasks for crowd analysis.

Pred: 313.92

Figure 1. Representative examples in the UCF-QNREF dataset [17]. From left to right: input images, ground-truth, results
of CSRNet [8], and the results of MSCANet. Compared to CSRNet, MSCANet can effectively handle the ambiguity of
appearance between crowd and background objects.

Therefore, in this work, we propose a novel Adaptive Multi-scale Context learning
mechanism for congested crowd counting and localization simultaneously, namely the
Adaptive Multi-scale Context Aggregation Network (MSCANet). The kernel of the net-
work is a Multi-scale Context Aggregation module (MSCA), which learns a multi-scale
context representation in an adaptive way. MSCA introduces a multi-branch structure ap-
plying atrous convolution layers with different dilation rates aiming to encode multi-scale
context features.

Then, the encoded features of the whole branches are aggregated layer by layer via a
channel attention mechanism [18] to obtain a richer global scene representation. Multiple
MSCAs concatenated in a cascaded manner are embedded in the MSCANet, where the
subsequent up-sampling layer transforms the multi-scale features at each MSCA into
higher-resolution representations. The high-level features from the last MSCA are further
learned by a 1 x 1 convolution layer to output the two-channel results, including the crowd
density map and crowd localization map.

MSCANet can be easily applied for various network backbones and learned in an
end-to-end manner. Extensive experiments on three challenging public benchmarks (i.e.,
ShanghaiTech_Part_A, UCF_CC_50, and UCF-QNRF) showed that our model achieved
compelling performance against the state-of-the-art methods. Additionally, to evaluate the
generalization ability of our method, we extend MSCANet to two relevant tasks, i.e., crowd
localization and remote sensing object counting. Our model was proven to generalize
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well and achieved superior localization results on the UCF-QNRF dataset and promising
counting results on the RSOC dataset.
In summary, the main contributions of this paper are two-fold:

¢ We propose a MSCA to adaptively aggregate small-scale context representation with
large-scale context representation in a cascade manner, which encodes more compact
global context features for crowds at various scales.

*  Employing multiple MSCAs, we introduce the MSCANet to obtain multi-scale con-
text features with different resolutions. This can efficiently address the ambiguous
appearance challenge, especially under crowded scenes with complex backgrounds.

The remainder of this paper is organized as follows. Section 2 reviews related work
regarding crowd counting and crowd localization. Section 3 presents the proposed method
for crowd counting and localization. Section 4 introduces the experiment settings and
presents extensive experiment results. In Section 5, we conclude this paper and with some
future directions.

This paper is built on our conference paper [19], and the content is extended from
three aspects: First, we give a comprehensive review about crowd counting, crowd lo-
calization, and remote sensing object counting. Secondly, to evaluate the effectiveness
of our MSCANet, we also conduct a crowd localization experiment on the UCF-QNRF
dataset. Our qualitative and quantitative results demonstrate the superiority of our method.
Thirdly, we extend our MSCANet to remote sensing object counting tasks and conduct
extensive experiments on RSOC. Our method achieves promising results compared with
other state-of-the-art methods.

2. Related Works

In this section, we will review some related works regarding crowd counting, crowd
localization, and remote sensing object counting.

2.1. Crowd Counting

The task of crowd counting has been studied for many years. Research of crowd count-
ing can be categorized as either detection-based methods or regression-based methods.
Detection-based methods usually employ pedestrian or face detectors to recognize and lo-
calize crowds. However, the performance of the detectors deteriorates in congested crowd
scenes due to occlusions and large-scale variations of the crowd. Regression-based methods
establish the correspondences between the input image and the number of people. Con-
ventional methods [20-24] use carefully designed handcrafted features and apply different
regression methods to regress the final count number. Although they achieved progress,
their performances are constrained due to the handcrafted features of their methods, which
heavily rely on the specific crowd scenes.

Recently, with the renaissance of deep learning, many CNN-based crowd counting
networks have been proposed, which cast the crowd counting problem as a crowd density
estimation task. The research of CNN-based crowd counting methods is primarily three-
fold: the design of the network architecture, the generation of the crowd density map,
and the network optimization function. We will review the related work from the above
three aspects as follows.

