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Abstract: The rapid evolution of air sensor technologies has offered enormous opportunities for
community-engaged research by enabling citizens to monitor the air quality at any time and location.
However, many low-cost portable sensors do not provide sufficient accuracy or are designed only
for technically capable individuals by requiring pairing with smartphone applications or other
devices to view /store air quality data and collect location data. This paper describes important
design considerations for portable devices to ensure effective citizen engagement and reliable data
collection for the geospatial analysis of personal exposure. It proposes a new, standalone, portable
air monitor, GeoAir, which integrates a particulate matter (PM) sensor, volatile organic compound
(VOC) sensor, humidity and temperature sensor, LTE-M and GPS module, Wi-Fi, long-lasting battery,
and display screen. The preliminary laboratory test results demonstrate that the PM sensor shows
strong performance when compared to a reference instrument. The VOC sensor presents reasonable
accuracy, while further assessments with other types of VOC are needed. The field deployment
and geo-visualization of the field data illustrate that GeoAir collects fine-grained, georeferenced air
pollution data. GeoAir can be used by all citizens regardless of their technical proficiency and is
widely applicable in many fields, including environmental justice and health disparity research.

Keywords: low-cost sensor; air quality; air sensing; citizen science; personal exposure; wearable
devices; geospatial technologies; geographic information systems; particulate matter; volatile or-
ganic compounds

1. Introduction

Personal exposure to air pollution occurs through dynamic interactions between an
individual and air pollutants [1]. Indoor and outdoor exposure to various air pollutants,
such as particulate matter (PM) and volatile organic compounds (VOCs), has detrimental
health effects based on the exposure levels and duration [2,3]. Elevated PM exposure is
associated with various illnesses, including asthma, stroke, heart attack, and lung cancer,
causing increased mortality and morbidity [4]. While the health effects of coarse (PMjg)
and fine particles (PMj5 and PM;) differ, smaller particles are known to pose greater
health issues as they can travel deep inside the lung tissues. Indoor VOCs can lead to
mucous membrane irritation, fatigue, and carcinogenic effects, whereas outdoor ozone
formed by VOCs’ reaction with nitrogen oxides and sunlight can increase the risk of asthma
development among children [2].
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Assessing personal exposure accurately is an important step in taking preventive
measures to minimize adverse health outcomes. However, a challenge in personal exposure
assessments is that air pollution concentrations are constantly changing over space and
time, and individuals (receptors) also move through various geographical areas to live,
work, and play [5]. This complex reality of exposure has provoked a paradigm shift
from static, residence-based, aggregate-level approaches to the study of environmental
exposure/heath to mobility-based, individual-level approaches in recent years [6-8]. In this
new paradigm, accurate assessments of personal exposure require two critical components:
(1) detailed, personal travel-pattern data (e.g., GPS tracking data) and (2) air-quality data
collected at a fine spatio—temporal scale [1]. Due to the spatio—temporal aspects of these two
components, researchers have increasingly turned to an advanced geographic information
system (GIS) and various geographic techniques to integrate the datasets for mapping
and geospatial assessments of exposure. Geographic approaches to exposure research can
enhance an understanding of where, when, how, and why people experience exposure,
allowing researchers to analyze multiple factors simultaneously based on their spatio—
temporal relationships.

Recent advancements in air-sensing and positioning technologies have opened new
possibilities for collecting both highly localized, real-time air pollution data and individ-
uals” movement pattern data that allow geospatial assessments of exposure [9-11]. In
particular, the emergence of low-cost, compact air sensors has made it possible for citizens
to participate in community air monitoring or personal air sampling in their places of daily
activity [12,13]. In recent years, a growing number of citizen science projects have used
low-cost air monitors to provide local air quality data to communities, with the goals of
raising public awareness of air pollution, fostering behavioral changes, or empowering
communities to take action [14-16]. However, several limitations of existing air-sensing de-
vices may hinder effective citizen engagement and successful harvesting of georeferenced
air quality data. First, many devices generally do not contain all the components necessary
for citizen science projects for geospatial assessments of personal exposure. For example,
devices that are designed to mainly target the general public tend to be easy to use and
visually pleasing, but they do not provide sufficient accuracy for credible data [16], lack
the elements required for scientific research, such as data loggers, and are often suitable
for measurement only at a fixed location (e.g., a user’s home). In contrast, devices that
are widely used by researchers or scientists are often not ready for citizen science applica-
tions due to their poor user-friendliness and technical complexity [17,18]. However, they
have been frequently employed in community-based participatory research, despite being
designed for researchers, scientists, or those who are technically capable.