Network structure. Scale variation of the crowd head is a classical challenging prob-
lem of accurate crowd counting. Many counting networks [25-33] have been carefully
designed to extract multi-scale features for handling this challenge. Early crowd counting
networks typically employed multi-column structures [10,11,14,16,34] to model differ-
ent scales of crowds. More recently, a graph network [35] was introduced to enhance
scale-aware features. Perspective information of crowd scenes was also employed for
networks [36,37] for improving the final counting performance. Later, research efforts were
devoted to utilize context information efficiently.

For example, [38—40] proposed a crowd density classifier to provide each input image
with a density-level label. The authors in [8] employed dilated convolutional layers
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to enlarge the receptive field of the network for extracting context information. Other
researchers [15] used spatial pyramid pooling [41] to enhance the different scales of
context features for crowd counting. Benefiting from the efficiency of visual attention
mechanisms for context information extracting [42—45], many attention-based counting
networks [46-49] were designed and perform well on complicated crowd scenes in which
the background objects have a similar appearance with foreground crowd.

Furthermore, to alleviate the effects of background objects for foreground crowd
counting, foreground mask-based crowd counting networks [50-53] have been designed.
Although the above methods achieved promising results, they rely on training data, and
therefore their generalization ability is limited to new scenarios. Thus, some unsuper-
vised domain-adaption methods [54,55] were developed for crowd counting and achieved
satisfactory results.

Crowd density map generation. The density functions are considered as real-valued
functions over pixel grids [56], whose integrals over image regions should match the object
counts. Most CNN-based counting networks [9] applied a normalized 2-D Gaussian kernel
to convolve with the head location for generating the crowd density map. Although they
have achieved great performance, the density map generated by the normalized Gaussian
kernel does not consider perspective changes, and thus cannot correctly model the crowd
distribution, which hampers the performance of counting networks.

To solve this problem, Zhang et al. [10] employed geometry-adaptive kernels to
solve the effects of perspective. Wan et al. [57] proposed a generation network to output
the crowd density maps, which the counting network aims to optimize, and the counting
network and generation network were trained end to end together. A. Sindagi et al. applied
residual learning in a progressive fashion [58] to generate high-quality crowd density maps,
and employed the MRF framework [59] to generate scale-aware density maps.

Optimization function. L2 loss was commonly used as the loss function in the CNN-
based crowd counting method. However, its average effect led to blurry estimation and
reduced the quality of the density map. Wan et al. [60] argued that the point annotations
in the available crowd counting datasets could be considered as weak labels for density
map estimation and proposed the Bayesian Loss, which constructs a density contribution
probability model from the point annotations.

Adversarial Loss [61,62] was involved a Generator G and Discriminator D playing
a two-player minimax game: G was trained to generate images to fool D while D was
trained to distinguish synthetic images from the ground truth. It could avoid blur as
well as incentivize sharp images since blurry outputs appear as unrealistic. Composition
loss [17] was used for training and estimation of the three interrelated problems of counting,
density map estimation, and localization, simultaneously. As a result, density maps can
be “sharpened” until they approximate the localization map, whose integral should equal
the true count. Cheng et al. [63] proposed a Maximum Excess over Pixels loss to learn
spatial-aware crowd features.

2.2. Crowd Localization

Different from crowd counting, the task of crowd localization aims to acquire the exact
locations of people in the image. It is also very challenging because people are very close
to each other in the congested crowd scene. The methods of crowd localization can be
divided into three categories: anchor-based localization methods, point-based localization
methods, and heuristic-based localization methods.

Anchor-based Localization Methods. The anchor-based crowd localization methods
draws on object detection, which designs a model to regress to the anchor box laid out by
each person in advance. For instance, Liu et al. [64] proposed a DetNet based on Faster
R-CNN [65] to detect sparse crowds. Lin et al. [66] employed the crowd density maps
and scene depth maps to improve the detection performance of RetinaNet [67] for crowds.
He et al. [68] utilized YoloV3 to detect crowds in the nearby region.
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Point-based localization methods. Most crowd counting datasets only provide point
annotations rather than anchor annotations. Therefore, it is more convenient to use point
annotations as the supervision information for crowd localization. Specifically, they [69-72]
formulated the crowd localization problem as a foreground /background segmentation
problem and used the cross-entropy loss to optimize the network.

Heuristic-based localization methods. The heuristic-based localization methods [17,73,74]
were proposed to obtain the crowd locations from the crowd density map. In particular, they
usually adopt the non-maxima suppression to obtain the maximum local value, which presents
each head location in the crowd. Then, the extracted locations are matched with true head
locations by 1-1 matching. The feasible solutions are obtained via the Hungary algorithm for
evaluating the performance of crowd locations.

2.3. Remote Sensing Object Counting

Remote sensing object counting, which aims to estimate the number of ground ob-
jects from remote sensing images, is a challenging and important computer vision task.
Comparing with traditional object counting in natural scenes, the task of remote sensing
object counting is more challenging in several aspects: large-scale variation, extremely
complex backgrounds, and orientation arbitrariness [75]. It is an important way to obtain
counting information by combining classification, detection, or segmentation results in
remote sensing images.

For example, Bazi et al. [76] proposed an automatic method that contained a classifica-
tion step using a Gaussian process classifier (GPC) and a counting step for counting olive
trees in very high spatial remote sensing images. Santoro et al. [77] proposed a four-step
algorithm that consisted of an asymmetrical smoothing filter, local minimum filter, mask
layer, and spatial aggregation operator for tree counting. Xue et al. [78] applied a semi-
supervised method for counting mammals in the open savanna. A parallel architecture
was proposed by [79] to count olive trees in a crop field, which mainly uses color-based or
stereo vision-based segmentation.

In recent years, deep learning methods have dominated the remote sensing object
counting task. Mubin et al. [80] proposed a deep learning framework based on LeNet
to detect and count oil palm trees in remote sensing images. Shao et al. [81] proposed a
detection and counting system based on Yolo V2 [82] for cattle counting. A neural network
named ResCeption was proposed by [83] to count cars by regression, which combined
residual learning with inception layers. Context sensing is helpful for many applications
(e.g., behaviour recognition [84]), and is also important for remote sensing.

Layout Proposal Networks (LPNs) with spatial kernels were proposed to count and
locate cars in drone videos, which can leverage spatial context information effectively [85].
For congested remote sensing object counting scenes, the density map-based methods are
more effective than detection-based methods.

Gao et al. [86] proposed an ASPD-Net for remote sensing object counting in an
encoder—decoder framework. To deal with the shortcomings of hand-crafted methods used
for generating density maps, an adaptive density map generator [87] was proposed for
learning a density map representation for the counter, which adopted the annotation dot
information as the input. The generator and counter were trained jointly in an end-to-end
manner and had good performance in remote sensing object counting.

3. Proposed Method

In this section, we will first introduce the problem formulation of crowd counting in
this paper. Then, we describe the details of our proposed MSCA module. After that, our
MSCANet and the comparisons of different context modules from the crowd counting
network are presented. Finally, the details of MSCANet for extension tasks (i.e., crowd
localization and remote sensing object counting) are illustrated in detail.
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3.1. Problem Formulation

We formulate crowd counting compliance with [8,10], which considers the problem as
a pixel-wise regression problem. To be specific, the density map F; is formed as follows:

M

Fi(x) = ) 6(x—a;) X Gy(x), 1)

j=1
where 4(-) stands for the Dirac delta function, G, represents the 2-D normalized Gaussian
kernel, o denotes the standard deviation, ajis the head location, and M is the total crowd
number of [;. The crowd counting network learns the non-linear mapping between the
input image I; and its corresponding crowd density map F;. The L, loss is defined as the
network loss function: .
N 2

L(©) = 55 TN, IF(150) — B2 @
where © represents the learning parameters of MSCANet, and N and F(I;; ®) denote the
image number and the output of crowd counting network, respectively. More technically,
in this paper, we introduce a new multi-scale contextual feature aggregation method,
i.e., MSCA. The details are described in the next subsection.

3.2. Multi-Scale Context Aggregation Module

Making full use of contextual features at different scales is an effective way to address
the scale variation of people. However, small-scale context features can only represent
partial cues due to the limitations of receptive fields. It is ineffective to directly aggregate
the small-scale context features with large-scale context features, which will introduce
irrelevant and useless cues and hinder the counting performance. Thus, we resort to a
selection mechanism to adaptively select and transform typical small-scale context features
for aggregating them with large-scale context features. According to this consideration, we
propose a MSCA module, and its specific structure is shown in Figure 2.

|<— Input image ->|<— Encoder —»}« Decoder »eCrowd density map—bl
» | )
" 2 e 2
5 3 D | |5
= S = 5
-
4
I,"'Multi-scale Context Aggregation Module (MSCA) “\
Scalel  X{
]
. o}
Scale2 _x, yi rf‘n; ’H
3: o

Output

Input

>G> CA

Figure 2. Detailedillustration of our Adaptive Multi-scale Context Aggregation Network for crowd counting.