Second, many existing devices can only be deployed as stationary devices as they
lack a battery and GPS functionality. Therefore, many citizen science projects using low-
cost sensors have focused mainly on obtaining outdoor air quality data by requesting
volunteers to install sensors in their backyards. The data gathered by the distributed
ambient sensor network have often been combined with population data for exposure
and health risk assessments. However, given that people spend 93% of their lives indoors
on average [19], exposure assessments that focus only on outdoor air quality do not
inform individuals of the large portion of their daily exposure and may produce erroneous
exposure estimates [20]. Moreover, stationary monitoring often has little impact on people’s
awareness of or behaviors to improve their surrounding air conditions because it does
not fully satisfy participants’ curiosity [14]. It has been reported that people are more
interested in identifying the air quality in their own spaces of daily activity than in the
general outdoor areas of their communities [18,21] and thus, are more motivated to change
their behaviors to reduce air pollution/exposure when they are informed of the air quality
in their immediate surroundings [14].

We argue that using a GPS-enabled portable device is the most effective strategy to
increase the public awareness of air pollution and promote changes in behaviors because it
can offer citizens a full picture of the air quality that they experience in daily life in various
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indoor/outdoor environments (e.g., homes, workplaces, grocery stores, and in-vehicle).
However, only a few consumer devices or research prototypes are portable because complex
design considerations make portable devices difficult to develop. To make them as compact
and light as possible, most devices do not have a display screen, a large built-in battery
that can last more than 10 h, a GPS module, and a data logger. Rather, they depend on
smartphone applications or other mobile devices (e.g., external battery packs) to view and
store air pollution data and collect GPS data (extracted from users’ phones). However,
such a design often poses usability issues, causing a significant burden on participants and
failing to engage citizens effectively, elicit improved environmental literacy, and harvest
high-quality data [15-18,22,23].

To address these limitations, we propose an innovative, GPS-enabled, portable, low-
cost air-sensing device that can facilitate citizens” engagement in personal air monitoring
and geospatial assessments of personal exposure. The device proposed in this paper is
GeoAir2. Its concept and design build on GeoAirl—a prototype developed by Park [11]—
by adding a multi-gas sensor, an LTE modem, and a larger battery, as well as by utilizing
a more reliable PM sensor and GPS module. The details of GeoAirl and its real-world
application can be found in Park [11]; a manuscript that presents laboratory experiment
results about GeoAirl (which uses the PMS A003 sensor (Plantower, Beijing, China) is
currently under review [24]. From this point forward, GeoAir2 will be called “GeoAir” for
convenience. This paper describes the critical design considerations for the development
of GeoAir and demonstrates the device’s utility by presenting preliminary laboratory
and field data and visualizing the field data on 2-D and 3-D maps. The details of sensor
calibration, performance, and complete data analysis are not included in this paper as they
will be presented in another manuscript.

2. Materials and Methods
2.1. Design Requirements

A portable air-monitoring device used for geospatial exposure assessments that in-
volve citizens requires unique design considerations. It should be designed to (1) ensure the
successful harvesting of georeferenced air quality data from participants and (2) minimize
participants’ burden. To meet the first criterion, the device should integrate the following
features: (1) high-quality but low-cost PM- and VOC-sensors developed by an experienced
manufacturer of environmental sensors to ensure data accuracy; (2) a built-in data logger
to store the complete data and prevent the data loss that can occur when only relying on a
smartphone application to store data; (3) GPS and Wi-Fi for outdoor and indoor positioning;
and (4) an LTE modem for near real-time, wireless data transmission to ensure continuous
data collection.