The MSCA module was designed as a unified multi-branch atrous convolution
layer, where each layer has a different dilated rate. Concretely, we denote i, r, and

j€ {2,1,1 . -%, %, 1} as the dilated rate, reduction ratio, and resolution of the feature map,

respectively. The context feature is represented by X/ € RIW*/H*C, we adopt a function
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f being responsible for selecting informative features from X{ The context features are
aggregated as follows:

Y =f(ff(X)ex))oxh)e - ax)), ©3)

where @ represents the element-wise summation and Y/ € RIW>*/HXC denotes the output
feature of MSCA module. Specifically, We employed a channel attention(CA) [18] to
instantiate the selecting function f without extra supervision information. As illustrated
in Figure 2, the context feature is first sent to a global average pooling (Fsyg) layer and
subsequently processed by a bottleneck structure consisting of two fully connected layers.
Finally, a sigmoid function is applied to normalize the output feature. The selecting
operation not only highlights the typical features but also suppresses possible noise existing
in the redundant features. The detailed process is as follows:

;= W (WS (Buag (X)), @

where a; € RIWX/H*C denotes the adaptive coefficient. W{ “and W{ © represent the weights
of the two fully connected layers, and the first fully connected layer is followed by a ReLU
function. For better optimization, a residual connection is adopted between the input and
output of CA. The residual equation is as follows:

FXD) =X 4 aiX], i=1-n (5)

We summarize the computation process of MSCA and give its pseudocode as shown in
Algorithm 1.

Algorithm 1 Pseudocode of Multi-scale Context Aggregation Module with three branches
in a PyTorch-like style.

HHHHHHHHH A initialization HHHHHHHHHEH A

branchl = nn.Conv2d(in_channels, out_channels, kernel = 3, padding = 1, dilation = 1)

branch2 = nn.Conv2d(in_channels, out_channels, kernel = 3, padding = 2, dilation = 2)

branch3 = nn.Conv2d(in_channels, out_channels, kernel = 3, padding = 3, dilation = 3)

avg_pool = nn.AdaptiveAvgPool2d(1)

CA1 = nn.Sequential( nn.Linear(out_channels, out_channels // 4, bias = False), nn.ReLU(inplace = True),
nn.Linear(out_channels // 4, out_channels, bias = False), nn.Sigmoid() )

CA2 = nn.Sequential( nn.Linear(out_channels, out_channels // 4, bias = False), nn.ReLU(inplace = True),
nn.Linear(out_channels // 4, out_channels, bias = False), nn.Sigmoid() )

CA3 = nn.Sequential( nn.Linear(out_channels, out_channels // 4, bias = False), nn.ReLU(inplace = True),
nn.Linear(out_channels // 4, out_channels, bias = False), nn.Sigmoid() )

HHHTHHEHAR R forward pass AR
featurel = branch1(x), feature2 = branch2(x) , feature3 = branch3(x)

b, ¢, _, _ = featurel.size()

y = avg_pool(featurel).view(b, c)

y = CAl(y).view(b, ¢, 1, 1)## Channel attention, Equation (4)
channel_attention_map1 = y.expand_as(featurel)

featurel = featurel * (1 + channel_attention_map1) ## Residual learning, Equation (5)
feature2 = feature2 + featurel## Context feature aggregation, Equation (3)

b, ¢, _, _ = feature2.size()

y = avg_pool(feature2).view(b, c)

y = CA2(y).view(b, ¢, 1, 1)## Channel attention, Equation (4)
channel_attention_map?2 = y.expand_as(feature2)

feature2 = feature2 * (1 + channel_attention_map?2)## Residual learning, Equation (5)
feature3 = feature3 + feature2## Context feature aggregation, Equation (3)

b, ¢, _, _ = feature3.size()

y = avg_pool(feature3).view(b, c)

y = CA3(y).view(b, c, 1, 1)## Channel attention, Equation (4)
channel_attention_map3 = y.expand_as(feature3)

feature3 = feature3 * (1 + channel_attention_map3)## Residual learning, Equation (5)
return feature3
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3.3. Multi-Scale Context Aggregation Network

Based on MSCA, we propose an end-to-end deep neural network, i.e., MSCANet,
for congested crowd counting, which leverages context cues to effectively bootstrap the
task of crowd counting and localization. The pipeline is shown in Figure 2. Given an input
image I;, we first use a CNN to encode features. Then, the encoding features are fed into
multiple MSCA modules aimed to obtaining ample scale information. Specifically, we
employ an up-sampling layer following each MSCA to gradually transform the multi-scale
context feature map into higher-resolution representations. Finally, a convolution operation
is performed on the learned multi-scale context features with a 1 x 1 convolution kernel
for predicting the crowd density map.