For the second criterion, the device should be small, light, wearable/portable, and
designed both to reduce the complexity /number of tasks required for participants to com-
plete and minimize the number of other devices that need to be carried and manipulated
(e.g., smartphones, GPS data loggers, or external battery packs). A key requirement for
new technologies adapted to citizens is to maximize ease of use [18]. A common but
mistaken assumption is that all participants, regardless of their age, educational attainment,
technological literacy, gender, income levels, race/ethnicity, and so forth, are comfortable
with new technologies and can easily understand how to manipulate air-sensing devices
as researchers or scientists intend [22]. Therefore, instead of requiring users to connect the
device to a smartphone application and manipulate it to view their data, having a display
screen on the device is ideal because it allows participants to check the air quality easily
whenever they are curious about it. It is also preferable if users can charge the device only
once at the end of the day and do not need to carry an external battery pack when they are
away from home.

To the best of our knowledge, while some products on the market meet the individual
aspects of the requirements mentioned above, no existing devices fulfill them all. Many
portable air monitors that are commercially available and widely used, such as AirBeam?2
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(HabitatMap, Brooklyn, NY, USA), Atmotube (Atmotech Inc., San Francisco, CA, USA), or
Aeroqual (Aeroqual Limited, Auckland, New Zealand), claim to be an ideal tool for citizen
science research. However, numerous community-based projects have faced significant
challenges when implementing these devices on a wide scale [15-18,22,23]. Many existing
devices require users to keep the sensor device and their smartphone at a distance of less
than 10 m apart to maintain a constant Bluetooth connection between the two devices for
viewing or storing data. However, data are often lost when their Bluetooth connection is
interrupted. As observed in previous studies, smartphone applications paired with these
sensor devices often crash, causing data loss; they also require technical proficiency in
users, leading to frustration for research participants and high dropout rates [11,17,18,23].
Furthermore, these mobile applications frequently work only on Android phones and do
not function properly on low-quality smartphones, limiting the eligible participants to a
subset of the population. Participants must also charge both devices frequently because the
GPS running constantly on their phone and the fan in the air sensor cause excessive battery
drain. In addition, without a built-in GPS, most devices have to couple with a separate
GPS receiver device or users” smartphones to collect location data that can be linked to air
pollution data. These limitations are also present in many research prototypes that were
developed by research groups because they are primarily designed for researchers rather
than the general public [18]. In the following subsection, we describe how GeoAir can
address these limitations and meet all the aforementioned criteria.

2.2. Detailed Description of GeoAir Design

The design of GeoAir centers on citizen science research and geospatial assessments
of personal exposure. GeoAir integrates the following features: a PM sensor (SPS30,
Sensirion, Zurich, Switzerland); a multi-gas, humidity, and temperature sensor combo
module (SVM30, Sensirion, Zurich, Switzerland) that contains an SGP30 VOC sensor and
an SHTC1 humidity and temperature sensor; an LTE-M and GPS module with an internal
antenna (SIM7000A, SIMcom, Shanghai, China); a 4000 mAh lithium polymer battery; an
M5Stack microcontroller (Shenzhen, China) powered with an ESP32 system-on-a-chip; and
an LCD display that allows citizens to readily check air quality at any time and location.
The design includes a belt clip attachment point to allow users to wear the device.

After careful review of existing low-cost PM and VOC sensors, we chose the SPS30 PM
sensor and SGP30 VOC sensor as candidates for our GeoAir design due to their high accu-
racy, low cross-unit variability, and long-term stability, as reported in the literature [25-27]
and in the field evaluation conducted by the Air Quality Sensor Performance Evalua-
tion Center (AQ-SPEC) in the South Coast Air Quality Management District (SCAQMD,
USA) [28]. The ease of software integration between SGP30 and SPS30 was another reason
that both sensors were selected from the same manufacturer. As the SPS30 is a relatively
new optical particle counter that was released on the market in late 2018, there are only a
few studies that evaluated the sensor’s performance. However, the laboratory experiments
performed by the authors also indicate that the SPS30 sensor outperforms other low-cost
sensors in terms of accuracy, biases, and precision for different aerosol types, including salt.
A manuscript that presents the results of these laboratory experiments is currently under
review [24].