3.4. Compared to Other Context Modules

We compare MSCA with another three context modules from [15,16,88], as shown
in Figure 3. To obtain a compact context feature, the Cascade Context Pyramid Module
(CCPM) [88] progressively aggregates large-scale contextual representation with small-
scale contextual representation, as shown in Figure 3b. The CCPM block enhances the
context features as follows:

Yi=g(--ggXha X, )aX, e aX), (6)

where g(-) denotes the residual block (res) from [89]. In contrast to CCPM, we fuse
contextual features from small to large in an adaptive way.

C—/ input
output
@ diaconv
D res
/) conv
[ avgpool

upsample

(b) © (d)

Figure 3. Different structures of multi-scale context modules. (a) Multi-scale context aggregation module (MSCA) w/o

channel attention (CA); (b) cascade context pyramid module (CCPM); (c) scale pyramid module (SPM); and (d) scale-aware

context module (SACM).

A Spatial Pyramid Module (SPM) [16] first adopts a multi-branch atrous convolution
layer to encode context information. Then, the output feature of each branch is equally
summated by an element-wise sum operation, as shown in Figure 3c. The learning process
of SPM is as follows:

Y=Y X = W), 7)

where U € RW*H*C and Wl.di”mm’ denote the input features and weights of the dilated
convolution layers, respectively. Differently from SPM, rgw MSCA module adaptively
selects reliable information from different scales of context information.

Liu et al. [15] employed spatial pyramid pooling [90] to capture multi-scale context
features from local features, and then the contrast features were extracted from the differ-
ences between local features and multi-scale context features to enhance the representation
of people at different scales. Referring to the above method, we introduce a Scale-Aware
Context Module (SACM) for crowd counting as shown in Figure 3d. The SACM outputs
context features as follows:

Y = Z:’:l X{ = Z?:l Up (W™ (Paoe; (U))), (8)

where Py, (-), Wi, and U, represent the adaptive average pooling layer that averages
the input feature U into i x i blocks and the weights of the convolution layers and bilinear
interpolation operation for upsampling, respectively. Compared to SACM, we apply a
different way to encode scale-aware context features. The experiments in the next section
verify the superiority of our MSCA module.
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3.5. Extension of MSCANet

We extend our MSCANet to two relevant tasks: crowd localization and remote sensing
object counting. The former aims to obtain the exact locations of the crowd, and the latter
aims to obtain the accurate number of remote sensing objects from remote sensing images.

Crowd Localization. Following [17,73,74], we also obtain the crowd localization
results from the crowd density map. Specifically, we first apply our MSCANet to generate
the original density map. Then, we utilize the non-maximum suppression to process the
extracted crowd density map to obtain the local maximum response map, which is our
final crowd localization results. The comparisons are illustrated in Section 4.3.

Remote Sensing Object Counting. Given that remote sensing object counting has
more similarities with crowd counting, we also formulate remote sensing object counting
tasks as a density estimation problem. Thus, we use the annotations from the remote
sensing object counting dataset to generate a density map following Section 3.1, and directly
train our MSCANet on it. The detailed comparison results will be presented in Section 4.3.

4. Experiments

In this section, we first introduce the datasets and implementation details. Then,
we describe the evaluation metrics for crowd/remote sensing object counting and crowd
localization. After that, the comparison results on test sets of different benchmarks between
our MSCANet and other state-of-the-art methods for crowd counting, crowd localization,
and remote sensing object counting are presented. Finally, comprehensive ablation studies
were performed to evaluate the effectiveness of each component of MSCANet.

4.1. Datasets

We conducted comprehensive experiments on four popular datasets, i.e., Shang-
haiTech_Part_A [10], UCF_CC_50 [91], UCF-QNREF [17], and RSOC [86]:

ShanghaiTech_Part_A [10] consists of 482 images in total (300 images for training and
182 images for testing). The crowd density varies significantly between different crowd
images. Specifically, the minimum number of people is 33 while the maximum is 3139,
which poses a difficult challenge for accurate estimation.