The SPS30 sensor uses the principle of laser-scattering and provides real-time PM
mass concentrations for different sized fractions (PM7, PM; 5, PMy, and PMyg). The sensor
has a lifetime of more than 10 years with continuous use and requires no maintenance
due to its unique contamination-resistant technology [29]. The SGP30 measures total
VOCs (tVOCs), which indicates the total concentration of multiple organic chemicals found
simultaneously, mostly as gases in the air. The SGP30 greatly improves upon existing
consumer VOC sensors by addressing multiple limitations. It has significantly enhanced
long-term stability and sensor accuracy because it uses a siloxane-resistant technology
that prevents the deterioration of the sensor accuracy over time due to contamination by
siloxanes [26]. In addition, it is suited for mobile applications due to its size and low cost.
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More details about the hardware interfaces and electrical specifications of SPS30 and SGP30
are available in the datasheets of SPS30 [29] and SVM30 (a module that integrates SGP30),
respectively [30].

A printed circuit board (PCB) was designed and manufactured to integrate all the com-
ponents into a single package (Figure 1). This package was encased in an injection-molded
plastic box (Figure 2). The process of prototyping and manufacturing was completed by
Jaycon Systems (Florida, United States) and the cost per unit is USD 250~350. It should be
noted that the unit cost is dependent on the volume of units produced.

GeoAir 2.0

Figure 2. GeoAir2: A portable, GPS-enabled, low-cost air pollution monitor.

GeoAir records the following data every minute by default: (1) mass concentrations
(ng/ m3) of PM;, PM, 5, PMy, and PM;; (2) number concentrations of PMg 5, PM;, PM, 5,
PMy, and PM;; (3) tVOCs (ppb); (4) temperature (°F); (5) relative humidity (0-100%); (6)
geographic coordinates of GPS locations (latitudes and longitudes); (7) timestamps (in
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Greenwich Mean Time); battery levels (%); (8) a list of Wi-Fi media access control (MAC)
addresses for geolocation; (9) and the number of GPS satellites currently with position
fixes. Although the SGP30 sensor produces the output for Hy-based CO,eq, GeoAir does
not record this output due to insufficient accuracy because it is an estimate based on a
hydrogen measurement rather than a real CO, measurement. The manufacturer also does
not recommend using the SGP sensors for applications in which real CO, detection is
required. In addition, although the default time interval was one minute, the device can be
set differently according to study purposes. In this paper, we used a one second interval
to obtain finer-scale data because a long battery life was not needed for our preliminary
laboratory and field tests. On the other hand, in a study that aimed to estimate “daily”
exposure and requires participants to carry the device for several days, a one-minute
recording interval may be more appropriate because long battery life is important to reduce
the burden for participants.

To prevent data loss and protect data confidentiality and geoprivacy, GeoAir writes
data to an encrypted CSV file that is stored on a built-in micro Secure Digital (SD) card and
uploads data every hour to a preset URL using HTTPS. The LTE modem is also utilized for
real-time telemetry to ensure that the device is being used as intended (e.g., whether the
device is turned on and charged). For example, the LTE modem sends a POST request to a
URL when the battery life is below 25%. At this time, the device displays a notification to
alert users. One of the most important design considerations of GeoAir is to maximize the
battery life. The device was designed to last up to 15 h when fully charged by reducing
the frequency of data polling to one minute, turning off the PM sensor’s fan when it is not
measuring particles between minutes, minimizing the brightness of the display when the
screen is not in use, and turning off the LTE modem except when uploading the previous
hour of data in bulk to a preset URL once every hour. When the PM sensor wakes up again
for the next-minute measurement, the device warms up the sensor for at least 20 s before
the measurements to obtain stable outputs, as recommended by Sensirion.

2.3. Sensor Performance Evaluation Using Reference Instruments

We tested 40 units of GeoAir for aerosol and gas functionality and response inside a
laboratory exposure chamber (Figure 3). The chamber was split into two equal sections:
a mixing zone, where aerosol was generated, and a sampling zone, where the sensors
were tested. The chamber dimensions are 1.2 m x 0.64 m x 0.64 m (length, width, and
height, respectively), and the mixing and sampling zones were separated with a honey-
comb straightening section (AS5100, Rusken, Kansas City, MO, USA). The 40 GeoAir units
were positioned inside the sampling zone. A Mini Wide Range Aerosol Spectrometer
(MiniWRAS 1371, cost = USD 30,000, GRIMM Aerosol Technixk GmbH & Co. KG, Ainring,
Germany) was used as an aerosol reference instrument. The MiniWRAS can capture the
whole range of particle size distribution. It measures 41 bin sizes between 10 nm and 35 pm
and can derive PM;, PM, 5, and PMy measurements in real time. The MiniWRAS combines
electrical and optical particle detection, while the SPS30 only uses optical detection. As a
VOC reference instrument, a MiniRAE 3000+ PID (Honeywell, Charlotte, NC, USA) was
used. The MiniWRAS and MiniRAE were positioned outside the chamber and measured
air directly from the sampling zone. Particle free air was supplied to the mixing zone
using a 1/4 hp blower (Dayton 7AT80, Grainger Global Sourcing-Motors, Lake Forest, IL,
USA) that passes through two high-efficiency particulate absorbing (HEPA) filters (Model:
2GHH1, 99.99% Filter Efficiency, Flanders Corporation, Washington, NC, USA) in series.
The exposures (aerosol or gas) were generated in the mixing zone, where two fans were
used to mix the air. A vacuum (DM 3000P, Fantech, Lenexa, KS, USA) was used after the
sampling zone to ensure the proper disposal of the aerosol and gases generated in the
chamber. The GeoAir devices and the MiniRAE were set to record every one second, and
the MiniWRAS was set to record every one minute. Two experiments were conducted—the
first by generating salt aerosol to test the SPS30 sensors and the second by generating VOC
to test the SGP30 sensors.
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Figure 3. Experimental setup used to test the GeoAir functionality and response for aerosol and VOC.

2.3.1. Aerosol Generation

Salt particles were generated using a 2% by weight prepared salt solution (Sodium
Chloride, 59625-1KG, Sigma-Aldrich, St. Louis, MO, USA) and a vibrating mesh nebulizer
(Aeroneb Solo System, Aerogen, Galway, Ireland). Different mass concentrations were
achieved by operating the nebulizer with a voltage regulator. The salt particles gener-
ated by the nebulizer were dried by passing the air stream through a silica bed (Droplet
Measurement Technologies, Longmont, CO, USA). The salt particles were then diluted
in the mixing zone before passing through the honeycomb straightening section. The
mass concentration changed gradually from 0 to 250 pug/m? over 90 min, according to
the MiniWRAS, which was monitored in real time. Particle-free mass concentration was
established before the experiment and tested using the MiniWRAS.

2.3.2. Gas Generation

Butanol solution (1-BUTANOL, HPLC GRADE, A383, ThermoFisher Scientific, Fair
Lawn, NJ, USA) was used to generate VOC inside the chamber. The MiniRAE was cali-
brated with a 100 ppm Isobutylene calibration gas (SDS 3025, Safeware, Inc., Lanham, MD,
USA) before the experiment and set to 1-Butanol. The Butanol vapor was generated using
a syringe pump (Aladdin-1000NS, World Precision Instruments, Sarasota, FL, USA) and a
60 mL syringe attached directly to the mixing zone of the chamber. The syringe pump was
set at a flow of 10 mL/min for 5 min, then lowered to 0.2 mL/min.

2.3.3. Data Analysis

The GeoAir data were averaged over one minute and time-paired with the MiniWRAS
and MiniRAE using MATLAB R2020b. The GeoAir data for the 40 sensors and the MiniRAE
data were averaged for each minute, and the standard deviation was calculated. Scatter
plots between the MiniWRAS and the average GeoAir data were derived for PMy, PM; 5,
and PMjg. A scatter plot between the MiniRAE and the averaged GeoAir data for the VOC
measurements was also created. The slopes, intercepts, and coefficients of determination
(R?) for each scatter plot were derived.