UCF_CC_50 [91] contains 50 images, which are randomly crawled from the internet,
and the maximum number of people is equal to 4543. Limited training images, and
different perspectives and resolutions are challenging factors for crowd counting methods.
We follow the standard setting in [91] to conduct a five-fold cross-validation.

UCF-QNREF [17] is a new proposed dataset, which has great improvement in the
quantity and quality of crowd images. The total number of images is 1535, including 1201
training images and 334 testing images. The number of people in the UCF-QNREF dataset
varies from 49 to 12,865.

RSOC [86] is the largest remote sensing object counting dataset, which contains 3057
images with 286,539 instances. It consists of four types of remote sensing objects, i.e.,
Building, Small-Vehicle, Large-Vehicle, and Ship, and the number of remote sensing object
varies significantly.

We used the first ten layers of VGG-16 pre-trained on ImageNet as the backbone.
The initial learning rate was 1 x 10>, and the optimizer was SGD with momentum. All
experiments were performed on a C® Framework [92,93] with a single RTX 2080 Ti GPU card
and an Intel(R) Core(TM) i7-8700 CPU with 16 GB RAM and 512 GB ROM. The experiment
software environments were the Pytorch 1.1 framework, Python 3.6, CUDA 10.1, and
Ubuntu 18.04 LTS operation system. The data pre-processing and augmentation strategies
of the above three datasets all follow the C> Framework. The training batch size was set to
4 and 1 on UCF_CC_50 and the other datasets, respectively.
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4.2. Evaluation Metrics

Counting Metrics. The mean absolute error (MAE) and mean squared error (MSE)
were applied to evaluate the counting performance:

1 N R
MAE = N Y o lzi— 4l )
1 N R
MSE = \/N Y (zi— %) (10)

where z; and Z; denote the truth number and the predicted number of people in image
I; respectively.

Localization Metrics. For the crowd localization task, we adopted the precision (P),
recall (R), and F1-measure (F1) to evaluate the localization performance:

TP
P_TP+FP’ (1)
TP
R= —— 12
TP+ FN’ (12)
2-P-R
Fl=——— 1
P+R’ (13)

where TP, FP, and FN denote the number of true positive samples, false positive samples,
and false negative samples, respectively. Specifically, the extracted crowd localization
points were matched with ground-truth points by 1-1 matching, and the TP, FP, and FN
were calculated under the pixel distance threshold value from 1 to 100 pixels. If the distance
between the extracted point and the ground truth point was less than the pixel distance
value, the localization result was marked as TP; if the distance between the extracted point
and the ground truth point was larger than the pixel distance value, the localization result
was marked as FP; if there existed no matched extracted point with the ground truth point,
the localization result was marked as FN.

4.3. Comparison with State-of-the-Arts
4.3.1. Crowd Counting

We compare our MSCANet with the top performing methods [8-10,17,38,39,56,70,91,94,95]
on four datasets, and the comparison results are reported in Table 1.

Table 1. Comparison of the different state-of-the-art methods on the ShanghaiTech_Part_A, UCF_CC_50, and UCF-QNRF datasets.

SHA UCF_CC_50 UCF-QNRF
Method
MAE MSE MAE MSE MAE MSE
Lempitsky et al. [56] - - 493.4 487.1 - -
Zhang et al. [9,10] 181.8 277.7 467.0 498.5 - -
Idrees et al. [17,91] - - 419.5 541.6 315 508
MCNN, [10,17] 110.2 173.2 377.6 509.1 277 -
Switching CNN, [17,38] 90.4 135.0 318.1 439.2 228 445
CL, [17] - - - - 132 191
CP-CNN, [39] 73.6 106.4 298.8 320.9 - -
CSRNet(baseline), [8] 68.2 115.0 266.1 397.5 - -
ic-CNN(one stage), [94] 69.8 117.3 - - - -
ic-CNN(two stage), [94] 68.5 116.2 - - - -
CFF, [70] 65.2 109.4 - - - -
TEDNet, [95] 64.2 109.1 249.4 354.5 113 188

MSCANet (Ours) 66.5 102.1 242.8 329.8 104.1 183.8
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Performance on ShanghaiTech_Part_A. We observed that our MSCANet achieved
the best performance on MSE and competitive results on MAE compared to the other
methods, which verifies the effectiveness of MSCANet. Specifically, it outperformed
CSRNet by —1.7 and —12.9 in terms of MAE and MSE.