2.4. Field Deployment and Geovisualizations Using GIS

A volunteer conducted field data collection in the city of Greenville (NC, USA) on 10
March 2021. Prior to the data collection, the volunteer turned on the device and waited
for about one minute until the device established a GPS signal and the sensors warmed
up and stabilized. When the device is ready for georeferenced measurements, it displays
air quality information on the screen. The volunteer wore three GeoAir units clipped to
a belt and walked along the roadways in a high-traffic area in the city for an hour. The
authors then downloaded the data from the micro SD cards and calculated the average
concentrations of the three monitors for PM;, PM, 5, and VOC for each second. Using the
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average values, we created 2-D maps to present spatial distributions of the pollutants along
the travel route and 3-D maps to show both spatial and temporal patterns.

3. Results and Discussion
3.1. PM Sensor Performance

Table 1 presents the slopes, intercepts, and R? for PM;, PM; 5, and PM;. Three GeoAir
sensors did not provide data and were removed from the analysis. Therefore, the data
points represent the average concentration of 37 GeoAir sensors for all particle sizes. The
correlation coefficient was high for all particle sizes and ranged from 0.98 and 0.99. The
slopes were 0.77, 0.82, and 0.95 for PM;, PM; 5, and PM;, respectively. The intercepts
were all below —0.5 pig/m?3, with the PM; intercept approaching zero. Scatter plots of the
average GeoAir data and the MiniWRAS for PM;, PM; 5, and PM; are shown in Figure 4.
The y axis error bars represent the standard deviations for all GeoAir sensors. The PM; and
PMj; 5 average mass concentrations for the GeoAir were underestimated compared to the
MiniWRAS. PM; average mass concentrations for the GeoAir were close to the one-to-one
line, which indicates high precision. However, some of the GeoAir sensors were close to the
one-to-one line for PM; and PM; 5 concentration, as illustrated by the standard deviation
that changed up to 42, +62, and +80 pg/m? for PM;, PM, 5, and PMy, respectively.
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Figure 4. Scatter plots between the average GeoAir and the MiniWRAS data for (a) PM;; (b) PM; 5;
and (c) PMj for varying levels of salt concentration. The y axis error bars represent the standard
deviation of the GeoAir devices.
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Table 1. Slope, intercept and R? for PM;, PM; 5, and PMyp.

Particle Size Slope Intercept (ug/m?3) R?
PM; 0.77 —0.01 0.99
PM; 5 0.82 —0.11 0.99
PM;g 0.95 —0.46 0.98

Overall, the SPS30 aerosol sensors inside the GeoAir device showed significant corre-
lations with the MiniWRAS reference data for PM;, PM; 5, and PM1g. The high correlations
may be because the manufacturer calibrates the SPS30 PM sensors with potassium chloride
particles [29]. Our result is consistent with a previous study that reported R? = 0.98 for
PM, 5 when comparing the SPS30 to a high-cost PM reference instrument using ammonium
sulfate particles [27].

3.2. VOC Sensor Performance

The average concentrations of the GeoAir compared to those of MiniRAE are shown in
Figure 5 as a scatter plot. Five GeoAir sensors did not provide data and were removed from
the analysis. Therefore, the data points represent the average concentration of 35 GeoAir
sensors. The maximum concentrations for the MiniRAE and GeoAir were 29,686 ppb and
46,711 ppb, respectively. The y axis error bars represent the standard deviations for all the
sensors. The average slope, intercept, and R? values for the GeoAir sensors compared to
the reference instrument were 0.99, 3229 ppb, and 0.95, respectively. The GeoAir sensors
overestimated VOC levels for concentrations higher than 30,000 ppb and underestimated
VOC levels for lower concentrations compared to the estimations of the MiniRAE.

35,000
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Figure 5. VOC scatter plot for MiniRAE and average GeoAir measurements for 1-Butanol. The y axis
error bars represent the standard deviation of the GeoAir sensors.

A possible reason that the response time for the MiniRAE is slower than that of GeoAir
is that the reference instrument was outside the chamber. The difference in concentrations
could be attributed to the calibration. The MiniRAE was corrected for 1-Butanol, whereas
the SGP30 sensors were not. However, the calibration factors (slope and intercept) can
be used to correct the biases for the GeoAir. According to the manufacturer, the SGP30
sensors were calibrated with ethanol [30]. However, it is unclear why the SGP30 sensors
overestimated the VOC concentration for levels above 30,000 ppb. More studies are needed
to evaluate the SGP30 sensors against a reference instrument under laboratory conditions.
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3.3. Preliminary Field Data and Geospatial Mapping

The field data contained a total of 2610 measurements for each pollutant (the measure-
ments before the device obtained a GPS signal were excluded). The descriptive statistics
of PM; and PM 5 concentrations are as follows, respectively: average, 17.65 ug/ m? and
18.66 ug/m3; maximum, 20.07 ug/m3 and 21.22 pg/m3; minimum, 11.09 ug/m3 and
11.72 pug/m3; and standard deviation, 1.58 pug/m?3 and 1.67 ug/m?>. The average PM, 5
concentration during the data collection fell into the “moderate” category of the Air Quality
Index (AQI), which is the level at which sensitive people, including the elderly, children,
and people with respiratory and cardiovascular diseases, may be at risk if they are exposed
to this concentration daily over the duration of a year [31]. Most VOC measurements were
lower than 65.67 ppb during the data collection (Figure 6¢). The descriptive statistics of
VOC are as follows: average, 40.97 ppb; maximum, 160.67 ppb; minimum, 0 ppb; and
standard deviation, 34.81 ppb. Federally enforceable guideline values have not been clearly
defined for ambient VOCs because multiple VOCs are simultaneously present in the air,
and outdoor VOC levels tend to be lower than those in occupational settings [32].

The data for PM;, PM; 5, and VOC were visualized on 2-D and 3-D maps based on
their geographic coordinates and timesteps using GIS (Figure 6). PMjy maps were not
included in this paper because PMj( concentrations were only slightly different from PM, 5
concentrations in these field data. It may be because the PM;jy outputs are estimated
from PMy 5, PM1, and PM; 5 measurements due to the limitations of today’s laser-based
PM sensing technologies [29]. In addition, outdoor emission may be dominated by sec-
ondary organic aerosol from mobile emissions [33], and no coarse dust particles may have
been detected.

The maps show that air pollution concentrations fluctuated over space and time
along the volunteer’s GPS track. PM; and PM; 5 data were classified using the same
data classification scheme to facilitate the comparison (Figure 6a,b). PM; and PM;5
measurements showed similar spatial and temporal patterns overall. In addition to the 2-D
maps, we presented the individual’s air quality data in a 3-D cube in which the horizontal
surface represents space and the vertical axis represents time. The spatial range of the
movement represents the geographical extent to which the individual traveled. The vertical
axis represents the temporal progression of the travel. For further studies, this individual-
level, fine spatiotemporal-scale data can be aggregated and combined with health data or
other environmental, social, and behavioral variables using GIS. Additionally, although
the maps presented in this paper are static, they can be easily converted to interactive web
maps using web GIS technologies. The static or interactive web maps can be shared with
research participants for visual communication. The visualization results illustrate that
major roads with high traffic (three roads in the upper area on the maps) tend to have
higher particle concentrations than smaller roads (two roads at the bottom), while VOC
concentrations do not follow the same patterns.