Performance on UCF_CC_50. Our model achieved the best performance on MAE and
promising performance on MSE. More remarkably, MSCANet surpasses the performance
of TEDNet [95] —6.56 and —24.68 on MAE and MSE, respectively.

Performance on UCF-QNRE Our method produced the best results on both MAE
and MSE and outperformed the second-best result, i.e., TEDNet [95], by —8.9 and —4.2 on
the MAE and MSE metrics, respectively. The above improvements are due to the effect of
MSCA, which can learn more multi-scale context features used for crowd counting.

4.3.2. Crowd Localization

We conducted a crowd localization task on the UCF-QNREF dataset. The quantitative
results are presented in Table 2. The performance of MSCANet outperformed the other state-
of-the-art crowd localization methods in terms of the F1-measure, which demonstrates that
our model can efficiently obtain the crowd localization in different crowd scenes. Figure 4
presents the crowd localization results of MSCANet. We can see that our model performed
well on different crowd scenes with different crowd distributions, which further proves the
effectiveness of our MSCANet.

Figure 4. Visualizations of MSCANet for crowd localization on the UCF-QNRF dataset. Red points denote the ground-truth,
and green points denote the estimated location results of MSCANet.

Table 2. Comparison of the localization results on the UCF-QNRF dataset.

Method Av. Precision Av. Recall F1-Measure
MCNN [10] 59.93% 63.50% 61.66%
DenseNet63 [96] 70.19% 58.10% 63.87%
CL [17] 75.80% 59.75% 66.82%
SCLNet [74] 83.99% 57.62% 67.36%
MSCANet (Ours) 83.65% 61.07% 69.64%

4.3.3. Remote Sensing Object Counting

We perform our model on RSOC for remote sensing object counting. Table 3 displays
the comparison results. We can see that our method achieves comparable results against
other state-of-the-art methods. Specifically, MSCANet sets a new state-of-the-art result on
Small vehicle and Ship and surpasses other state-of-the-art methods by a significant margin,
which proves the effectiveness of our method. Figure 5 presents the qualitative results of
our model. We find that the density map generated by MSCANet are very close to the
ground truth density maps, which further prove the superiority of our model.
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Table 3. Comparison of the different state-of-the-art methods on RSOC.

Method Building Small Vehicle Large Vehicle Ship
e MAE MSE MAE MSE MAE MSE MAE MSE

MCNN [10,17] 13.65 1656 488.65 1317.44 36.56 5555 26391 412.30
CMTL [97] 1278 1599 49053 1321.11 61.02 7825 251.17 403.07
CSRNet [8] 8.00 11.78 44372 125222 3410 4642 240.01 394.81
SANet [34] 29.01 3296 49722 1276.66 62.78  79.65 30237 43691
SFCN [93] 8.94 12.87  440.70 124827 3393  49.74 240.16 394.81
SPN [16] 7.74 1148 44516 125292 3621  50.65 24143 392.88
SCAR [98] 2690 31.35 49722 1276.65 62.78  79.64 302.37 436.92
CAN [15] 9.12 13.38  457.36 1260.39 3456  49.63 282.69 423.44
SFANet [99] 8.18 11.75 43529 1284.15 29.04 47.01 201.61 332.87
ASPDNet [86] 7.59 10.66  433.23 1238.61 18.76  31.06 193.83 318.95

MSCANet (Ours) 11.13 16.02 221.16 430.90 60.92 78.20 41.93 60.73

GT:104

"

. \
k; A Y A
Pred:3609.02 red: SOy : Pr\(’l:l-WJS\ : Pred:99.89 - Pred:52.68 S Pred:36.72

Figure 5. Visualization results of MSCANet for remote sensing object counting on RSOC dataset.

4.4. Ablation Study
4.4.1. Multi-Scale Context Aggregation Module

We first evaluated the performance of MSCANet with different pyramid scale settings.
The pyramid scale setting (PS) denotes what dilated convolution branches are used in
MSCA module, and the value of the PS represents the dilated rate of each branch. We
investigated different PS settings to determine a suitable combination. As shown in Table 4,
the performance of MSCANet gradually improved as the parameter of PS increased,
reaching saturation at PS = {1,2,3}.