The volunteer was only requested to charge and turn on the GeoAir device to collect
and view air quality data because GeoAir does not require pairing with other devices
or smartphone applications. A key recent trend of the Internet of Things (IoT) that com-
prises smart appliances is to replace the plastic buttons and LCD screens on standalone
devices with smartphone applications. Therefore, many IoT devices, including low-cost
air pollution sensors, utilize applications to pair the devices with mobile phones. While
such emerging technologies have brought numerous opportunities for scientific research,
they may not always work as intended when used in citizen science projects that involve
elderly citizens or people who are less comfortable with new technologies or do not own
smartphones of sufficient quality. This raises questions about the broader applicability of
such devices beyond scientific needs and about their potential as tools to engage citizens
while ensuring volunteer diversity and inclusivity, as well as socially and ethically respon-
sible knowledge production [22]. GeoAir, an all-in-one device, is a highly promising tool
because it can be used by all citizens regardless of their technical experience. The scope of
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a citizen science project using GeoAir can range from simple participatory data collection
to data visualization/analysis using the data generated from the device.
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Figure 6. Visualizations of georeferenced air quality data obtained from GeoAir.
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GeoAir has several limitations worth noting. First, the performance of GeoAir, as
would that of a typical low-cost sensor, may be influenced by weather conditions [34,35].
Due to the relatively limited robustness compared to fixed-site national air quality moni-
toring stations, it may be less suitable for regulatory purposes for which high reliability
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and accuracy are critical [36]. Further studies are needed to evaluate the effects of relative
humidity and temperature through field tests in a wide range of weather conditions. Sec-
ond, GeoAir does not provide a comprehensive air monitoring solution because sensors
for other pollutants, such as carbon monoxide, ozone, or nitrogen dioxide, are not included
in the device. However, integrating multiple air sensors is not the major consideration
in this study because it may significantly increase the weight and size of the device and
users’ burden. Therefore, we prioritized the pollutants that are most important to human
health and that the general public is most concerned about in their everyday life. Third,
the current firmware of the device does not support differential data recording intervals
by activity, location, and time. Future studies may consider developing algorithms to
automatically detect human activities (e.g., sleeping, sitting, walking, biking, or driving)
or microenvironments (e.g., indoors, outdoors) and differentiate the recording intervals
accordingly to save battery more effectively. Finally, although GeoAir is portable and
wearable, it may be less suitable for long-term everyday use due to its weight (238 g) and
size (14 x 5.3 x 3.5 cm), when compared to other commercial devices for which the weight
and size were the most critical design consideration. However, because it is only slightly
bigger and heavier than a typical smartphone, it may not significantly increase the burden
for users.

4. Conclusions

This study proposes a fully integrated air-sensing device, GeoAir, to address the limi-
tations of off-the-shelf air-sensing devices currently on the market. This novel instrument is
fundamentally different from existing consumer devices because it was primarily designed
for geospatial assessments of personal exposure and community-engaged research. The
integrated position tracking system allows researchers to collect georeferenced air quality
data at an individual level without a separate GPS tracking device and to visualize the
personalized data on maps. These visual representations of data are effective tools for
communicating with citizens about local air quality, their daily exposure, and potential
health impacts.

The reliability of the data that GeoAir generates enables researchers to employ it for
scientific research. The PM sensor used in GeoAir demonstrates strong performance when
compared to a reference instrument. The VOC sensor shows reasonable accuracy, but
future studies that test it with other types of VOC are needed to further assess the sensor
performance. The credible, high-resolution, georeferenced air pollution data generated
from the devices can form the basis of various individual- or community-level studies,
as well as mitigation and intervention strategies. Such data could be utilized to identify
potential sources of pollution, understand the impact of exposure to air pollution on
respiratory diseases (e.g., asthma), develop strategies to educate the public and reduce air
pollution and health risks, and evaluate the effectiveness of the strategies [37].

Due to its ease-of-use, GeoAir also holds significant potential for community-based
participatory research or public participation GIS (PPGIS) projects that focus on environ-
mental justice or health disparities. Its user friendliness substantially reduces the burden
of participation and facilitates the engagement of underserved communities, particularly
people who are technically less capable [11]. Engaging members of these communities in
monitoring the environmental conditions of their immediate surroundings or communities
can empower them to modify their behaviors to reduce air pollution and exposure in their
daily lives. The knowledge gained may also encourage them to advocate for changes to
eliminate polluting sources that are disproportionally distributed to their communities [38].
These efforts would contribute to improving community health and providing positive
health outcomes for all individuals.
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