Continually increasing the parameter of PS did not improve the performance of the
network. This is mainly because a larger receptive field results in redundant information,
which hinders the learning of multi-scale context representation. As shown in Figure 6, we
visualized the output of MSCANet with different pyramid scale settings. The predicted
results of PS = {1,2,3} were very close to the ground truth. Based on this analysis, we set
PS = {1,2,3} in the following experiments.
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Table 4. Comparisons of our proposed method with different pyramid scale settings (PS) on the UCE-
QNREF dataset. The value of PS is the dilated rate of each dilation convolution branch from MSCA.

PS MAE MSE
{1 110.9 197.2
(1,2} 105.2 1846
{1,2,3} 104.1 183.8
{1,2,3,4} 104.8 186.1

Figure 6. Impacts of different pyramid scale settings on UCF-QNRF. From left to right: input image, ground truth, result of
PS = {1}, result of PS= {1,2}, result of PS = {1,2,3}, and result of PS= {1, 2,3,4}.

We studied the effects of the MSCA block by comparing our full model to one of the
same architecture without MSCA, denoted as MSCANet w /o0 MSCA (Decoder). Moreover,
to measure the effectiveness of CA for feature aggregation, we designed another network
variant, MSCA w/o CA, by replacing the CA block with a simple residual block. Table 5
reports the comparison results of the above changes. MSCA outperformed MSCA w/o
CA and Decoder in terms of MAE. The visual results in Figure 7 show the impacts of CA.
We can see that MSCA w /o CA performed worse than MSCA, which further verifies the
importance of CA in MSCANet.

Table 5. Comparisons of our proposed method with different architecture changes on the UCF-

QNREF dataset.
Configuration MAE MSE
Decoder (baseline) 111.3 182.0
MSCA w/o CA 105.7 186.9
MSCA 104.1 183.8
CSRNet (our reimplementation) 118.8 204.4
CAN [15] 107.0 183.0
CCPM 111.9 182.3
SPM 108.1 187.2
SACM 116.2 211.2

- in T

Pred: 528.41 Pred: 459.34

Figure 7. Impacts of CA on UCF-QNRE. From left to right: input image, ground-truth, result of MSCA w/o CA, and result
of MSCA.

4.4.2. Multi-Scale Context Modules

We compared our MSCANet with the other prominent context-based crowd counting
networks, i.e., Congested Scene Recognition Network (CSRNet) [8] and Context-aware Network
(CAN) [15], which also employ the first 10 layers of VGG-16 pre-trained on ImageNet as a
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backbone. The detailed results are reported in Table 5. Our MSCANet achieved the top
performance on both the MAE and MSE metrics.

Then, we studied the influence of using MSCA, CCPM, SPM, and SACM. For a fair
comparison, all of them had three branch structures, and the feature extractor was the same
as MSCANet. The comparison results are shown in Table 5. MSCA achieved the lowest
MAE on the UCF-QNRF dataset. Figure 8 displays the predicted results of typical images
with different crowd density levels. The qualitative and quantitative results demonstrate
that the MSCA block was critical for our model to improve performance, especially in
congested scenery.

| Pred: 208.93 Pred: 217.82 Pred: 189.92 Pred: 183.19

"Pred:517.49

Pred: 837.74

Pred: 1584.94 Pred: 1434.81 Pred: 1528.96 Pred: 1276.63

Figure 8. Visual comparision of different multi-scale context modules on UCF-QNREF. From left to right: input images,
ground-truth, results of our method, results of CCPM, results of SPM, and results of SACM.

5. Conclusions and Future Work

In this paper, we proposed a novel MSCANet for congested crowd counting. The core
of MSCANet is the MSCA block, which consists of multi-branch atrous convolution layers
and channel attention modules. The atrous convolution layers aim to extract multi-scale
contextual features while channel attention modules contribute to filter the redundancy
features and highlight the features that are beneficial for crowd counting. Extensive
experiments were performed on three congested crowd datasets, and our MSCANet
achieved favorable results against the other prominent methods. Moreover, we extended
our model to two relevant tasks, i.e., crowd localization and remote sensing object counting.
The experimental results on UCF-QNRF and RSOC demonstrated the generalization ability
of MSCANet.

However, our model only utilizes the spatial context information of a single image, and
the performance of MSCANet is limited for video object counting. In future work, we will
extend our model with temporal context information for the task of video object counting.
Specifically, we can first count each frame using our proposed MSCANet to obtain the
count result of each frame. We can obtain the global information of the video sequence
from the count result of each frame. Then, with the help of the global information, we can
apply the rescore method to modify the unsatisfied count result of those frames. Finally,
we obtain the counting number of the video from the estimated and refined count results.
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